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Abstract 

Soil, as a primary repository of plastic debris, faces an escalating influx of microplastics. Microplastics have the potential 
to decrease soil bulk density and pH, as well as alter soil pore structure and aggregation. These changes in soil physico-
chemical properties subsequently lead to habitat degradation for microbes and environmental shifts that impact plant 
growth. Masquerading as soil carbon storage, microplastics can distort assessments of the soil carbon pool by introduc-
ing plastic-carbon and associated leachates, influencing soil organic matter (SOM) turnover through priming effects (e.g., 
dilution, substrate switching, and co-metabolisms). Additionally, microplastics can influence the distribution of soil car-
bon in particulate and mineral-associated organic matter, consequently affecting the accumulation and stability of soil 
carbon. Furthermore, microplastics can also influence the chemodiversity of dissolved organic matter (DOM) in soils 
by increasing DOM aromaticity and molecular weight while deepening its humification degree. The changes observed 
in soil DOM may be attributed to inputs from microplastic-derived DOM along with organo-organic and organo-mineral 
interactions coupled with microbial degradation processes. Acting as an inert source of carbon, microplastics create 
a distinct ecological niche for microbial growth and contribute to necromass formation pathways. Conventional micro-
plastics can reduce microbial necromass carbon contribution to the stable pool of soil carbon, whereas bio-microplastics 
tend to increase it. Furthermore, microplastics exert a wide range of effects on plant performance through both internal 
and external factors, influencing seed germination, vegetative and reproductive growth, as well as inducing ecotoxicity 
and genotoxicity. These impacts may arise from alterations in the growth environment or the uptake of microplastics 
by plants. Future research should aim to elucidate the impact of microplastics on microbial necromass accumulation 
and carbon storage within mineral-associated fractions, while also paying closer attention to rhizosphere dynamics such 
as the microbial stabilization and mineral protection for rhizodeposits within soils.

Highlights 

• Microplastics (MPs) have either positive or negative effects on SOM mineralization.

• MPs affect soil carbon distribution in particulate and mineral-associated fraction.

• MPs increase the aromaticity, molecular weight and humification degree of soil DOM.

• Conventional MPs can reduce microbial necromass, whereas bio-MPs cannot.

• MPs influence plant performance through both internal and external factors.
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Graphical Abstract

1  Introduction
The terrestrial environment serves as a significant reser-
voir for microplastics, receiving 4–23 times more plas-
tic waste annually compared to the marine environment 
(de Souza Machado et  al. 2018a; Nizzetto et  al. 2016). 
However, due to the challenges associated with separat-
ing microplastics from soil organic matter (SOM) and 

minerals, it was not until Rillig’s call for research in 2012 
that scientific attention began to focus on surveying 
microplastics in soil (Rillig 2012). Subsequently, the sci-
entific community discovered the presence of microplas-
tics in various soils worldwide, including home gardens, 
greenhouses, agricultural lands, coastal areas, industrial 
sites, and floodplain soils (Table S1). Based on our global 

Fig. 1  Global microplastics abundance in different soils. Here, the data expressed as numerical concentration (items per kilogram soil) were 
ranked and mapped, whereas global comparison of data expressed as mass concentration (mg per kilogram soil) were provided in Fig. S1. Details 
information about the sampling and processing methods were provided in Table S1
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inventory of microplastics in soil environments, recov-
ered microplastic concentrations range widely from base-
line levels up to 20 mg kg–1 in inhabited areas and reach 
as high as 67,500 mg kg–1 in industrial soil (Figs.  1 and 
S1), while some studies have suggested even more severe 
levels of microplastic contamination that may occur in 
specific soils (Huerta Lwanga et  al. 2017). The sources 
of soil microplastics primarily encompass sewage sludge 
amendment, irrigation, composting, plastic mulching, 
dry and wet deposition (i.e., rain and snow) from the 
atmosphere, fragmentation and degradation processes, 
the mismanaged runoff by sewer systems from roads 
or littering activities, landfills, as well as plastics-pro-
cessing plants (Table S1) (Chen et al. 2022c; Chen et al. 
2020; Chen et  al. 2023a; Feng et  al. 2020; van den Berg 
et  al. 2020). Microplastics exhibit remarkable resistance 
to environmental degradation (de Souza Machado et  al. 
2018a;  He et  al. 2023) and can accumulate persistently 
in the soil environment over an extended time period 
while exerting continuous ecosystem effects (Gao et  al. 
2023; Geyer et al. 2017; Li et al. 2024a; Pan et al. 2023). 
The pervasive presence, high abundance, and non-natu-
ral and persistent characteristics of microplastics in soil 
underscore their non-negligible role in soil ecology and 
emphasize the urgency to address their adverse impacts.

In recent years, there has been a gradual shift in 
research focus towards investigating the ecosystem 
impacts of microplastics in soil (Rillig and Lehmann 
2020). Upon entering the soil environment, microplastics 
have the potential to modify physicochemical properties, 
reshape microbial habitats, and alter resident microbial 
communities and activities, consequently influencing soil 
function and nutrient cycling. Regarding the carbon cycle 
in soils, microplastics can directly influence the composi-
tion of soil carbon pools by introducing both recalcitrant 
and labile carbon fractions such as soluble additives. 
Additionally, microplastics may induce positive or nega-
tive priming effects on SOM mineralization thereby 
impacting soil carbon stability (Zhang et al. 2023a). Nota-
bly, soil microbes play dual roles in mediating the soil 
carbon cycle by promoting canbon release through cata-
bolic activities while also preventing canbon release via 
canbon stabilization mechanisms (Schimel and Schaeffer 
2012). Microplastics could potentially affect microbial 
functions associated with SOM decomposition. Further-
more, microplastic interactions with microbial death 
pathways may regulate the accumulation and stability of 
microbial necromass (Camenzind et al. 2023; Chen et al. 
2023b). Other mechanisms of direct microplastic interac-
tion with microbes such as electrochemistry-based “elec-
tron shuttling” and “microbial frustration” might also 
impact the soil carbon cycle dynamics (Rillig et al. 2021). 
However, the impact of microplastics on soil carbon pool 

composition and stability remains largely unexplored, 
and the underlying mechanisms have yet to be compre-
hensively examined.

Soil plants play a crucial role in soil carbon and soil 
health by fixing carbon through photosynthesis. The 
rhizosphere of plant is a hotspot of microbial activity and 
significantly influences the soil carbon cycle. Existing 
evidence suggests that microplastics impact the rhizos-
phere environment, including aggregates and microbial 
communities (Rong et al. 2023; Song et al. 2023), thereby 
affecting the input of rhizodeposits into soil carbon pools 
and the stability of soil organic carbon (SOC). Moreover, 
plastic debris could accumulate pesticides and other tox-
ins present in the soil and leach out additives with poten-
tial carcinogenicity and mutagenicity (Ramos et al. 2015), 
which may affect crop quality, thus posing a threat to 
human health through the food chain (Fu and Du 2011;   
Ge et al. 2021; Khalid et  al. 2020; Li et  al. 2024b; Wang 
et al. 2022, 2015a). In the context of the near-permanent 
increase in microplastic contamination, a holistic under-
standing of ecosystem feedbacks of soil to microplastic 
contamination is needed.

In the present review, we conducted an exhaustive lit-
erature review to address the following two topics: (1) the 
effects of microplastics on the content, composition, and 
turnover of SOM, especially the more sensitive dissolved 
organic matter (DOM) and the more stable microbial 
necromass carbon, and (2) the effects of microplastics on 
plant performance and potential mechanisms, as well as 
plant responses to microplastic stressors. For each topic, 
knowledge gaps and future prospects are proposed.

2 � Effects of microplastics on soil physicochemical 
properties

Ample evidence from the scientific literature suggests 
that microplastics can modify soil physicochemical 
properties in many ways, including soil density, poros-
ity, aggregation, pH, and fertility (Fig. 2). These property 
changes will subsequently shape the habitat for microbial 
growth, regulate microbial activity, mediate organic car-
bon bioaccessibility and turnover rate, and affect plant 
performance. The effects of microplastics on soil proper-
ties depend on polymer type, size class, shape, dose, and 
soil type.

