
Mok et al. 
Anesthesiology and Perioperative Science             (2023) 1:9  
https://doi.org/10.1007/s44254-022-00001-3

REVIEW ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Anesthesiology and
Perioperative Science

The impact of perioperative acute kidney 
injury/failure on short and long surgical 
outcomes
Valerie Mok1†, Jonathan Nixon1†, Jie Hu2* and Daqing Ma1*   

Abstract 

The development of acute kidney injury after surgery is associated with significant mortality and morbidity and with 
worse short and long-term outcomes. Patients who develop acute kidney injury are at an increased risk of develop-
ing long-term renal dysfunction, which leads to lower quality of life and greater financial burden on the healthcare 
system. Although there are various systems to classify the severity of acute kidney injury, most systems only measure 
components that deteriorate after significant renal damage, such as urine output and serum creatinine. Surgical 
trauma and stress trigger acute kidney injury development, in addition to multiple co-morbidities, cardiovascular 
disease, and postoperative factors. The pathophysiology of acute kidney injury is complex, and this is reflected in the 
heterogenous population that is affected. Treatment is largely supportive and focuses on ensuring adequate renal 
perfusion, correcting electrolyte abnormalities and avoiding further renal injury. Current research focuses on novel 
biomarkers that detect decreased renal function earlier and that the deteriorating renal function can be treated 
before long-lasting damage occurs. This review discusses the epidemiology, aetiology, risk factors, and short and long-
term surgical outcomes of acute kidney injury. Treatment, prevention, and recent developments in future research are 
also discussed.
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Graphical Abstract

1 Introduction
Perioperative acute kidney injury (AKI) accounts for 
18–47% of all hospital-associated AKIs occurring after 
surgery [1]. Surgical patients with comorbidities are at 
greater risk of developing renal dysfunction [2]. AKI 
represents a large burden of disease on the healthcare 
system in terms of mortality and cost [3]. Importantly, 
transient perioperative deterioration in renal function 
can lead to devastating outcomes such as long-term 
renal dysfunction [4–6]. Developing preventive strate-
gies to tackle the occurrence of perioperative AKI is 
urgently needed, as once AKI has occurred, treatment 
is currently largely supportive [7]. This review was 
completed using a systematic approach, with predeter-
mined inclusion and exclusion criteria. The databases 
EMBASE and Medline were searched extensively for 
relevant papers published in English up to 2021. The 
search terms “perioperative” and “acute kidney injury” 
or “acute kidney failure” were combined with each of 
the following terms: “surgical outcomes”, “mortality”, 
“morbidity”, and “management”. Here, we summarised 
the literature mainly published in the past 10  years or 
so and provide a critical insight into the understanding 
of AKI and of short and long term surgical outcomes. 
This review gives an overview of the pathophysiology, 
treatment, and outcomes of perioperative AKI, and 
discusses the current updates of AKI prevention and 
management.

2  Renal physiology
The kidneys receive 20–25% of the cardiac output [8, 
9], the highest percentage of cardiac output per gram 
of tissue [10]. Blood flow is maintained primarily by 
the vascular tone of the afferent arteriole in response 
to tubuloglomerular feedback of changes in sodium 

chloride (NaCl) concentration in the tubular fluid [11]. 
The nephron is divided structurally and functionally into 
segments: the glomerulus, proximal tubule, loop of Henle, 
distal tubule and collecting tubule system. The schematic 
illustration of tubular structure and functions, and the 
mechanism of action of the classes of diuretics is pre-
sented in Fig. 1.

3  Acute kidney injury
The definition of diagnosis criteria of AKI is debatable. 
The Acute Dialysis Quality Initiative group devised the 
Risk, Injury, Failure, Loss  of kidney function, and End-
stage kidney disease (RIFLE) criteria for the diagnosis 
and classification of impaired kidney function (Table  1) 
[12].

The Acute Kidney Injury Network (AKIN) then modi-
fied the RIFLE criteria by adding changes in serum cre-
atinine when they occur within a 48-h period [13]. More 
recently, in 2012, Kidney Disease: Improving Global 
Outcomes (KDIGO), a non-profit foundation, published 
guidance that covered both the RIFLE and AKIN crite-
ria [14]. They proposed three stages of AKI (Table 2) and 
defined AKI as any of the following:

• A rise in serum creatinine (SCr) by 0.3  mg/dl 
(26.5 µmol/l) within 48 h;

• A rise in SCr to 1.5 times of the baseline, which is 
known or presumed to have occurred within the 
prior seven days;

• Urine volume < 0.5  ml/kg/hour for six consecutive 
hours

The RIFLE, AKIN and KDIGO criteria are currently the 
most widely accepted definitions of AKI. However, there 
is no agreement as to which provides the most accurate 
estimation of incidence or mortality.
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4  Epidemiology
AKI incidence can reach 30% in cardiac surgery patients 
[15] and in other types of major surgery, with a lower 
rate in elective procedures compared to emergency pro-
cedures [16]. However, a rate of only 1% of general sur-
gery procedures resulted in AKI was also reported [2]. 
The discrepancies in different studies may be caused by 

heterogenous populations and different AKI classification 
systems. AKI epidemiology also differs in low or middle-
income countries (LMICs) versus high-income countries 
(HICs) [17]. Although community-acquired AKI is more 
common in LMICs, perioperative AKIs occur more often 
in cardiac surgery procedures and in children undergoing 
non-cardiac surgery in HICs [18].

