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Abstract 

Lakes are hotspots for the biogeochemical processing of carbon, including dissolved organic matter (DOM). 
A less degradable fraction of DOM, preserved for a long time, can be categorized as recalcitrant DOM (RDOM). Lake 
RDOM is an important but neglected carbon sink, and its characteristics and transformation processes remain largely 
unknown.

Highlights 

• Recalcitrant dissolved organic matter (RDOM) is an important but neglected carbon sink in lakes.

• The heterogeneity of lake environments determines the diversity and complexity of RDOM.

• New techniques allow detailed studies of the mechanisms of RDOM formation and related processes.
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Graphical Abstract

1  Main text
The transport, transformation, production, degrada-
tion, and mineralization of organic carbon in inland 
ecosystems largely determine greenhouse gas emissions 
and the carbon balance, with implications for climate 
change (Battin et al. 2009). Despite that lakes cover < 2% 
of the Earth’s surface area, they act as a fundamental 
link between the carbon cycles of terrestrial and inland 
water ecosystems. Globally, lakes and other wetland 
ecosystems fix organic carbon equivalent to ~ 50% of 
the organic carbon uptake by the oceans (Tranvik et al. 
2009). Dissolved organic matter (DOM) typically con-
stitutes the dominant pool of organic carbon in fresh-
waters (Drake et al. 2023; Zhou et al. 2023). Due to the 
differential degradation of DOM in lakes depending on 
bioavailability and photodegradability, the role of lakes 
in offsetting human  CO2 emissions is uncertain (Jia 
et al. 2023). DOM preserved for a long period of time is 
categorized as recalcitrant DOM (RDOM), considered 
as a carbon sink (Xia et al. 2022). RDOM in the ocean 
can have a mean turnover time of about 5,000  years 

(Jiao et al. 2010); however, so far, the turnover time of 
RDOM in lakes is largely unknown.

In lake ecosystems, DOM is classified according to its 
sources (autochthonous or allochthonous) and its labil-
ity (highly labile, semi-labile, and recalcitrant) (Jiao et al. 
2010). Degradation of algae and aquatic plants in lakes 
contributes to the production of autochthonous DOM 
(Zhang et al. 2009). Allochthonous DOM inputs mainly 
comprise DOM derived from soil leachate, domestic 
sewage, and agricultural effluents and they are typically 
major contributors to the lake DOM pool. These DOM 
inputs can undergo significant bacterial and UV trans-
formation after entering a lake, with terrestrial aromatic 
DOM being selectively photodegraded to low-molecular-
weight compounds and  CO2 (Fig. 1; Cory et al. 2013). In 
pristine catchments, soil organic matter is the primary 
contributor to the allochthonous DOM pool and can 
be biologically stable (Drake et  al. 2019). In compari-
son, autochthonous DOM derived from algal degrada-
tion produces most of the low-molecular-weight organic 
compounds, including amino acids, carbohydrates, and 



Page 3 of 5Xia et al. Carbon Research            (2024) 3:47  

carboxylic acids, which can be readily utilized by micro-
organisms and degraded to dissolved inorganic matter 
and  CO2 (Fig. 1). Therefore, autochthonous DOM is con-
sidered to be more biologically labile than soil-derived 
allochthonous DOM (Salcher et  al. 2013). Due to the 
variations in lake environments and the associated bio-
logical communities and activities, the chemical com-
position and molecular structural stability of different 
DOM sources vary widely (Guillemette et  al. 2015). For 
example, submerged plants have cellulose that is more 
difficult to degrade, and diatoms have a higher propor-
tion of nondegradable glycine compared to cyanobacte-
ria. However, the dynamics of RDOM in lakes are so far 
not well studied (Xia et al. 2022).

The turnover time of DOM in rivers and lakes is much 
shorter than in the ocean but cannot be directly esti-
mated using the Δ14C dating technique (Xia et al. 2022). 
In streams, RDOM can contribute up to 62% of the total 
DOM pool (McLaughlin and Kaplan 2013). Microbial 
degradation experiments have shown that labile DOM 
in lake water accounts for up to > 50% of the DOM pool 
(Zhou et al. 2020) and that microorganisms would pref-
erentially utilize freshly produced DOM, leaving RDOM 

for downstream discharge (Lu et  al. 2013) or storage in 
the lakes (e.g., by flocculation followed by sedimentation). 
In addition to the imported allochthonous DOM, the 
metabolites, residues, and cell debris of primary produc-
tion in lakes are relatively recalcitrant after utilization by 
microorganisms, and this RDOM fraction accounts, for 
example, for ~ 50% of the DOM pool in karst lakes (Xia 
et  al. 2022). In closed catchments formed by imperme-
able bedrock in Antarctica fresh waters, autochthonous 
DOM forms ubiquitous and persistent in-water humus 
after photodegradation (Kida et al. 2019). Accordingly, it 
has been found that photooxidation of DOM constitutes 
70%-95% of the total carbon processed in Arctic fresh 
waters (Cory et al. 2014). Photochemical processes have 
also been shown to enhance the cross-linking, humidifi-
cation, and polymerization of unstable biomolecules into 
more recalcitrant compounds (Hassett 2006).

