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Abstract 

Carbon neutrality by the mid-twenty-first century is a grand challenge requiring technological innovations. Biochar, 
a traditional soil amendment which has been used for fertility improvement and contaminant remediation, has 
revealed new vitality in this context. In this review we highlight the huge potential of biochar application in different 
fields to mitigate as high as 2.56 ×  109 t  CO2e total greenhouse gas (GHG) emissions per year, accounting for 5.0% of 
the global GHG emissions. Soil applications of biochar as either a controlled-release fertilizer or an immobilization 
agent offer improved soil health while simultaneously suppressing the emissions of  CH4 and  N2O. Non-soil applica-
tions of biochar also contribute to carbon neutrality in unique ways. Firstly, biochar application as a ruminant feed 
decreases  CH4 emissions via physical sorption and enhanced activities of methanotrophs. Secondly, biochar can be 
used as a green catalyst for biorefinery. Besides, biochar as an additive to Portland cement and low impact develop-
ment (LID) infrastructure lowers the carbon footprint and builds resilience to climate change. Furthermore, biochar 
can be used as novel batteries and supercapacitors for energy storage purposes. Finally, the high  CO2 adsorption 
capacity makes it possible for biochar being used as a sorbent for carbon capture, utilization, and storage (CCUS). 
We advocate that future research should further explore the effectiveness of biochar systems for climate change 
mitigation in large scale applications, and assess the economic and social viability of local biochar systems to combat 
climate change.

Highlights 

• Biochar application mitigates 2.56 ×  109 t  CO2e greenhouse gas emissions per year.

• Biochar contributes to carbon neutrality due to carbon negative nature,  CO2 sorption, and negative priming effects.

• Future research should explore the effectiveness in large scale applications.
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Graphical Abstract

1 Introduction
Carbon neutrality is defined as a state where a balance 
between carbon emission and carbon absorption from 
the atmosphere is reached (European Parliament 2022; 
UNEP 2019). Carbon neutrality is essential to achieving 
the Paris Agreement Goal to limit global warming within 
2 °C (UNFCCC 2015). One hundred thirty-five countries 
have committed to achieve carbon neutrality by mid-
twenty-first century (Statista 2022). However, grand chal-
lenges remain to reach that ambitious goal. For instance, 
decoupling economic growth from GHG emissions is 
the fundamental challenge of many developing coun-
tries including China toward carbon neutrality (Liu et al. 
2022b). Technological innovation is an important aspect 
of achieving this aim.

Soil is the largest carbon reservoir in the terrestrial 
environment (Friedlingstein et al. 2022). Organic carbon 
stock and stability in the soil environment determine 
the effectiveness of our effort towards carbon neutrality 

(Bradford et  al. 2016; Lehmann et  al. 2020; Schmidt 
et al. 2011). The non-renewable nature of soil also high-
lights the necessity of soil organic carbon preservation 
(Antoneli et  al. 2022; Bombino et  al. 2022; FAO 2015). 
However, degradation is occurring in billions of hectares 
of the world’s land, resulting in irreversible carbon loss 
(Gibbs and Salmon 2015; Rickson et al. 2015; UN 2022). 
Human activity-induced land use change is a key process 
worsening the scenario (Asare et  al. 2022; Borrelli et  al. 
2020; Siqueira-Neto et al. 2022; Vasilchenko et al. 2022). 
It is crucial that suitable soil use and management prac-
tices should be made to restore carbon in ground. In 
addition to soil use and management-related emissions, it 
is well acknowledged that various other human activities 
such as electricity generation, transportation, and indus-
try emit a considerable amount of  CO2 into the atmos-
phere. For instance, the aforementioned three activities 
contribute to 25%, 27%, and 24% global GHG emissions 
in 2020, respectively (US EPA 2022).
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In this case, biochar is a promising material for both 
soil and non-soil applications toward carbon neutral-
ity. On the one hand, it is an intrinsically carbon-nega-
tive soil amendment, because its production converts 
labile biomass into recalcitrant carbon that persists in 
the environment on centennial timescales (Glaser et  al. 
2009; Lehmann et  al. 2021). Around 60 billion metric 
tons of carbon are taken up via photosynthesis annually, 
of which 10% are able to be converted to waste biomass. 
Converting these 6 billion tons of carbon into biochar via 
pyrolysis, therefore, produces 3 billion tons of biochar 
annually (assuming the biomass yield to be 50%), thus 
reducing  CO2 emissions by the same amount (Kleiner 
2009). On the other hand, several recent findings suggest 
that biochar also possesses huge potential to combat cli-
mate change in non-soil applications including aquacul-
ture (Man et al. 2021), chemical engineering (Shen et al. 
2014), construction (Lunt et  al. 2022), carbon capture, 
utilization and storage (CCUS) (Shafawi et al. 2021), and 
energy storage (Cheng et al. 2017).