Fig. 1 Schematic illustration of renal tubular structure and functions, and the site and action of classes of diuretics

Table 1 Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease (RIFLE) criteria [12]

GFR Glomerular filtration rate, SCr Serum creatinine

Class GFR Urine Output

Risk ↑ SCr × 1.5
or
↓ GFR > 25%

 < 0.5 mL/kg/h × 6 h

Injury ↑ SCr × 2
or
↓ GFR > 50%

 < 0.5 mL/kg/h × 12 h

Failure ↑ SCr × 3
or
↓ GFR > 75%
or
Baseline SCr ≥ 4 mg/dL with acute rise of SCr > 0.5 mg/dL

 < 0.3 mL/kg/h × 24 h 
or anuria × 12 h

Loss of kidney function Complete loss of kidney function > 4 weeks

End-stage kidney disease



Page 4 of 15Mok et al. Anesthesiology and Perioperative Science             (2023) 1:9 

5  Aetiology of AKI
The aetiology of AKI can be classified into pre-renal, 
intrinsic and post-renal depending on the cause.

5.1  Pre‑renal
Pre-renal AKI refers to a decreased glomerular filtra-
tion rate (GFR) due to renal hypoperfusion. Kidneys 
are heavily reliant on adequate blood supply, and even a 
small reduction in perfusion can have a profound effect 
on the GFR. Common causes include hypovolaemia, 
impaired cardiac function, systemic vasodilation and 
increased vascular resistance [9]. If the pre-renal cause 
can be reversed promptly, renal function can generally be 
restored.

5.2  Intrinsic
Intrinsic AKI develops following damage to the glo-
meruli, tubules, interstitium or intra-renal blood vessels 
[9]. Most commonly, the tubules are damaged, and this 
is referred to as acute tubular necrosis. Acute glomeru-
lonephritis can lead to glomerular damage, and vascular 
damage reduces perfusion and consequently GFR. Acute 
interstitial necrosis is caused by infection or as a reaction 
to a wide range of medications.

5.3  Post‑renal
Post-renal AKI is caused by increased intratubular pres-
sure due to acute obstruction of urinary flow [8]. The 
raised pressure combined with impaired renal blood 
flow and inflammation leads to a decreased GFR [9, 19]. 
Post-renal AKI can be further divided into intrarenal and 
extrarenal depending on the site of obstruction. Intra-
renal causes include nephrolithiasis, papillary necrosis 

and thrombi, whereas prostatic hypertrophy; bladder, 
prostate or cervical cancer; retroperitoneal fibrosis and 
improperly placed catheters cause extrarenal obstruc-
tion [9]. As with pre-renal causes of AKI, prompt rever-
sal of the obstruction usually leads to a quick return of 
function.

6  Common processes involved in AKI
Under physiological conditions, permeability, vascu-
lar tone, coagulation and inflammation are regulated by 
endothelial cells [20]. If they become damaged primarily 
because of hypoxia, ischaemia or nephrotoxicity, these 
processes can be compromised, and renal function will 
be impaired. Most AKI cases involve multiple different 
pathophysiological processes provoked by a triggering 
event [12, 20].

6.1  Ischaemia
Systemic hypotension can cause endothelial cell injury 
and subsequent local release of endothelin, angiotensin II 
and catecholamines, which leads to vasoconstriction and 
may worsen ischaemia [20, 21]. When ischaemic tissue is 
reperfused, rapid production of reactive oxygen species 
(ROS) can activate the opening of the mitochondrial per-
meability transition pore, resulting in depolarisation of 
mitochondria, which decreases adenosine triphosphate 
(ATP) synthesis and increases ROS production [22, 23]. 
ATP depletion causes cytoskeleton changes to epithe-
lial and endothelial cells, impairing function [24]. Death 
of tubular cells reduces overall function, and results in 
a clogged tubule and loss of pressure gradient, further 
reducing the GFR [22, 23].

Ischaemia can cause cell necrotic and apoptotic death 
[24]. Prolonged ischaemia (45  min) tends to cause 
necrotic cell death, whereas apoptosis follows shorter 
ischaemia times (30  min) [22]. Renal necrosis is geneti-
cally driven whereby the rapid disintegration of the 
plasma membrane leads to damage-associated molecular 
patterns escaping the cell, resulting in a striking inflam-
matory response in the tissue, and organ injury or fail-
ure [22, 24]. In apoptosis, controlled digestion of cells 
with intact plasma membranes reduces the inflammatory 
response and limits tissue damage [24]. It is therefore 
critical that ischaemic episodes are minimised to prevent 
more extensive damage occurring to the tissue.