2.1 � Soil bulk density
Soil bulk density is generally associated with soil physi-
cal quality and rootability, and high soil bulk density 
usually means strong penetration resistance and poor 
root growth (Dexter 2004). The density of microplas-
tics ranges from 0.88 to 1.70 g cm–3 (Table S2), which is 
generally less dense than the predominant minerals in 
different soils (Lincmaierová et al. 2023). Therefore, the 
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involvement of microplastics often decreases the bulk 
density of soils. For example, de Souza Machado et al. 
(2018b) found that polyacrylic fibers, polyamide (PA) 
beads, polyester (PES) fibers, and polyethylene (PE) 
fragments all decreased the bulk density of loamy sand 
soils, with only PES fibers possessing a significant effect 
at an application rate of 0.4% (w/w) and having a con-
centration-dependent response. However, the decrease 
in soil bulk density by microplastic addition does not 
necessarily indicate positive effects on root growth, as 
it might not increase soil porosity. Moreover, micro-
plastics could increase soil density in the rhizosphere 
despite decreasing bulk density, thus exerting complex 
effects on plant growth (de Souza Machado et al. 2019).

Although the majority of studies suggested a decrease 
in soil bulk density by microplastic addition, some also 
showed divergent results (Li et  al. 2023). For example, 
Zhang et al. (2019) suggested that no detectable changes 
in soil bulk density were observed for clay loam soils at an 
application rate of 0.3% (w/w). Therefore, it is plausible 
to speculate that soil texture is a crucial factor regulating 
the influence of microplastics on soil properties. How-
ever, more evidence is needed to verify this speculation.

2.2 � Soil porosity
Soil porosity plays a key role in regulating the infiltration 
rate of water into soil and the rate of nutrient loss from 
soil through water evaporation, as well as soil microbial 

Fig. 2  The conceptual diagram depicting the impact of microplastics on soil structure, soil microbes, and turnover of SOM. Microplastics infiltrate 
the soil environment through various pathways, including mulching, composting, littering, atmospheric deposition, irrigation, and sludge 
application. These microplastics can alter physicochemical properties of the soil such as density, porosity, aggregation, pH levels, and nutrient 
availability. Consequently, these changes in properties shape the microbial habitat by influencing growth patterns and regulating activity 
while also mediating bioaccessibility and turnover rate of SOM. Soil microbes play a dual role in controlling SOM turnover; they promote carbon 
release through catabolic activities but also prevent its release via mechanisms like necromass production and stabilization. Microplastics may 
influence SOM mineralization through both positive and negative priming effects with mechanisms primarily involving co-metabolism, dilution 
effects, and substrate switching
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respiration. In addition, small pores could reserve soil 
water and reduce leaching through capillary action 
(Major et al. 2009). Zhang et al. (2019) observed that PES 
fibers could alter the pore structure in clay loam soil. de 
Souza Machado et al. (2018b) demonstrated that PES fib-
ers affected the soil water-holding capacity, which could 
further affect soil moisture and evapotranspiration (de 
Souza Machado et al. 2019). Wan et al. (2019) found that 
PE film could increase water evaporation from clay soil. 
Jiang et  al. (2017) suggested that plastic-film residues 
(∼15 kg ha−1) could significantly alter the initial gravi-
metric water content, bulk density, total porosity, and soil 
water distribution. In addition, Wang et al. (2015c) dem-
onstrated that due to their waterproofness, plastic-film 
residues could block soil pores and decrease soil pore 
size, thus affecting water infiltration and resulting in the 
loss of soil water. Moreover, changes in porosity could 
alter the sorption capacity of soils and affect the ability 
of microbes to reach and degrade potential organic sub-
strates (Baldock and Skjemstad 2000). Such deviations 
from a natural state suggest the potential threat of micro-
plastics to soil ecosystems (Guo et al. 2022).

2.3 � Soil aggregates
Soil aggregates are the basis of soil function and play a 
crucial role in regulating soil structure, shaping the habi-
tat for soil organisms, and determining SOM turnover 
(Bronick and Lal 2005; Tisdall and Oades 1982). In addi-
tion, soil aggregates also significantly affect soil poros-
ity, which in turn influences the movement of gases and 
water and the activities of associated microbial commu-
nities (Rillig and Lehmann 2020; Rillig et  al. 2017). The 
size and stability of soil aggregates regulate soil erodibil-
ity (López et  al. 2000; Planchon et  al. 2000; Somaratne 
and Smettem 1993). A decrease in soil aggregates might 
decrease the diversity of soil microenvironments, thereby 
impoverishing the soil structure (Six et  al. 2006; Zheng 
et  al. 2016). PA beads were more prone to be incorpo-
rated into the soil matrix (de Souza Machado et al. 2018b) 
and soil minerals (Chen et al. 2022d) than other polymer 
types, and PA beads are unlikely to be isolated from soils 
after incubations. In addition, fragment-shaped micro-
plastics were loosely integrated into soil aggregates, while 
fiber-shaped microplastics were more tightly integrated 
(Guo et  al. 2020). Thus, microplastics could integrate 
with soil to varying degrees, which further influences 
the formation of aggregates (Liu et al. 2023). Zhang and 
Liu (2018) reported that 72% of the recovered micro-
plastics in soil were associated with soil aggregates and 
that fibrous microplastics were most commonly found 
in microaggregates. Boots et al. (2019) observed that the 
addition of high density polyethylene (HDPE), polylactic 
acid (PLA), and synthetic fiber all significantly decreased 

the mean size of water-stable soil aggregates irrespec-
tive of the presence of Lolium perenne. Similarly, the 
addition of polyacrylic fibers (0.05%, 0.10%, 0.20%, and 
0.40%, w/w) and PES fibers (0.20% and 0.40%, w/w) all 
significantly lowered soil water-stable aggregates, and 
the effects were more significant at higher concentra-
tions (de Souza Machado et  al. 2018b). The decrease in 
soil water-stable aggregates thus increased the water-
holding capacity and evapotranspiration. However, the 
effects of other types of microplastics, such as PA beads 
and PE fragments, on soil aggregates were much weaker, 
and low concentrations of PA and high concentrations 
of PE even exerted divergent results (de Souza Machado 
et al. 2018b). Moreover, Zhang et al. (2019) observed an 
increase in soil water-stable aggregates after the addition 
of 0.1% and 0.3% (w/w) PES fibers. The significant dispar-
ity among various studies can be attributed to the use of 
different polymer types and microplastic concentrations, 
as well as the influence of distinct soil textures and time 
duration (Chen et al. 2023b).

A meta-analysis demonstrated that soil microbes con-
tributed to the formation of soil aggregation, although 
the positive correlation displayed considerable variability 
regarding the species investigated (Lehmann et al. 2017). 
A recent study showed that exposure to PE fragments 
increased the correlation between microbial activity and 
soil aggregation (de Souza Machado et  al. 2018b). The 
shifts in the correlation between microbial activity and 
soil aggregation might suggest either a shift in the micro-
bial community or an alteration in the decay of SOM (de 
Souza Machado et  al. 2018b). However, further efforts 
are required to disentangle the possible underlying 
mechanisms among the changes in soil physiochemical 
properties, soil biota and SOM turnover.

2.4 � Soil pH
Soil pH is one of the most important chemical attributes 
in soil and plays a central role in regulating soil proper-
ties and microbial succession (Aciego Pietri and Brookes 
2008; Rousk et al. 2009; Wang et al. 2024). Moreover, it 
can also affect plant performance by directly regulat-
ing physiological activities in seed germination and root 
growth, as well as indirectly affecting microbial activity, 
nutrient availability, and precipitation and dissolution 
equilibrium through its effects on ion mobility (Bloom 
2000). Bandow et  al. (2017) reported a decrease in soil 
pH in the presence of HDPE pellets after 6 and 12 weeks 
of exposure to photo- and thermo-oxidative conditions. 
Boots et al. (2019) also observed that the pH of the soil 
was 0.62 units lower than that of the control after expo-
sure to HDPE in soil planted with Lolium perenne for 
30 days. Similarly, a decrease in pH (0.16‒0.21 units) 
was observed in soil planted with Oryza sativa L. after 
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the first supplementary fertilization (Chen et al. 2022b). 
Given the weak possibility of the photo-oxidation of 
microplastics in soil, it is plausible to speculate that the 
decreased pH was associated with the changed status of 
cation exchange in the soil and free exchange of protons 
in the soil water. Further work is required to verify this 
speculation.