Most RDOM in lakes is the product of microbial 
metabolism. DOM serves as a major bacterial source of 
carbon and nutrients for metabolic activities. DOM aro-
maticity associating negatively with the bioavailability of 
organic matter can lead to differences in bacterial com-
munity structure, function, and mutualistic networks by 

Fig. 1 Schematic diagram showing the formation processes of recalcitrant dissolved organic matter (RDOM) in lakes. RDOM in lakes 
is either retained in the water column, flocculated and precipitated to the sediment, or exported for downstream discharge. DOM: dissolved organic 
matter; POM: particulate organic matter
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affecting bacterial primary and secondary productivity, 
growth, and respiration rates (Guillemette et  al. 2015; 
Hassett 2006; Zhou et  al. 2021). Previous studies have 
shown that bacterial utilization of DOM is largely based 
on physiological needs but also influenced by environ-
mental factors such as temperature, dissolved oxygen, 
and nutrient availability, which provide sufficient energy 
and materials for the synthesis of the necessary extracel-
lular and transport enzymes (Xenopoulos et  al. 2021). 
Environmental heterogeneity is a key factor in shaping 
the distribution patterns of planktonic bacteria in lakes 
and species richness (Zhou et  al. 2021). Higher micro-
bial diversity may provide more metabolic pathways to 
degrade and produce RDOM molecules (Zhou et  al. 
2021). Elucidating the chemical composition and quan-
tifying the size of the RDOM pool are highly relevant 
to obtain carbon neutrality. Further disentangling the 
coupling linkages between environmental factors, bacte-
rioplankton, and DOM is crucial for the understanding 
of the stability of carbon sources and sinks in lakes (Xia 
et al. 2022) and should be a future research priority.

There is a lack of hypotheses associated with the pro-
duction and stability of RDOM in lake ecosystems. In 
comparison, reasons for the stability of RDOM in the 
oceans are currently summarized under the umbrella of 
three major hypotheses, the "environment hypothesis", 
the "intrinsic stability hypothesis", and the "molecular 
diversity hypothesis" (Dittmar 2015). The "environ-
mental hypothesis" of RDOM production links DOM 
to the responsiveness of specific environmental condi-
tions or to specific time periods (Dittmar 2015). These 
include the composition and activity of planktonic bac-
terial communities, redox state, mineral binding, and 
substrate accessibility by microorganisms and their 
enzymes. For example, limited availability of inorganic 
and organic nutrients may limit bacterial growth and 
DOM utilization through competition. Elucidating the 
key factors that influence the degradability and stability 
of DOM in lakes is an important area of future research. 
The "intrinsic stability hypothesis" links the reactivity of 
DOM to its molecular composition (Dittmar 2015). The 
molecular composition of RDOM may be synthesized 
by aquatic microbes, or it may be altered by abiotic 
modifications due to physicochemical perturbations. 
These abiotic modifications may result in the formation 
of a more stable fraction of DOM (Cory et  al. 2014), 
thus contributing to the RDOM pool in lakes. The 
"molecular diversity hypothesis" suggests that bacteria 
in the deep ocean must maintain appropriate enzymes, 
transport systems, and metabolic pathways for DOM 
catabolism and anabolism (Dittmar 2015; Arrieta et al. 

2015). However, such a strategy is difficult to have if the 
RDOM has a diverse chemical composition or the con-
centration is too low to be utilized by microbes. Due to 
the complexity of lake environments and the high bio-
logical activity in lakes, the composition of DOM and 
the stability of the molecular structure vary tremen-
dously among different aquatic organisms in lakes. The 
"environmental hypothesis" mechanism may play an 
important role in the stability of DOM in lake ecosys-
tems. Therefore, identifying the interactions between 
RDOM and planktonic bacteria across different envi-
ronmental gradients (e.g., trophic status, catchment 
land use, sorption to metals and clay minerals) is key to 
understanding the dynamics of RDOM in lakes.

Fortunately, advances are made in metagenomic 
analysis and DOM identification, involving growing 
utilization of high- and ultrahigh-resolution mass spec-
trometry (e.g., FT-ICR MS and Orbitrap MS) (Hu et al. 
2022). This provides unique opportunities to explore 
the link between microbial carbon pumps and the 
mechanisms of RDOM formation and to deepen our 
understanding of the interactions between the micro-
bial community and the chemical composition of DOM 
as well as the outgassing of greenhouse gases from lakes 
(Li et  al. 2022; McDonough et  al. 2022). Big data and 
systems science approaches, including machine learn-
ing and numerical simulation, can further help to elu-
cidate the role of RDOM in the lake carbon cycling and 
the role of lakes relative to the future climate change.

Abbreviations
CO2  Carbon dioxide
DOM  Dissolved organic matter
FT-ICR MS  Fourier transform ion cyclotron resonance mass spectrometry
RDOM  Recalcitrant dissolved organic matter
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