6.2  Hypoxia
Renal hypoxia occurs when there is a mismatch between 
renal oxygen supply and demand. Insufficient oxy-
gen supply can be caused by anaemia or reduced flow 
through peritubular capillaries [25]. Increased renal 
oxygen demand has been shown to occur in hyperten-
sive and diabetes mellitus models [26, 27]. Susceptibility 

Table 2 Kidney Disease: Improving Global Outcomes (KDIGO) 
stages of AKI [14]

Stage Serum creatinine Urine output

1 1.5 to 1.9 times baseline
or
 ≥ 0.3 mg/dl increase

 < 0.5 ml/kg/hour for 6 to 12 h

2 2.0 to 2.9 times baseline  < 0.5 ml/kg/hour for ≥ 12 h

3 3.0 times baseline
or
Increase in serum creatinine 
to ≥ 4.0 mg/dl
or
Initiation of renal replacement 
therapy
or
in patients < 18 years a decrease 
in eGFR to < 35 ml/minute per 
1.73  m2

 < 0.3 ml/kg/hour for ≥ 24 h
or
anuria for ≥ 12 h
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varies throughout the tubule, with the thick ascending 
limb and collecting duct of the medulla being at greatest 
risk of hypoxia [28]. Intraoperatively, simultaneous alter-
ations in renal vasoreactivity and perfusion pressure can 
lead to regional hypoxia. Damage and reduced filtration 
impair the ability to remove inflammatory mediators and 
leads to inflammatory responses in which cells adhere to 
the peritubular capillary endothelium, causing medullary 
congestion and reduction in oxygen delivery [22, 23, 29].

6.3  Nephrotoxicity
Up to 60% of cases of in-hospital AKI may be drug-
induced [30]. Non-steroidal anti-inflammatory drugs 
(NSAIDs), angiotensin-converting enzyme inhibitors 
(ACE-Is), aminoglycoside antibiotics and intravenous 
imaging contrast agents, among many other medications, 
are known to be nephrotoxic.

Chronic use of NSAIDs can impair autoregulation of 
renal blood flow [31]. NSAIDs act through cyclooxyge-
nase (COX) enzyme inhibition, limiting the conversion 
of arachidonic acid to prostaglandins, prostacyclins and 
thromboxanes [31, 32]. Prostaglandins increase renal 
perfusion through vasodilation, and so NSAID use can 
lead to reduced renal perfusion and a decreased GFR. 
Despite this, preoperative low-dose aspirin may be asso-
ciated with a lower incidence of renal impairment in car-
diac surgery [33].

ACE-Is inhibit the production of angiotensin II, a 
vasoconstrictor formed from angiotensin I by ACE, that 
constricts both the afferent and efferent arterioles [34]. 
In patients whose glomerular filtration is solely depend-
ent on angiotensin II-mediated efferent vascular tone, 
for example in heart failure or severe volume depletion, 
ACE-Is can provoke AKI [35]. However, this vasodilatory 
effect is well known to be renoprotective in chronic kid-
ney disease and diabetic nephropathy [36].

Antibiotics are commonly used perioperatively, and 
some studies suggest the incidence of antibiotic-induced 
AKI may be as high as 18–36% [37, 38]. One study found 
that aminoglycosides, beta-lactam antibiotics, vancomy-
cin and amphotericin B were responsible for most cases 
of antibiotic-induced AKI [37]. Aminoglycosides accu-
mulate in tubular cells and inhibit lysosomal enzymes, 
leading to the formation of membrane fragments and 
myelin bodies [39]. The nephrotoxic mechanism of van-
comycin, a glycopeptide antibiotic, is thought to include 
oxidative stress, inflammatory injury from complement 
activation and mitochondrial damage, and causation of 
obstructive tubular casts [40, 41].

The possible nephrotoxicity of anaesthetics was 
reported. For example, methoxyflurane was used 
in the old days and found to cause dose-dependent 

nephrotoxicity due to its metabolites, which primarily 
consist of dichloroacetic acid and fluoride; it is not clear 
if fluoride, or its combination with dichloroacetic acid, 
drives the nephrotoxicity [42, 43]. This finding led to its 
decline as an anaesthetic agent, although it is currently 
used for analgesia at lower doses in some countries [42]. 
Of the commonly used inhaled anaesthetics today, sevo-
flurane is metabolised at a greater rate than isoflurane or 
desflurane, but lower than methoxyflurane. Historically, 
there have been fears surrounding sevoflurane’s possible 
nephrotoxicity. Sevoflurane’s metabolites include hexo-
fluoroisopropanol, compound A, and fluoride, and high 
fluoride concentrations are similar to methoxyflurane 
metabolites that have been linked to nephrotoxicity [44]. 
However, the same effect has not been seen with sevoflu-
rane, possibly due to differences in the other metabolites 
or the site of fluoride metabolism, which is mainly intra-
renal for methoxyflurane but hepatic for sevoflurane [45]. 
Clinical studies have not found greater renal dysfunction 
with sevoflurane compared to other inhaled agents, even 
when it reached a higher peak plasma fluoride [42, 46]. 
Therefore, it is worth considering not using sevoflurane 
in patients at high risk of kidney dysfunction.

7  Risk factors
Acute kidney injury often occurs after major surgery, 
including abdominal, cardiac, respiratory, and neurosur-
gery procedures. Most studies focus on AKI after cardiac 
surgery and cardiopulmonary bypass (CPB) [47–49]. AKI 
has also been associated with liver transplantation, gas-
tric bypass surgery, and gastrointestinal complications 
following surgery [50–52].