2.5 � Soil fertility and nutrient cycling
Microplastics can also affect the fertility and nutrient 
cycling of soil. A significant increase in the concentra-
tions of DOM, inorganic nitrogen and total phosphorus 
was observed after 28% (w/w) microplastic treatment 
in a sandy loam soil, whereas no obvious changes were 
observed for 28% (w/w) microplastic treatment over 30 
days (Liu et  al. 2017). Similarly, bioplastic addition sig-
nificantly increased the DOM and dissolved organic 
nitrogen content in soil, whereas no significant effects 
were observed for LDPE (Meng et al. 2022). Notably, the 
aforementioned treatments are far beyond the environ-
mentally related microplastic concentrations, which may 
show divergent results from natural conditions. Thus, 
future studies should underline these phenomena regard-
ing soils of different textures over a long time span. A 
field study on the contamination of plastic-mulching resi-
dues showed that SOM and alkali-hydrolysable N were 
greatly reduced after a 500 kg ha–1 microplastic applica-
tion, and an increasing microplastic application rate of 
2,000 kg ha–1 further decreased the available P (Hegan 
et  al. 2015). These results confirmed the role of plas-
tic debris in diminishing soil fertility (Xiang et al. 2023), 
although further work under environmentally related 
conditions should be conducted to better understand this 
impact. N-containing microplastics may serve as a nitro-
gen source and enrich the soil nitrogen content (Palmer 
2001). This speculation can be partly supported by high 
N2O emissions and N-acquiring enzyme activity (β-N-
acetyl-glucosaminidase) in artificial soils using PA as the 
sole carbon source (Chen et al. 2022d).

3 � Effects of microplastics on soil carbon pool
As microplastics are mainly composed of carbon, they 
may disguise as soil carbon storage and affect the content 
composition and turnover of SOM (Rillig and Lehmann 
2020). However, the rate of microplastic carbon entering 
the soil and its ecosystem effects on SOM are still open 
questions.

3.1 � Disguising as carbon storage and serving as an inert 
carbon source in soil

Most microplastics are composed of more than 90% car-
bon, among other elements (Rillig and Lehmann 2020). 
They are incorporated into soil aggregates in consort 

with minerals and organic matter. Microplastics can be 
disguised as part of soil carbon storage independent of 
photosynthesis and net primary production (Rillig and 
Bonkowski 2018). Due to its resistance to decomposition, 
microplastic carbon tends to accumulate in the soil and 
eventually be immobilized by microbes after a long time 
span, which may somehow contribute to the carbon cycle 
and affect SOM turnover (Chen et  al. 2022d;  Liu et  al. 
2017).

Many previous records have shown the microbial min-
eralization of microplastic carbon based on direct and 
indirect evidence, such as changes in surface roughness 
and functional groups, the diminishment of particle size, 
the loss of plastic weight, and the colonization of bio-
films (McCormick et  al. 2014;  Yang et  al. 2018). In the 
soil environment, the degradation of microplastics was 
proven to be very slow (Rillig and Bonkowski 2018). For 
example, only 0.1 to 0.4% weight loss was observed for 
PE after 800 days of burial in soil (Albertsson 1980). In 
addition, only 0.4% weight loss was observed for polypro-
pylene (PP) after one year of incubation (Arkatkar et al. 
2009). Moreover, no degradation was found for polyvinyl 
chloride (PVC) even after 10 to 35 years of burial in soil 
(Ali et  al. 2014;  Otake et  al. 1995; Santana et  al. 2012). 
However, Chen et  al. (2022d) further monitored the 
CO2 emissions derived from polymer carbon to inves-
tigate the accurate degradation pattern of microplastic 
carbon in artificial soil. They showed that the minerali-
zation ratio of microplastic carbon ranged from 0.007% 
to 0.876% after 56 days, the upper limit of which was in 
close proximity to that of SOM (~ 1%) and even exceeded 
that of biochar-derived carbon (> 0.1%) (Yang et al. 2022). 
Despite the inert nature of polymer carbon, the results of 
this fundamental research indicated that the mineraliza-
tion of polymer carbon is a non-negligible source of CO2 
emissions (Chen et  al. 2022d) and should be taken into 
careful consideration in the assessment of carbon storage 
and carbon emissions (Rillig and Lehmann 2020). In par-
ticular, such effects are supposed to be more significant 
for emerging bioplastics with short lifespans (Zhang et al. 
2023a).

In the real soil environment, however, it is difficult to 
distinguish whether CO2 emissions are derived from 
microplastic carbon or native SOM. One possible solu-
tion is to use carbon isotope labeling to track the carbon 
source. Zumstein Michael et  al. (2018) tracked the car-
bon from biodegradable polymers into CO2 and micro-
bial biomass in soil based on 13C-labeled polymers and 
isotope-specific analytical methods. The polymer used in 
this study was a self-synthesized poly(butylene adipate-co-
terephthalate) using 13C-labeled monomers. Zhang et  al. 
(2023a) distinguished the carbon source of CO2 based 
on the distinct δ13C values of poly-hydroxyalkanoates 
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(PHA), polybutylene succinate (PBS), and PLA from 
the soils. The observed priming effects across farmland 
soils were 552% − 1744% for PHA, 44% − 179% for PBS, 
and − 29% − 43% for PLA. The study underscores the 
influence of microplastic degradability on the amplitude 
of priming effects, highlighting the potential significance 
of microbial nitrogen mining in driving long-term prim-
ing effects, given the nitrogen deficiency associated with 
microplastics. For other commonly used plastic prod-
ucts, such as PE, the 13C isotope labeling of the monomers 
seems not easy to accomplish. Thus far, it remains largely 
unknown how much microplastics contribute to carbon 
emissions.

3.2 � Input of DOM leachates in the soil active carbon pool
Various additives, such as plasticizers, stabilizers, anti-
oxidants, flame retardants, and pigments, are usually 
used to improve plastic quality. The most commonly used 
additives detected in the environment include phtha-
lates, nonylphenols, bisphenol-A, and brominated flame 
retardants (Hermabessiere et  al. 2017), many of which 
have been classified as endocrine disruptors and carcino-
gens (Cherif Lahimer et al. 2017, Wang et al. 2015a). In 
addition to plastic additives, DOM leachates also include 
the weathering products of plastics, which mainly com-
prise long-chain alkanes, high-molecular-weight acids, 
and benzoic ether (Zhang et al. 2022), which are associ-
ated with monomers and oligomers that initially form the 
polymer chain (Lee and Hur 2020).

These microplastic leachates can be released from 
microplastics and enter the soil system. On the one hand, 
leachates serve as an active carbon pool and are directly 
involved in the soil carbon cycle (Cristina et  al. 2022). 
Romera-Castillo et al. (2018) estimated that global plastic 
leachates amounted to 23,600 metric tons in the marine 
environment annually, approximately 60% of which are 
accessible to microbial utilization in less than 5 days. A 
56-day incubation suggested that microplastic leachates 
had higher degradability than riverine humic acid (Zhang 
et al. 2022). Thus, it is plausible to speculate that micro-
plastic leachates may have a vital contribution to soil 
carbon emissions. On the other hand, leachates can be 
integrated into minerals and SOM (Lee and Hur 2020), 
exert extreme toxicity to soil microbes (Gaylor et  al. 
2013; Wei et  al. 2019b), and alter the activity, diversity, 
community structure and metabolism of soil microbes, 
possibly by destroying the fluidity of the cell membrane 
(Xie et  al. 2010;  Zhou et  al. 2005). The selection effects 
on soil biota suggested shifts in the SOM utilization path-
way by microbes. Alternatively, leachates are somehow a 
more active carbon source than plastic solids and certain 
organic matter and may affect SOM turnover through 
priming effects (Chen et  al. 2022d;  Zhang et  al. 2022). 