7.1  Preoperative factors
There is little analysis into how much preoperative factors 
predisposes a patient to developing AKI in comparison to 
other risk factors. Patients that developed AKI were older, 
more likely to be male, had existing cardiovascular risk 
factors, previous myocardial infarctions or strokes, higher 
pulmonary arterial pressure in preoperative echocardiog-
raphy, lower haemoglobin before surgery, and pre-existing 
renal impairment [4, 5, 49, 53]. Given these known risk 
factors, identifying high risk patients pre-operatively and 
optimising their renal function pre- and post-operatively 
is very important for elective surgery. Interestingly, one 
study found that patients who had pre-existing chronic 
kidney disease (CKD) and developed AKI after surgery 
had a lower in-hospital mortality rate but a higher mor-
bidity rate despite being older and having more comor-
bidities, possibly because of extra precautions and earlier 
nephrology consultations [54]. However, a greater pro-
portion of patients with pre-existing CKD required dialy-
sis at discharge.
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7.2  Intraoperative factors
Patients that underwent emergency surgery (versus elec-
tive surgery) had a greater volume of blood loss and fluid 
transfusion during surgery, more re-exploration sur-
gery, more complex procedures (such as combined valve 
replacement and coronary artery bypass graft (CABG)), 
longer surgery duration, and spent more time on CPB 
were at greater risk of developing AKI [5, 50, 53]. Patients 
who underwent cardiac surgery were more likely to 
develop AKI compared to other major procedures [50]. 
In a retrospective cohort study, 145/843 cardiac surgi-
cal patients who underwent CPB had a > 25% increase 
in their baseline serum creatinine in the first week post-
operatively, with > 75% developing renal deterioration 
in the first two days [4]. However, long-term mortality 
was higher for non-cardiothoracic surgery procedures 
(oesophageal, intestinal, and liver surgery), especially if 
they developed AKI requiring dialysis [55].

7.3  Postoperative factors
Postoperative factors can be modified to avoid AKI 
development in vulnerable patients and minimise subse-
quent long-term renal damage. Negative factors include 
a higher level of creatinine postoperatively and at dis-
charge, greater need for a postoperative intra-aortic bal-
loon pump, postoperative low output syndrome, longer 
course of vasoactive drugs, and a higher arterial lactate 
24 h after admission [4, 5].

8  Impact on short‑term surgical outcomes
Depending on surgical type, surgical procedure and 
patient population, up to 47% of surgical cases are com-
plicated by AKI [2, 56–59]. The risk of post-operative 
hospital mortality is higher in patients with AKI than in 
those without. Importantly, mortality remains higher in 
patients with perioperative AKI even after complete renal 
function recovery [3, 60].

8.1  Cardiac surgery
AKI incidence is greater in cardiac surgery than in other 
specialties [15, 57, 61–65]. Indeed, it was reported that 
75% of patients undergoing CPB developed renal dete-
rioration in the first 2 days post-operatively [4]. Further-
more, another study found that AKI occurred in 71.7% 
of the cases within 72 h post-cardiac surgery; 30-day all-
cause mortality was 4.4%, and 5.6% had persistent renal 
dysfunction (PRD), and by day 30 after surgery, a major 
adverse kidney event (defined as a combination of mor-
tality, PRD and the need for renal replacement therapy) 
had occurred in 10% of patients [66]. 30-day mortal-
ity in patients with perioperative AKI who underwent 
cardiac surgery was 3.5–5 times higher than in those 
without AKI. A meta-analysis of postoperative AKI in 

patients with Type A acute aortic dissection found that 
AKI was associated with a 249% increase in 30-day 
mortality [66]. Another study found that 30-day mortal-
ity in patients who developed AKI following transcathe-
ter aortic valve replacement was 29%, four times higher 
than in controls [67].

8.2  Other surgeries
In patients who underwent open and laparoscopic 
abdominal surgery between 2007 and 2014 at a centre 
in Iceland, 6.8% of cases were complicated with AKI; 
patients with AKI had a 30-day mortality 3.4 times 
greater than controls (18.2% vs 5.3%) [68]. Generally, AKI 
occurs in 1–11.8% of patients undergoing general sur-
gery procedures; although fewer than estimates for car-
diac surgery, the mortality may be higher [2, 68–71]. One 
study of patients undergoing intra-abdominal surgery 
found a 30-day mortality as high as 31% in patients with 
AKI compared to 1.9% in those without [72]. Another 
study reported a mortality rate 12.7 times greater in 
those with AKI than non-AKI patients undergoing gas-
tric surgery [73]. However, several other studies describ-
ing mortality rates between 6–9 times higher in cases 
with AKI [2, 69, 71, 74, 75]. Studies looking at AKI fol-
lowing hepatic resection reported an incidence between 
4.3–15.1%, with a 30-day or hospital mortality between 
14.1–23.2% for those with AKI compared to 0.8–2.3% 
in those without [76–78]. One study also found that the 
rate of AKI increased significantly from 4.3% to 18.2% in 
patients with raised preoperative creatinine. A broader 
study of hepatobiliary surgeries found a similar incidence 
of 7.6% but slightly lower mortality: 7.1% with AKI versus 
2.5% non-AKI [79].

9  Impact on long‑term surgical outcomes
9.1  Morbidity and mortality
Both the occurrence of AKI and its severity are inde-
pendently predictive for worse long-term mortality at 
1 year and long-term, and even small transient increases 
in SCr postoperatively have a significant negative impact 
on long-term survival [4–6]. In a retrospective study 
involving 2840 patients, those with AKI post-cardiac sur-
gery and CPB had worse mortality at a mean follow-up 
of 6.9  years than those who didn’t have AKI (21.4% vs 
10.6%) [24]. Survival at one year was 88% for RIFLE class 
Risk, 55% for RIFLE class Injury, and 39% for RIFLE class 
Failure, demonstrating that the degree of renal function 
deterioration was dependent on initial AKI severity. The 
mortality differences associated with the occurrence of 
AKI and its severity also persist over time [80].

Patients who developed AKI requiring dialysis (AKI-D) 
had an adjusted hazard ratio of 3.22 for all-cause long-
term mortality compared to controls in a study of 8320 
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surgical patients at a median follow-up of 294.5  days 
[55]. In a retrospective study of patients who had under-
gone major surgery, the 6-month mortality rate of AKI 
patients was almost 4 times higher than patients who did 
not develop AKI [24]. The patients with AKI that died at 
6 months had higher Simplified Acute Physiology Score 
(SAPS) II, Acute Physiology And Chronic Health Evalu-
ation (APACHE) II, and American Society of Anesthe-
siologists Physical Status (ASA-PS) scores, indicating 
a greater severity of disease before discharge. AKI after 
cardiac surgery also resulted in a greater likelihood of 
further hospitalisation due to cardiovascular events such 
as stroke and myocardial infarction, and increased the 
risk of long-term heart failure and death [6, 81].

9.2  Renal function
Despite complete recovery of renal function, patients that 
developed perioperative AKI had much lower survival 
rates at 1 and 2  years after surgery than patients who 
did not develop AKI. Long-term mortality also depends 
on the use of renal replacement therapy (RRT). In a ret-
rospective study of 1294 patients that required acute 
dialysis after major elective surgery, 27.2% of patients 
required chronic dialysis beyond hospital discharge [82]. 
Initial AKI severity also played a role: in a study involv-
ing 29,330 patients, 5.2% of patients who developed post-
operative AKI AKIN stage 2 or 3 after a CABG procedure 
developed end-stage renal disease (ESRD) and required 
renal replacement therapy, but only 1.6% of AKIN stage 
1 patients developed ESRD [6]. The risk of developing 
ESRD after CABG was independent from preoperative 
renal function.

The form of RRT given also influences long-term renal 
impairment. The main indications for RRT initiation are 
if the patient develops severe metabolic acidosis, life-
threatening hyperkalaemia, or refractory fluid overload, 
but the decision is ultimately clinical [83]. Continu-
ous renal replacement therapy (CRRT) has traditionally 
been used in patients who are critically ill and have some 
degree of haemodynamic instability [84]. In patients who 
received CCRT after developing perioperative acute renal 
failure after CPB, long-term RRT was rarely needed [50]. 
CRRT produced similarly promising results in preserv-
ing renal function even when patients had elevated pre-
operative SCr levels or renal impairment. Patients who 
received CRRT acutely after surgery had a very low risk 
of requiring long-term RRT and had a lower mortality 
rate compared to patients that received intermittent RRT 
[50]. Of the 92/3172 patients that received CRRT after 
cardiac surgery, only 2 patients required ongoing renal 
replacement therapy long-term.

Although postoperative AKI is common following 
major surgery, many patients achieve renal recovery. In 

a multicentre prospective observational study of patients 
requiring RRT after postoperative AKI, 84.7% of the 
137 patients who survived 90  days achieved renal func-
tion recovery and no longer required RRT [85]. Patients 
who achieved complete renal recovery had much better 
mortality rates than patients who had incomplete renal 
recovery even if they did not require renal support. In a 
prospective study, patients with incomplete renal recov-
ery, defined as SCr > 44  μmol/L above baseline at dis-
charge, had a risk rate of 2-year death of 8.64, compared 
to those who achieved complete renal recovery with a 
risk rate of 1.79 [80]. Both the initial AKI severity and 
extent of renal recovery were independent risk factors for 
long-term survival [80, 86].

Postoperative AKI also increases the risk of develop-
ing postoperative CKD, with greater risk associated with 
increasing AKI severity at diagnosis [80, 87]. Similar to 
mortality trends, the increased risk of developing CKD 
after AKI persisted even after complete renal function 
recovery, and patients with incomplete renal recovery 
had a greater relative risk for CKD progression (15.05 vs 
1.92) [80]. CKD was also a risk factor for cardiovascular 
events and postoperative mortality [88, 89].