The priming effects of leached DOM from plastics may, 
in turn, instigate alterations in DOM across diverse soil 
types (Sun et al. 2022).

3.3 � Changes in SOM composition and mineralization
As mentioned above, microplastics and their leachates 
could contribute to the inert and active soil carbon pool. 
Microplastics could be detected as carbon through the 
current methods applied to quantify SOM. Correspond-
ingly, the SOM contents in soil are prone to increase after 
microplastic addition (Kim et  al. 2021;  Li et  al. 2022a). 
However, some studies have also showed that the SOM 
content was not measurably affected (Boots et  al. 2019; 
Meng et  al. 2022) or even decreased (Meng et  al. 2022) 
after microplastic treatments, which was potentially 
attributed to the low microplastic application rate and 
the mineralization of polymer carbon or SOC.

Several recent studies have noted shifts in the composi-
tion and turnover rate of SOM after microplastic applica-
tion. For example, PES and bioplastics showed adverse 
effects on the abiotic characteristics of SOM, such as physi-
cal stability (indicated by water molecule bridges), water 
binding (indicated by decreased desorption enthalpy or 
faster desorption), and the stability of SOM aliphatic crys-
tallites (Fojt et  al. 2022). Chen et  al. (2024) observed that 
polybutylene adipate terephthalate (PBAT) microplastics 
can masquerade as soil carbon to promote the formation 
of particulate organic carbon, and facilitate the generation 
of mineral-associated organic carbon and dissolved organic 
carbon through microbial transformation of PBAT-derived 
C and selective consumption in dissolved organic nitro-
gen. To comprehend the impact of microplastics on soil 
carbon fluxes, further investigation is warranted to explore 
how both conventional and biodegradable microplastics 
influence the accumulation and stabilization mechanisms 
of different carbon fractions. Current studies have sug-
gested divergent effects of microplastics on soil CO2 emis-
sions, such as increasing (Awet et al. 2018; Shi et al. 2022a; 
Xiao et al. 2022; Yang et al. 2018), decreasing (Chen et al. 
2023b; Wang et al. 2016; Yu et al. 2021), or having no sig-
nificant effects on CO2 emissions (Blöcker et al. 2020; Yang 
et al. 2018). However, whether microplastics directly con-
tribute to CO2 emissions is still unclear. Liu et  al. (2017) 
reported an accelerated degradation of SOM with high 
concentrations of PP addition, which led to distinct metab-
olite profiles after 7 and 30 days. Xiao et al. (2021) carried 
out a three-source-partitioning study and showed that low 
microplastic application can more significantly accelerate 
SOM decomposition than high microplastic application. 
However, Yu et al. (2021) showed that microplastic addition 
reduced the decomposition of SOM by decreasing micro-
bially available SOM but increasing mineral-associated 
organic matter content.
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DOM is a more sensitive indicator of soil quality 
changes in the SOM pool (Gong et  al. 2009) and has a 
central role in numerous physical, chemical, and biologi-
cal processes in soil (Kalbitz et al. 2000). Although only 
accounting for < 0.25% of the total SOM, DOM is cru-
cial in regulating the turnover of SOM, the transport of 
nutrients, the solubility and mobility of heavy metals and 
organic pollutants, and the activity of microbes (Kalbitz 
et  al. 1997, 2003; Temminghoff et  al. 1997). Microplas-
tic input could alter the quantity of DOM in soil, which 
depends on the imbalance between the production and 
mineralization of DOM. For example, a majority of stud-
ies have observed increased DOM content after the addi-
tion of different microplastics (Liu et al. 2017; Meng et al. 
2022; Shi et al. 2022a; Zhou et al. 2020a). This is under-
standable, as the increased activity of enzymes involved 
in the degradation of recalcitrant (phenolic) compounds 
may lead to the decomposition of the poorly dissolved 
large compounds in SOM into easily dissolved small 
compounds (Keuskamp et  al. 2015). However, some 
studies have also suggested a decrease in DOM content 
in microplastic-introduced soils (Liu et  al. 2019), which 
was potentially due to the sorption of DOM by micro-
plastics and the degradation of DOM (Chen et al. 2018). 
The divergence may also be associated with polymer 
type, microplastic concentration, and incubation time 
(Ren et al. 2020). Moreover, microplastics may also influ-
ence the chemodiversity of soil DOM, such as increasing 
DOM aromaticity and molecular weight and deepen-
ing the DOM humification degree. (Chen et  al. 2022a, 
2023b; Feng et al. 2022; Li et al. 2022b; Liu et al. 2017). For 
instance, the introduction of biodegradable microplas-
tics could enhance the relative abundance of labile com-
pounds in soil DOM, such as lipid-like, protein/amino 
sugar-like, and carbohydrate-like compounds, while con-
ventional polystyrene (PS) microplastics may decrease 
the relative abundance of stable compounds like lignin-
like and more condensed aromatic-like compounds 
(Sun et al. 2022). As suggested by Qiu et al. (2024), labile 
components underwent degradation and transformation 
after microplastic addition, leading to increased aroma-
ticity and oxidation degree, reduced molecular diversity, 
as well as altered nitrogen and sulfur contents within soil 
DOM. The changes in soil DOM might be the combined 
results of microplastic-derived DOM input, organo-
organic and organo-mineral interactions, and microbial 
degradation. These factors warrant further investiga-
tion. In fact, chemodiversity is an important indicator to 
evaluate the environmental reactivity and destination of 
soil DOM. In general, DOM of lower molecular weight 
and aromaticity has higher bioavailability (Fouché et  al. 
2020; Ye et  al. 2020). Additionally, DOM contains polar 
groups and phenolic structures, which have a stronger 

binding force with heavy metals (Dong et al. 2020; Wang 
et  al. 2018). Therefore, the shifts in DOM compositions 
after microplastic input are an important topic.

There are several hypothesized pathways by which 
microplastics affect the turnover of native SOM (Fig. 2). 
(1) Microplastics could change soil physicochemical 
properties such as soil aggregates (habitats for SOM 
stabilization) and therefore affect microbe growth and 
activity, thus changing the turnover of native SOM. (2) 
Microplastics could serve as an inert carbon source and 
establish a unique ecological niche for microbial set-
tlement and growth, thus affecting SOM turnover by 
directly altering the microbial community. (3) Micro-
plastics can adsorb SOM, interact with soil minerals, and 
affect the interaction between minerals and SOM, thus 
affecting SOM accessibility to microbes. (4) Microplas-
tics may impact SOM mineralization through negative 
priming effects stemming from dilution and substrate 
switching or positive priming effects arising from co-
metabolism, etc. The latter is likely to have marginal 
importance given the inert nature of microplastic carbon. 
Alternatively, these effects might be initiated by the more 
easily metabolizable bioplastics or microplastic leachates 
(Zhang et  al. 2023a). (5) Conventional PE microplastics 
can influence CO2 emissions solely by altering DOM 
electron transfer capabilities. In contrast, the application 
of biodegradable microplastics (e.g., PLA) can impact gas 
emissions by increasing both the quantities and transfer 
capabilities of soil DOM (Shi et al. 2023).

3.4 � Microbial response and contribution
Microorganisms have two critical, contrasting roles in 
controlling terrestrial canbon fluxes: promoting release 
of canbon to the atmosphere through their catabolic 
activities, but also preventing release by stabilizing can-
bon into a form that is not easily decomposed (e.g., the 
accumulation and stabilization of microbial necromass) 
(Liang et  al. 2017). It is of significant importance to 
understand the adaptive and evolutionary responses of 
soil microorganisms to microplastics.