9.3  Multiple organ failure
Uraemia, fluid overload and electrolyte imbalances are 
well known consequences of AKI that can cause distant 
organ damage. It is also thought that released pro-inflam-
matory cytokines are associated with AKI may contrib-
ute to this via a systemic response [90]. The interaction 
between the kidneys and heart is well-established as 
cardiorenal syndrome, specifically type 3 [91], whereby 
multiple processes contributed to acute cardiac dysfunc-
tion including changes to contractility and arrhythmia 
caused by uraemia and hyperkalaemia, respectively [92, 
93]. Uraemia is also known to cause neurological compli-
cations ranging from irritation and cognitive impairment 
to seizures and death, more commonly in AKI than CKD 
[94], as well as a high incidence of dementia in patients 
with renal failure [95].

9.4  Quality of life
Long-term renal replacement therapy and end-stage kid-
ney disease negatively impacts a patient’s quality of life 
[96]. However, there have been few studies examining 
the quality of life in individuals after they recover kidney 
function and do not require ongoing RRT. In one retro-
spective study of 1200 patients who underwent major 
surgery, they were evaluated 6  months after discharge 
using the 36-Item Short Form Survey (SF-36), and on 
their level of dependency using Activities of Daily Liv-
ing (ADL) [24, 97]. Postoperative AKI patients had worse 
SF-36 scores and were more dependent in instrumental 
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ADL (I-ADL) such as cleaning, cooking, and taking 
public transportation, although they were comparable 
to non-AKI patients in Personal ADL (P-ADL) [24]. At 
6  months follow-up, patients were more dependent on 
many ADL domains, with 78% of patients dependent in 
at least one I-ADL activity, marking a clear deterioration 
from before surgery.

9.5  Financial burden
As well as increased mortality, AKI also poses a finan-
cial burden. A single-centre study looked at over 50,000 
cases of AKI in the US over an 18-year period [3]. They 
found that patients with any AKI had hospital costs that 
were 159% of the costs for patients without AKI ($42,600 
vs $26,700). Similarly, another study identified over 1 
million patients who underwent a CABG, valve replace-
ment surgery, or both between 2008–2011 and found the 
average hospitalisation cost for patients who developed 
AKI was twice the average cost for patients who did not 
develop AKI ($77,178 vs $38,820) [59]. One study also 
found all costs were doubled for patients with AKI [57].

10  Prevention and treatment
10.1  Early AKI detection
10.1.1  Biomarkers
Traditionally, functional markers such as SCr and urine 
output are used to diagnose AKI, and their levels define 
AKI staging criteria. However, since changes in these 
markers demonstrate a functional renal change, they 
cannot be detected until after a significant decline in 
renal function has already occurred. In a retrospec-
tive cohort study of 3862 thoracic surgery patients, 205 
developed postoperative AKI [98]. Although intraopera-
tive oliguria was moderately associated with postopera-
tive AKI (adjusted odd ratio 2.60), it had poor predictive 
ability with a sensitivity of 5.9%. To aid the early detec-
tion and treatment optimisation in patients at risk of 
AKI, several studies reported the use of novel biomark-
ers to detect subclinical renal impairment in the form of 
tubular injury [99].

The serum and urine neutrophil gelatinase-associated 
lipocalin (NGAL) biomarker has been particularly effec-
tive at predicting AKI where the renal insult is well-
defined, such as after cardiac surgery. In animal models, 
NGAL is one of the earliest up-regulated biomarkers 
after renal tubular ischemic injury [100]. In a 2010 pro-
spective observational study, plasma NGAL (pNGAL) 
was effective at predicting AKI onset within 48  h in a 
heterogenous adult ICU population [101]; pNGAL was 
also consistently higher in AKI patients than controls, 
and the levels increased with greater AKI severity. The 
marker may also be useful in predicting renal recovery 
and future independence from RRT [102]. Although 

pNGAL is highly sensitive for renal injury, it is non-
specific for AKI [103]. However, its ability to predict 
AKI in a population with mixed comorbidities and risk 
factors makes it a promising biomarker for future clini-
cal practice [104–107]. Other biomarkers that are being 
explored include urinary markers such as liver-type 
fatty-acid-binding protein (L-FABP), kidney injury mol-
ecule-1 (KIM-1), N-acetyl-β-D-glucosaminidase (NAG), 
and interleukin 18 (IL-18); these may also play a role in 
the early detection of AKI in specific patient popula-
tions [108–111]. Recent observational cohort studies in 
cardiac surgery patients have explored markers such as 
intraoperative venous congestion, defined as elevated 
central venous pressure, which was associated with an 
increased probability of postoperative AKI and greater 
severity of AKI [112]. A single-centre study of 35,337 
patients found that increased preoperative N-terminal 
pro-B-type natriuretic peptide (NT-proBNP) concentra-
tion was correlated with greater any-stage AKI, and sig-
nificantly improved AKI prediction [113].

Some biomarkers have been criticised for not being 
sensitive or specific enough. Urine IL-18, whilst an early 
predictive marker of AKI severity and mortality, is also 
elevated in endotoxemia and cisplatin toxicity [114], and 
KIM-1 is increased in response to nephrotoxins, but also 
in tubulointerstitial inflammation and fibrosis [115]. 
Although NGAL is a highly specific and sensitive marker 
in predicting AKI in children two hours after CPB being 
reported [116], another study found serum NGAL to be 
non-specific when measured in critically ill children with 
septic shock [103]. Researchers have tried to mitigate 
this by combining various biomarkers to optimise both 
the sensitivity and specificity of early AKI prediction 
[24, 104, 105]. In a retrospective study, combining func-
tional and tubular biomarkers was shown to be superior 
to functional markers alone in predicting AKI severity 
and duration; they also proposed that the combination 
could also provide insight into the pathophysiology of the 
AKI, which could allow for a more accurate prediction of 
recovery or prognosis [104].