3.4.1 � Microbial community structure
The soil microbial community is an important player 
in regulating nutrient cycling, maintaining soil struc-
ture, and detoxifying noxious chemicals. In addition, 
microbial diversity serves as a sensitive indicator of soil 
quality, which can reflect subtle changes and soil func-
tion (He et  al. 2015;  Sebiomo et  al. 2011). Microplas-
tics exhibit certain filtration effects on soil biota (Guo 
et  al. 2020), and recent studies have reported shifts in 
community structure, diversity, and evolutionary con-
sequences of microbes in soil in the presence of micro-
plastics (Han et al. 2024; Lu et al. 2023; Rillig et al. 2019a). 
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Microplastics have been proven to serve as substrates for 
microbial colonization and assemblage in soil environ-
ments, leading to the formation of a unique environment 
termed the plastisphere (Rillig et al. 2023). Distinct differ-
ences were noted for the microbial communities between 
microplastic surface and ambient soils. For example, the 
PE microplastic surface was found to carry more plastic-
degrading bacteria and pathogens than the surround-
ing soils (Huang et  al. 2019). A similar colonization of 
plastic-degrading bacteria on microplastic surfaces was 
also observed in an e-waste dismantling field (Chai et al. 
2020). The selection phenomena of microplastics on soil 
biota shed light on screening microbes for microplastic 
biodegradation.

Many studies have also reported alterations in bulk 
microbial diversity and composition in soils after micro-
plastic addition. For example, the bacterial composition 
in microplastic-amended soils showed significant varia-
tions from the control after 90 days of incubation (Huang 
et al. 2019). Membranous PE and fibrous PP could raise 
the alpha diversities of the soil microbial community 
(Yi et al. 2021). In contrast, plastic film residues sharply 
decreased the soil microbial community and its diversity 
(Wang et  al. 2016), which was attributed to the nega-
tive effects of lipophilic phthalate ester additives on the 
soil biota by destroying cell membrane fluidity (Xie et al. 
2010;  Zhou et  al. 2005). Additionally, the soil microbial 
diversity was lowered in the presence of PE and PVC 
microplastics (Fei et  al. 2020). Until now, the effects of 
microplastics on microbial community structures have 
remained unclear. The contradictory results may be 
attributed to different microplastic types, concentrations, 
and additive contents in soil. In general, high microplas-
tic concentrations may induce a quick response in the 
soil microbiota, whereas lower microplastic concentra-
tions may have insignificant effects on the microbial 
communities. For example, the addition of PE, polyethyl-
ene terephthalate (PET), and PVC microplastics at rather 
low concentrations (< 1%, w/w) after 9 months barely 
altered the microbial community structure in soil (Judy 
et al. 2019).

To ease traditional microplastic contamination, bio-
degradable microplastics have received wide attention 
and application. As biodegradable microplastics have 
short lifespans, they are supposed to have more signifi-
cant effects on soil ecosystems regarding changes in soil 
biota, greenhouse gas emissions, plant performance, etc. 
For example, more significant effects on wheat growth 
were observed for biodegradable microplastics compared 
to traditional PE microplastics, potentially attributed 
to microbial immobilization (Qi et  al. 2018). More sig-
nificant variations in bacterial communities, such as the 
increase in the relative abundance of the genera Bacillus 

and Variovorax, were noted for biodegradable microplas-
tics than for traditional PE microplastics (Qi et al. 2020b). 
In addition, PES and PP were observed to increase root 
symbiosis by arbuscular mycorrhizal fungi, whereas PET 
had the opposite effect (de Souza Machado et al. 2019). 
Notably, microplastics are N-limited carbon materials. 
Thereby, Zhang et  al. (2023a) proposed that bioplastics 
may promote the proliferation of fast-growing r-strate-
gists through co-metabolism, thereby fostering a positive 
priming effect in the short term. Conversely, under con-
ditions of severe nitrogen deficiency and labile carbon 
exhaustion, this may lead to the active growth of K-strat-
egists alongside microbial necromass from r-strategists.

In general, microplastics possess a range of effects 
on soil microbial community, which are still largely 
unknown. To better underline the ecosystem effects of 
microplastics, the adaptive and evolutionary responses 
of soil biota to microplastic stresses should be fur-
ther addressed in future studies (Rillig 2018; Rillig et al. 
2019a).

3.4.2 � Enzyme activity
Soil enzymes are useful for monitoring soil health because 
of their sensitivity to soil stress, energy flow, and nutri-
ent availability (Wang et  al. 2015b). Microplastics could 
affect the excretion of various soil enzymes by microbes, 
and extracellular enzymes could attach to microplas-
tic surfaces or affect other soil substrates, thus regulat-
ing microplastic degradation and turnover of SOM. de 
Souza Machado et  al. (2018b) first evaluated the effects 
of microplastics on the hydrolysis of fluorescein diacetate 
enzyme activity and observed a significant correlation 
between microplastic concentration and microbial activ-
ity irrespective of polymer type. This is consistent with 
the increased hydrolysis of fluorescein diacetate enzyme 
activity after PE addition (Liu et  al. 2017). Similarly, the 
addition of membranous PE, fibrous PP, and micro-
sphere PP all increased the urease, dehydrogenase, and 
alkaline phosphatase enzyme activities in soil (Yi et  al. 
2021). Additionally, the addition of PP microplastics at a 
rather high application rate (28%, w/w) could significantly 
increase the activities of fluorescein diacetate hydro-
lase and phenol oxidase in sandy loam soils (Yang et  al. 
2018), thus affecting soil C, N, and P cycling and increas-
ing nutrient availability to plants by enhancing microbial 
hydrolytic activity on SOM (Liu et  al. 2017; Yang et  al. 
2018). However, a lower application rate (7%, w/w) of PP 
only had marginal effects on the enzyme activities of fluo-
rescein diacetate hydrolase, urease, and phenol oxidase 
(Yang et al. 2018). In addition, PE and PVC microplastics 
could increase the activity of urease and acid phosphatase, 
whereas the activity of fluorescein diacetate hydro-
lase activity was inhibited (Fei et  al. 2020). Decreases in 
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dehydrogenase activity and enzyme activities involved in 
the C-(β-glucosidase and cellobiohydrolase), N-(leucine-
aminopeptidase), and P-(alkaline-phosphatase) cycles 
were also observed in soils after 28 days of incubation 
under 100 and 1000 ng g–1 PS nanoplastic treatments, 
indicating a broad and detrimental impact of PS nano-
plastics on soil microbial activity (Awet et al. 2018). More-
over, the residues of plastic film (67.5 kg ha–1) significantly 
lowered the activity of fluorescein diacetate hydrolase and 
dehydrogenase by 10% and 20%, respectively (Wang et al. 
2016), which may be attributed to the negative effects of 
concomitant plastic additives. The contradictory results 
of enzyme activities after microplastic application are 
potentially attributed to microplastic concentrations and 
constitutions, plastic additives, and soil properties, the 
effects of which should be further addressed to better 
understand the mechanisms. Song et al. (2023) elucidated 
that PVC elevated β-glucosidase, leucine aminopeptidase, 
and acid phosphatase activities in both hot- and coldspots 
within the rice rhizosphere. In contrast, PLA influenced 
enzyme activities exclusively in the hotspot soil, show-
ing no impact in the coldspot soil. These variations arose 
from changes in microbial enzyme systems favoring nutri-
ent mining, potentially mitigating some of the adverse 
effects of microplastics on soil nutrient processes. The 
close association between soil enzyme activities and soil 
carbon dynamics necessitates greater emphasis on inves-
tigating the response of enzyme activity to microplastic 
addition, as well as its correlation with other biotic and 
abiotic processes in soil.

3.4.3 � Microbes and enzymes for microplastic degradation
Microplastics can establish a unique ecological niche for 
certain microbes by providing habitat for microbial set-
tlement and growth. In return, these microbes may con-
tribute to the degradation of microplastics by utilizing 
polymer carbon as an inert carbon source, consequently 
impacting the mineralization process of native SOC. As 
summarized in Table  1, both bacteria and fungi have 
been proven to have the potential to promote the deg-
radation of microplastics (Russell Jonathan et  al. 2011; 
Shah et al. 2008; Zafar et al. 2013). Some studies have also 
shown that several bacteria and fungi can use plastic as 
the sole carbon source, including either in solid or liquid 
matrices, such as soil (Mohan et al. 2016), compost (Jeon 
and Kim 2013), and sea water (Harshvardhan and Jha 
2013), thus highlighting the potential of such microbes 
for plastic remediation. Other microbes involved in 
plastic degradation include Alcaligenes faecalis, Coma-
monas acidovorans TB-35, Pseudomonas putida, Pseu-
domonas stutzeri, Saccharomycopsis, Streptomyces sp., 

and Staphylococcus sp. (Akutsu et al. 1998; Benedict et al. 
1983; Caruso 2015; Ghosh et al. 2013).

During the degradation process, it is also very impor-
tant to identify the enzymes involved (Auta et  al. 2018; 
Jaiswal et  al. 2020). Extracellular enzymes secreted 
by microbes are prone to depolymerize microplastics 
through hydrolysis reactions (Shah et al. 2008). Lipases, 
cutinases, carboxylesterases, and laccases have been 
proven to efficiently degrade microplastics (Lucas et  al. 
2008). The polymer chain can be cleaved into micro-
molecular water-soluble intermediates, which may be 
absorbed by the cells and undergo a special metabolism 
(Gewert et al. 2015). The final degradation products may 
end up as CO2, H2O and CH4 and are released into the 
ambient environment (Tokiwa et al. 2009).

3.4.4 � Contribution of microbial biomass and necromass 
to soil carbon pool

Microbial biomass represents the living or actively grow-
ing microorganisms, which is associated with the decom-
position efficiency of SOM. To date, data on the effects of 
microplastics on the accumulation of soil microbial bio-
mass are far from sufficient. A 28-day laboratory incubation 
showed that the addition of 100 and 1000 ng g–1 PS nano-
plastics both significantly decreased soil microbial biomass 
(Awet et al. 2018), suggesting potentially broad antimicro-
bial activity of PS nanoplastics on soil microbiota. Interest-
ingly, a gradual increase in soil microbial biomass with time 
was observed for 10 ng g–1 PS nanoplastic-amended soil 
throughout 28 days of incubation (Awet et al. 2018). At day 
1, the soil microbial biomass remained almost unchanged, 
whereas the enzyme activities, basal respiration rate, and 
metabolic quotient decreased, suggesting a sublethal effect 
with 10 ng g–1 PS nanoplastic amendment. At day 28, the 
soil microbial biomass was significantly higher, potentially 
due to the increased antimicrobial activity of PS nanoplas-
tics against some microbial genera over time. Thus, dead 
cells might provide substrates for resistant microorganisms 
and thus result in cryptic growth (PostGate 1967). Simi-
larly, several studies also observed a decreased microbial 
biomass in 1% PP-, PE-, or PLA-amended soils (Blöcker 
et  al. 2020; Shi et  al. 2022a). In this case, the decrease in 
microbial biomass was unlikely caused by toxicity effects, 
as the used plastics were free of antimicrobial additives. 
However, Zhang et al. (2023a) noted that bioplastics, such 
as PHA, PBS, and PLA, elevated microbial biomass car-
bon and dissolved organic carbon levels. This implies that 
biodegradable microplastics can concurrently expedite 
microbial assimilation and the transformation of SOM into 
dissolved organic substrates.

Microbial necromass refers to the non-living rem-
nants of microorganisms, constituting over 50% of SOC 
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Table 1  Microbes involved in microplastics biodegradation

* Here, “N/A” represents that the information is not provided

Microbes Enzyme 
involved

Polymer type Sample 
information

Degradation 
efficiency

Methodology Other 
information 
(e.g., time span 
and carbon 
source)

Reference

Bacillus cereus N/A PE, PET, and PS Sediment, Penin-
sular Malaysia

1.6% (PE), 6.6% 
(PET), and 7.4% 
(PS)

N/A 40 d, sole carbon 
source

(Auta et al. 2017)

Bacillus gottheilii N/A PE, PET, PP, 
and PS

Sediment, Penin-
sular Malaysia

6.2% (PE), 3.0% 
(PET), 3.6% (PP), 
and 5.8% (PS)

N/A 40 d, sole carbon 
source

(Auta et al. 2017)

Bacillus pumilus 
M27

N/A PE Sea water, Ara-
bian Sea coast, 
India

1.5% FTIR and SEM 30 d (Harshvardhan 
and Jha 2013)

Bacillus subtilis 
H1584

N/A PE Sea water, Ara-
bian Sea coast, 
India

1.75% FTIR and SEM 30 d (Harshvardhan 
and Jha 2013)

Bacillus subtilis 
MZA-7

Esterase PUR Soil, dumping 
area in Islama-
bad, Pakistan

N/A FTIR, SEM, 
and GC–MS

N/A (Shah et al. 2013)

Bacillus sp. strain 
27

N/A PP Sediment, Penin-
sular Malaysia

4% FTIR and SEM 40 d (Auta et al. 2018)

Bacillus sp. Depolymerase 
enzyme

PS Soil, dumping 
area in Thiru-
vananthapuram, 
India

23% FTIR, SEM, TGA, 
and NMR

30 d, sole carbon 
source

(Mohan et al. 
2016)

Brevibacillus 
borstelensis

N/A PE Soil, disposal site 
at the polyethyl-
ene production 
plant of Carmel 
Olefins

11% FTIR 30 d, 50°C (Hadad et al. 
2005)

Chelatococcus 
sp. E1

N/A PE Compost N/A FTIR N/A (Jeon and Kim 
2013)

Enterobacter sp Depolymerase 
enzyme

PE Degraded plastic 
waste samples

12% FTIR, SEM, TGA, 
and NMR

30 d, 30°C, 150 
rpm

(Sekhar et al. 
2016)

Ideonella 
sakaiensis 
201-F6

Glycoside hydro-
lases

PET Sediment, soil, 
wastewater, 
and acti-
vated sludge 
from a PET bottle 
recycling site

N/A SEM N/A (Yoshida et al. 
2016)

Kocuria palustris 
M16

N/A PE Sea water, Ara-
bian Sea coast, 
India

1% FTIR and SEM 30 d (Harshvardhan 
and Jha 2013)

Pseudomonas 
sp.

Depolymerase 
enzyme

PS Soil, dumping 
area in Thiru-
vananthapuram, 
India

 < 10% FTIR, SEM, TGA, 
and NMR

30 d, sole carbon 
source

(Mohan et al. 
2016)

Pseudomonas 
aeruginosa

N/A LDPE Nutrient broth 
Temp

6.5–8.7% FTIR and SEM 60 days at 37°C 
on 180 rpm

(Gupta and Devi 
2020)

Rhodococcus sp. 
strain 36

N/A PP Sediment, Penin-
sular Malaysia

6.4% FTIR and SEM 40 d (Auta et al. 2018)

Thermobifida 
fusca

Thermophilic 
polyester hydro-
lases

PET Nutrient rich 
Temp

 > 50% SEM 96 h, 70°C (Wei et al. 2019a)

Vibrio N/A PET Nutrient broth 
Temp

35% FTIR, SEM, XRD 6 weeks, 37°C (Sarkhel et al. 
2019)

Zalerion mariti-
mum

N/A PE N/A  > 43% FTIR, SEM, 
and NMR

14 d (Paço et al. 2017)
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pools and approximately 40 times the amount of live 
microbial biomass carbon (Liang et al. 2017). Chen et al. 
(2023b) discovered that the addition of PE microplastics 
could decrease fungal necromass carbon but had mini-
mal impact on bacterial necromass carbon. Zhang et al. 
(2024) observed distinct effects on microbial necromass 
accumulation between conventional PE microplastics 
and biodegradable microplastics (polypropylene car-
bonate and polybutylene adipate terephthalate synthetic 
material), with these effects varying across different land-
use types.