10.1.2  Nephrology consultation
Criteria for in-hospital nephrology consultation in AKI 
patients is not standardised. Multiple studies have shown 
that earlier nephrology consultation (within two days) 
may lead to better functional outcomes [117], and among 
patients who received a nephrology consultation, a 
delayed consultation led to worse mortality [118]. Despite 
the lack of standardised criteria guiding nephrology con-
sultations, certain characteristics linking AKI severity to 
timing of nephrology consultation can be observed: in 
one observational study of AKI patients in ICU, 52% of 
patients were seen by a renal consultant, and those that 
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were seen had worse AKI severity, higher creatinine lev-
els, lower urine output, and longer ICU stays [118]. In a 
prospective observational cohort study, patients with 
existing CKD who developed AKI had a quicker neph-
rology consultation than patients without CKD, and this 
may have contributed to their lower in-hospital mortal-
ity [54]. Earlier nephrology consultation may lead to bet-
ter clinical outcomes due to earlier optimisation of care, 
such as closer hemodynamic status monitoring before 
renal function deteriorates further [119].

10.1.3  Alert systems
Interestingly, detecting AKI earlier does not necessar-
ily lead to better clinical outcomes. A randomised con-
trol trial (RCT) tested a hospital electronic alert system 
where when one group of patients developed AKI, the 
covering provider and pharmacist were notified imme-
diately by text [120]. Surprisingly, the intervention group 
did not show any improvement in change in creatinine, 
dialysis or 7-day mortality, and long-term follow-up at 
30-days also did not reveal any benefits. Except in the 
surgical ward, the timing and percentage of patients 
receiving a nephrology consultation was also similar 
between the two groups. Even though the alert group in 
the surgical ward received renal consults and were put on 
dialysis more often, they also had a much higher mortal-
ity rate. The lack of improvement suggests that the early 
detection of AKI alone does not lead to more effective 
management.

10.2  Active prevention of perioperative hypotension
Perioperative haemodynamic control may play a key role 
in preventing postoperative AKI. Renal hypoperfusion 
is a key factor in the pathogenesis of AKI, and although 
significant blood loss is a surgical risk, intraoperative 
hypotension is not clearly defined. It has previously 
been documented using values of relative and absolute 
reduction in blood pressure [121, 122], and the absolute 
thresholds of 60–70 mmHg have been associated with an 
increased incidence of AKI morbidity [121, 123–125]. In 
major surgeries, goal-directed fluid resuscitation therapy 
(GDT) in conjunction with inotropic agents can be used 
to optimise cardiac output, maintaining intravascular 
volume and organ perfusion. Continuous haemodynamic 
monitoring would also allow for hypotension to be recog-
nised and treated more quickly, and GDT has been found 
to decrease postoperative AKI risk [126]. The use of ino-
tropes may decrease the need for fluids whilst a numeric 
blood pressure target may also prevent accidental fluid 
overload, which is associated with AKI risk. The severity 
and duration of intraoperative hypotension both contrib-
ute to AKI; a 2015 retrospective study of 5127 non-car-
diac surgery patients showed that both longer duration 

of intraoperative hypotension at 11–20 min or > 20 min, 
and lower intraoperative MAP of < 55 or < 60 mmHg were 
associated with a graded nature of AKI risk [127], and 
this was supported by other studies [121]. However, pos-
sibly because of the heterogenous nature of GDT or high 
standards of care in the comparison groups, some studies 
investigating GDT found that it did not modify AKI risk 
[128, 129].

10.3  Current treatment guidelines
Current treatment is largely supportive. The 2012 
KDIGO guidelines recommends administering iso-
tonic crystalloids as first-line treatment and prevention 
of AKI, avoiding or considering alternatives to nephro-
toxic agents such as aminoglycoside antibiotics and 
radiocontrast agents, tight glycaemic control to maintain 
normoglycemia, and close functional haemodynamic 
monitoring and management [7].

Blood pressure and cardiac output should be tightly 
controlled using fluids and vasoactive medication. Care-
ful consideration is also required when determining 
what crystalloid to use. When isotonic saline was used 
in intravenous fluid expansion compared to chloride-
poor solutions such as Plasma-Lyte® 148, it led to greater 
hyperchloraemia and decreased renal perfusion in healthy 
volunteers, and a greater incidence of renal impairment 
and higher serum creatinine levels in patients [130–132]. 
Currently, there is no single intravenous fluid that is uni-
versally advocated, and this is an area that may benefit 
from clearer guidance as neither the National Institute for 
Health and Care Excellence (NICE) clinical guideline 174 
(intravenous fluid therapy in adults in hospital) nor NICE 
guideline 148 (Acute kidney injury: prevention, detection 
or management) suggest a preferred type of crystalloid to 
use in renal impairment [133, 134]. There is also a similar 
lack of consensus regarding which vasoactive medication 
is most effective at preventing AKI [7]. An algorithm for 
the management of AKI is shown in Fig. 2.