We propose several hypothesized mechanisms through 
which microplastics impact the accumulation of micro-
bial necromass carbon. (1) The soluble fraction of 
microplastics (e.g., plastic additives, long-chain alkanes, 
high-molecular-weight acids, and benzoic ether) can act 
as a carbon source for soil microbes, thereby influenc-
ing microbial population and necromass accumulation. 
(2) The toxic compounds present in microplastics may 
pose a threat to soil microbes, affecting their growth and 
death pathways. (3) Microbial necromass could serve as 
a carbon source and enhance the availability of soil car-
bon (Caldwell 2005). Microplastic-derived carbon may 
have positive or negative priming effects on native SOC 

mineralization, including the mineralization of micro-
bial necromass carbon. (4) As soil aggregates are fun-
damental units for SOC protection, microplastics can 
also mediate microbial necromass accumulation and 
decomposition by impacting soil aggregation. Changes in 
soil aggregation also shape microbial habitats and influ-
ence microbial population dynamics and mortality rates. 
Moreover, binding agents secreted by soil microbes could 
reciprocally alter soil aggregation processes that subse-
quently affect microbial metabolism and SOM turnover. 
Currently, there is limited research on the accumulation 
of microbial necromass caused by microplastics; thus, 
further investigation is required to verify the underlying 
mechanisms.

4 � Effects of microplastics on terrestrial plants
Plants play a vital role in maintaining the health of soil 
ecosystems and are widely applied to detect and evaluate 
the toxicity of different environmental stressors. Addi-
tionally, plants significantly contribute to soil carbon 
sequestration through photosynthetic carbon fixation. 
Moreover, the plant rhizosphere serves as a hotspot for 
microbial activity and exerts substantial influence on 
the soil carbon cycle. The presence of microplastics can 

Fig. 3  Concept graphic about the effects of microplastics on plant performance. Microplastics can impede seed germination by obstructing 
testa pores and infiltrating seed tissues. Furthermore, they can influence aboveground plants’ vegetative or reproductive growth. Additionally, 
microplastics have the potential to alter root traits and rhizosphere, thereby affecting root elongation
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impact both rhizodeposit secretion by plants and the 
decomposition and stabilization of rhizodeposits within 
the soil carbon pool, thereby bearing significant implica-
tions for the soil carbon cycle.

4.1 � Effects of microplastics on plant performance
As summarized in Fig. 3 and Table 2, microplastics have 
been observed to affect plant performance regarding 
seed germination (Bosker et al. 2019; Sforzini et al. 2016; 
Shi et  al. 2022b), vegetative and reproductive growth 
(Miao et al. 2023; Qi et al. 2018), root and leaf traits (de 
Souza Machado et al. 2019), crop production (Chen et al. 
2022b; Hegan et al. 2015), and ecotoxicity and genotoxic-
ity on plants (Jiang et al. 2019).

The incubation time could affect the apparent impact 
of microplastics. For example, PS microplastics within a 
size range of 0.05–4.80 μm were observed to delay seed 
germination of Lepidium sativum during 8 h of incu-
bation, whereas the inhibition effects were no longer 
observed after 24 h of incubation (Bosker et  al. 2019). 
Additionally, the promotion or inhibition effects on root 
growth were no longer found as the incubation time was 
prolonged from 24 to 48 h (Bosker et al. 2019). Moreover, 
different impacts of microplastics were noted in regard 
to the physiological responses of Lepidium sativum after 
6 days of acute exposure and 21 days of chronic expo-
sure experiments (Pignattelli et  al. 2020). Therefore, the 
design of the experimental span could affect the assess-
ment of the ecological risks of microplastics.

Microplastic concentration is also a crucial factor gov-
erning plant performance. For instance, microplastics at 
higher concentrations exerted more significant delay-
ing effects on seed germination (Bosker et  al. 2019). 
Additionally, PS microplastics at higher concentrations 
exerted more significant inhibitory effects on the root 
length and fresh and dry weight of Vicia faba (Jiang 
et  al. 2019). In addition, some research data indicated 
that crop yields could decrease when mulch film resi-
dues amounted to 58.5 kg ha‒1 (Dong et al. 2015; Li et al. 
2014).

Different polymer types may exert different effects on 
the exposed plants. For example, PE is widely applied 
as mulch film in agriculture, and residues have been 
observed to decrease crop production (Jiang et al. 2017; 
Zhang et  al. 2016, 2023b). However, bioplastic film, a 
seemingly more environmentally friendly alternative to 
traditional mulch film, was observed to exert a stronger 
negative impact on the vegetative and reproductive 
growth of Triticum aestivum (Qi et  al. 2018), which 
aroused debates about its wide application (Campanale 
et  al. 2024; Tan et  al. 2016). In addition, the impact on 
the root-leaf ratio, root tissue density, root colonization 
by arbuscular mycorrhizal fungi (AMF), and leaf traits 

of Allium fistulosum varied with polymer type (de Souza 
Machado et al. 2019).

Microplastic size and shape also have very different 
effects on plant performance. For example, PS micro-
plastics were prone to inhibit the growth of Vicia faba, 
whereas stronger inhibiting effects were observed for 
PS nanoplastics; PS microplastics of larger size exerted 
stronger delaying effects on seed germination (Bosker 
et  al. 2019). Additionally, exposure to 50 nm PS parti-
cles resulted in a significant increase in root growth of 
Lepidium sativum after 24 h of incubation, while expo-
sure to 500 nm PS particles led to a significant decrease 
in root growth, and exposure to 4800 nm had no signif-
icant influence (Bosker et  al. 2019). Rillig et  al. (2019b) 
proposed the major hypothesized effect pathway for dif-
ferent shapes and sizes and suggested that fibers of large 
size may exert positive effects on plant growth by altering 
soil structure and bulk density, films of intermediate size 
may exert negative effects on plant growth by increasing 
soil water evaporation, and beads or fragments of minor 
size could also possess certain effects similar to minor 
changes in soil texture.

In the aforementioned studies, the effects of shape or 
size cannot be completely separated from those of poly-
mer type. Considering the various impacts of microplas-
tics owing to their dazzling range of chemical makeup, 
additives, persistence, surface properties, sizes and 
shapes, future research should investigate the role and 
correlation of different factors on root growth param-
eters, nutrient uptake, and root-colonizing microbes over 
different time spans (Rillig et al. 2019b).

4.2 � Mechanisms underlying the impact of microplastics 
on plant performance

Different mechanisms were noted for the impact of 
microplastics on plant performance, such as serv-
ing as root barriers, changing soil microbial structure 
and metabolism, accumulating in plants, regulating the 
response of plants to microplastic contamination, etc. 
Such effects could occur separately or concurrently but 
are discussed separately as follows (Fig. 3).

4.2.1 � External effects of altering the environment in regard 
to plant growth

First, microplastics could alter soil physicochemical 
parameters, which may alter water transport, nutrient 
availability, microbial activities, and penetration resist-
ance for plant roots, thus affecting plant performance. 
For instance, PES exerted stronger effects on soil struc-
ture and interaction with water than other polymer types, 
which potentially drove the response of plant traits (de 
Souza Machado et al. 2019). The substantially enhanced 
water-holding capacity in soil and the maintenance of 
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high water levels in plant tissues by PES addition could 
alter plant physiological status (e.g., physiological prox-
ies of photosynthesis) and thus result in changes in spe-
cific plant traits (Faucon et  al. 2017). Song et  al. (2023) 
also suggested that PVC could suppress shoot growth 
by influencing nutrient and water absorption abilities 
(Qi et  al. 2020a), as well as integrating into soil aggre-
gates to inhibit the activities of soil enzymes and change 
the uptake of nutrients and water (Gao et al. 2021; Hou 
et al. 2021; Ng et al. 2021). Alternatively, shifts in water 
dynamics may affect nutrient availability by altering 
chemical speciation processes within soils or changing 
soil microbial activities (de Souza Machado et al. 2019). 
As plant performance is also highly dependent on soil 
biota (Wagg et  al. 2014), and particularly on root-colo-
nizing microbes such as N-fixers (Liu et al. 2024), patho-
gens and mycorrhizal fungi (Powell and Rillig 2018), the 
altered microbial community either by the direct impact 
of microplastics or the indirect impact of changed soil 
physicochemical properties could also play a significant 
role. For example, the changed habitat due to PES addi-
tion resulted in the root colonization of AMF, which 
conferred positive effects to plant growth by increasing 
nutrient availability (de Souza Machado et al. 2019).

Second, microplastics can accumulate at plant roots 
and affect root growth and nutrient uptake. For example, 
PS microplastics could affect root growth of Lepidium 
sativum by accumulating on the root hairs (Bosker et al. 
2019). Similarly, PS microplastics 5 μm in size, due to 
their large size, were prone to accumulate at the root sur-
face and thus affected the root growth and fresh and dry 
weight of Vicia faba, potentially by blocking the absorp-
tion or uptake of essential nutrients and water through 
root tips (Jiang et al. 2019).

Third, microplastics contain some biogeochemically 
active elements that might exert selective pressure on 
soil microbes and plants. For nitrogen-free microplastics 
like PLA, they can be hydrolyzed to form water-soluble 
low-molecular-weight oligomers, which induce micro-
bial immobilization and assimilation of essential nutri-
ents and increase stress in plants (Song et al. 2023). For 
N-containing microplastics (i.e., PA, polyacrylonitrile, 
and polyaramide), their effects on soil structure and plant 
performance could be partly attributed to the enrichment 
of soil nitrogen. PA is generally manufactured through 
the polymerization of amines and carboxylic acids, and 
its components loosely interact (Palmer 2001). Thus, the 
remaining monomers and compounds from the produc-
tion process could easily leach into the soil and lead to 
effects analogous to fertilization. This can partly explain 
the nearly twofold increase in leaf N content in Allium 
fistulosum by PA application (de Souza Machado et  al. 
2019). For polymers containing chloride, such as PVC, 

the leaching of certain components could lead to bio-
geochemical changes, as very strong filtration effects on 
microbes were observed for PVC-derived DOM (Zhang 
et al. 2022). The phenomenon in which plants are unable 
to counteract PVC toxicity and produce high concentra-
tions of H2O2 during the time period of chronic exposure 
is also potentially related to the chemical toxicity of chlo-
ride (Pignattelli et  al. 2020). Moreover, it is plausible to 
speculate that in the long run, even the inert carbon in 
plastic polymers may constitute a relevant carbon pool 
in the soil (Rillig et  al. 2019a) and a selection pressure 
for soil microbes (Chen et  al. 2022d). Particularly for 
bioplastics with weaker persistence, the biodegradation 
and microbial immobilization of polymer carbon could 
be more profound, which may lead to more pronounced 
effects on plant performance (Qi et al. 2018).

Fourth, microplastics may carry toxic additives or 
adsorb pollutants such as the concurrently used pes-
ticides (Ramos et  al. 2015), which may either ease or 
exacerbate the environmental stress from microplastics 
(Zhou et al. 2020b). Microplastics can increase the expo-
sure of soil organisms to adsorbed pollutants (Hodson 
et al. 2017), and the adsorbed toxic substances can exert 
adverse effects on plant roots and their symbionts (Gay-
lor et  al. 2013; Wei et  al. 2019b), thus negatively affect-
ing plant growth. In addition, microplastics may have 
stimulated opportunistic plant pathogens and induce 
phytotoxicity due to acidification of the soil during 
PLA degradation (Song et al. 2023). On the other hand, 
the adsorption of contaminants by microplastics could 
lower their availability to soil biota and plants, thus lead-
ing to positive effects on plant growth (Kleinteich et  al. 
2018; Rehse et  al. 2018). Thus far, the combined effects 
of microplastics and their coexisting pollutants are still 
largely unknown and merit further investigation (Wang 
et al. 2019).

4.2.2 � Internal effects through uptake of microplastics 
by plants

The root rhizodermis is a barrier to microplastic uptake. 
As microsized particles are not expected to be trans-
ported into the root, the following discussion mainly 
concerns nanoplastics, which belong to a broad range 
of microplastics. Nanoplastics are likely to be trans-
ported to and accumulate in terrestrial plants, which 
may cause damage to plants (e.g., changes in the cell 
membrane, intracellular molecules, and generation of 
oxidative stress) (Navarro et  al. 2008) and could be a 
threat to the ecological environment and human health 
(Maity and Pramanick 2020). For example, Jiang et  al. 
(2019) showed that 100 mg L–1 PS nanoplastics (100 
nm) exerted a profound inhibitory effect on Vicia faba 
growth potentially by blocking cell connections or cell 
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wall pores thus inhibiting nutrient transport. Addition-
ally, PS nanoplastics could accumulate in the testa pores 
and delay seed germination of Lepidium sativum by 
physically blocking the pores in the seed capsule (Bosker 
et al. 2019). However, the realization of nanoplastic tox-
icity is not limited to entering the plant tissue. Alterna-
tively, plastic leachates, such as additives, plasticizers and 
flame retardants, may serve as contributors to the toxic 
effects on plants. An exposure experiment of PS nano-
plastics showed morpho- and cytogenotoxic effects in 
Allium cepa by inducing reactive oxygen species produc-
tion and chromosomal abnormalities and lowering the 
expression of the cdc2 gene, whereas no deposition of PS 
beads inside root tissue was observed (Maity et al. 2020). 
Microplastics of 4.8 μm in size clogged pores in seed 
capsules and their adherence to seedlings rather than 
entering the plant tissue also indicated clogging (Bosker 
et al. 2019). Microplastics are good vectors for other pol-
lutants, such as heavy metals, dioxins, and persistent 
organic pollutants (Kumar et al. 2020; Wang et al. 2020). 
Additionally, microplastics usually contain large varieties 
of additives of great ecological risks, such as flame retard-
ants, plasticizers, heat stabilizers, and antioxidants (Rillig 
and Lehmann 2020; Zhou et al. 2020b). Such characteris-
tics could contribute to the negative effects of microplas-
tics on plants.

4.3 � Response of plants to microplastic threats
In contaminated fields, plants have developed several 
strategies to deal with xenobiotics, such as avoiding the 
intake of such compounds, expanding the root system 
(Boots et al. 2019), and developing detoxification mecha-
nisms through enzymatic reactions such as oxidation, 
reduction, and conjugation reactions (Wang et al. 2019). 
As mentioned above, microplastics can affect the water 
and nutrient supply to plant roots. Correspondingly, sev-
eral detoxification mechanisms are involved in alleviating 
such adverse effects. Long-term stressed plants are prone 
to secrete extracellular enzymes to degrade microplas-
tics and coexisting pollutants and additives. For example, 
exposure to PS microplastics leads to shifts in the anti-
oxidant defenses of Vicia faba by secreting antioxidant 
enzymes such as superoxide dismutase and peroxidase 
enzymes (Jiang et  al. 2019). The increased production 
of H2O2 in plants, as well as the triggered production 
of low molecular weight compounds with antioxidant 
action, also supported the antioxidant defenses of plants 
to microplastic stressors (Pignattelli et al. 2020). Moreo-
ver, the microorganisms and microanimals in plant roots 
could alleviate the toxic effects by degrading and utiliz-
ing microplastics and coexisting intermediates. Unfortu-
nately, the influence of microplastics on plant health and 

microplastic biodegradation in the rhizosphere of plants 
is still largely unknown and merits further study.

5 � Future research directions
Due to the irresistible increase in plastic production and 
the lack of effective waste disposal countermeasures, the 
current pressure of microplastic contamination in soil is 
expected to continue for many years to come. To better 
understand the ecosystem effects and risks of microplas-
tics in the soil environment, there are still some critical 
unknowns that need to be addressed in future work: (1) 
elucidating the correlation between alterations induced 
by microplastics in physicochemical properties and soil 
carbon cycling; (2) clarifying the influence of microplas-
tics on microbial stabilization and mineral protection 
of soil carbon, with particular attention given to micro-
bial necromass accumulation and carbon storage within 
mineral-associated fractions; (3) determining the source 
of carbon emissions from native SOC and microplas-
tics through utilization of 13C isotope technology; (4) 
investigating the effects of microplastics on rhizosphere 
dynamics, particularly microbial activity and function, 
as well as microbial stabilization and mineral protection 
mechanisms for rhizodeposits within soils; (5) exploring 
ecosystem-level consequences associated with so-called 
"eco-friendly" bioplastics, since microbioplastics may 
exert more pronounced effects on soil biophysical prop-
erties, which should be considered during their safe man-
agement within agricultural contexts.
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