10.4  Treatments in development
Possible treatment options for existing AKI are con-
stantly under investigation. A 2017 review determined 
that although many pharmacological treatments such 
as steroids, statins, sodium bicarbonate, recombinant 
atrial natriuretic peptide (ANP), ACE-I, N-acetylcysteine, 
furosemide, and fenoldopam have been investigated to 
prevent the development and deterioration of AKI, only 
dexmedetomidine has consistently produced promising 
results [16].

Dexmedetomidine is a highly selective alpha-2 adren-
ergic receptor agonist that was approved by the United 
States Food and Drug Administration (FDA) for use 
in 1999. It is currently used in ICU as a sedative and 
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analgesic-sparing agent and exhibits sympatholytic prop-
erties. It increases GFR, inhibits renin release [135], 
and increases sodium and water excretion [136]. In in-
vitro and in vivo studies in mice, dexmedetomidine was 
found to minimise functional renal damage after ischae-
mia–reperfusion injury by suppressing toll-like receptor 
4 (TLR-4) expression, one of the factors responsible for 
inflammation in AKI [137–139]. Further in  vivo studies 
have also shown dexmedetomidine decreased the activa-
tion of Janus kinase 2 (JAK2), resulting in less phospho-
rylation of downstream inflammatory signal transducer 
and activator of transcription (STAT) factors STAT1 and 
STAT3, and greater renal recovery following renal ischae-
mia; dexmedetomidine also mediated a much lower 
pathological increase of intercellular adhesion molecule 
1 (ICAM-1) during ischaemia–reperfusion injury, which 
likely contributes to its renoprotective effects [140]. In a 
RCT involving patients undergoing valvular heart sur-
gery, those who received perioperative dexmedetomi-
dine had a significantly lower AKI incidence and lower 
severity AKIN stage [141]. Similarly, a 2016 meta-analysis 
found that in paediatric cardiac surgery patients, pro-
phylactic dexmedetomidine had positive effects on AKI 
incidence or all-cause mortality [142], and a 2021 retro-
spective cohort study of 2,068 cardiac surgery patients 
showed improved 5-year survival in those who received 
dexmedetomidine perioperative [143]. Given its renopro-
tective properties and ability to increase GFR, adminis-
tering dexmedetomidine before renal ischaemic injury 
may benefit post-ischaemic renal recovery and attenuate 

tubular injury [24], and its administration before and 
after ischaemia–reperfusion injury may have protec-
tive effects on renal function [137]. Further studies are 
required to ascertain the exact method of administration 
in order to optimise its benefits [144, 145].

10.5  RRT timing in AKI prevention
It is unclear whether starting RRT earlier would help pre-
vent AKI. Currently, most doctors choose to delay RRT as 
much as possible. The commencement of RRT is usually 
indicated by severe renal impairment, such as severe aci-
dosis, hyperkalaemia, or fluid imbalance [7]. The benefits 
of initiating RRT before end-stage functional renal dam-
age are being explored in research, and there is no guid-
ance on the optimal timing. A 2018 Cochrane Review 
of ICU patients with AKI found that starting RRT early 
may reduce 30-day mortality and improve functional 
renal recovery [146] but can also lead to more patients 
experiencing adverse side effects such as catheter-related 
infections [146, 147]. However, a 2020 systematic review 
of recent RCTs found no difference in 28-day mortality 
between patients who received early RRT versus delayed 
RRT when the patients did not have urgent indications to 
start RRT [148].

11  Recommendations and directions for future 
research

Robust studies using different pharmacological agents 
such as dexmedetomidine should continue, especially 
amongst heterogenous populations. A greater focus 

Fig. 2 An algorithm for the management of AKI based on the KDIGO guidelines and Boswell & Rossouw (CC BY 4.0). RRT: renal replacement therapy
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should be placed on modifiable preoperative risk fac-
tors and the management of comorbidities through bet-
ter risk stratification. This would allow clinicians to take 
early definitive action to prevent worsening AKI severity 
[149]. All patients should have their baseline preoperative 
SCr measured so any perioperative renal impairment or 
pre-existing CKD can be identified and managed quickly. 
In emergency surgery or when cardiopulmonary bypass 
is required, renal function should be monitored closely. 
Postoperative scoring systems were much better predic-
tors of post-surgical AKI development than preoperative 
scores, and this may suggest the greater importance of 
optimising postoperative factors [5, 24, 150].

12  Conclusion
Perioperative AKI is a common complication that leads 
to greatly increased risk of morbidity and mortality. Both 
short-term and long-term surgical outcomes are poor. 
Early renal impairment detection and preoperative risk 
stratification are vital to intervening early to preserve 
renal function and prevent AKI deterioration. The patho-
physiology of renal dysfunction is complex and multi-
factorial, and pharmacological interventions need to be 
widely applicable to a heterogenous population. Further 
research of pharmacological treatments of AKI should 
be conducted in large-scale randomised controlled trials 
representative of the diverse population affected by AKI.
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