This review summarizes recent advances of biochar 
application toward carbon neutrality. Apart from its tra-
ditional use as a soil amendment, novel uses of biochar 
for non-soil applications are critically summarized. A 
roadmap of biochar toward carbon neutrality is provided 
based on quantitative estimation of biochar’s climate 
change mitigation potential in different fields. Exist-
ing challenges and future research directions are also 
discussed.

2  An overview of biochar’s role toward carbon 
neutrality

Biochar is an old material which has revealed new vital-
ity in the context of carbon neutrality. As early as 500 to 
2500 years B.P., Pre-Columbian Indians have made use 
of biological wastes to produce Amazonian Dark Earths 
with high fertility (Denevan 1992; Eden et al. 1984; San-
ford Jr et  al. 1985). The core idea of turning waste to 
highly fertile soils was termed pyrolysis, namely, ther-
mal conversion of biomass into charcoal under oxygen-
limited conditions (Figueiredo et al. 1989; Maschio et al. 
1992; Mobarak et al. 1982). It was not until the twenty-
first century that the concept of “biochar” became pop-
ular (Lehmann 2007; Marris 2006). It is defined as a 
carbon-rich material derived from thermal conversion 
(including pyrolysis and hydrothermal carbonization) of 
biomass feedstock under oxygen-limited conditions (IBI 
2015). Various feedstocks can be used to produce bio-
char, including wood, grass, crop residues, animal waste, 
sewage sludge, anaerobic digestate, bone, etc. (Alkurdi 
et  al. 2019; Wang et  al. 2020g). Pyrolysis refers to the 
process where biomass feedstock was subjected to ther-
mal conversion under oxygen-limited environment at 

temperatures usually between 250 to 900 °C. In contrast, 
hydrothermal carbonization is conducted via mixing bio-
mass with water and heating in a closed reactor below 
250 °C (Masoumi et al. 2021; Yaashikaa et al. 2020). How-
ever, one should note that to produce biochar at large 
quantities for field applications, pyrolysis seems to be a 
more feasible one with higher technical maturity. It takes 
around 449 ~ 1847 dollars to produce 1 metric ton of bio-
char at a large scale, which is comparable with other soil 
fertilizers and immobilization agents (Nematian et  al. 
2021).

Biochar has long been used as an amendment to 
increase soil fertility. Its ability to immobilize heavy met-
als and organic contaminants also manifested itself as a 
green immobilization agent (Hou et al. 2022; Wang et al. 
2022b; Wang et  al. 2021b). Apart from its traditional 
application as a soil amendment to improve soil fertility 
and immobilize contaminants, non-soil applications of 
biochar have also emerged in recent years, which have 
been  proven to exhibit much potential to mitigate cli-
mate change (Bartoli et  al. 2020; Bolan et  al. 2022). For 
instance, it has been used as an additive to animal feed to 
enhance its growth while reducing methane  (CH4) emis-
sions simultaneously (Leng et al. 2012; Man et al. 2021). 
Besides, it has been applied in biorefinery as a green 
catalyst (Kumar et al. 2020a; Xiong et al. 2017). Biochar 
can also be added to cementitious materials to enhance 
hydration and reduce the use of traditional Portland 
cement with a high carbon footprint (Danish et al. 2021; 
Maljaee et  al. 2021a). It is also used for novel batteries 
and supercapacitors to store energy (Cheng et  al. 2017; 
Li et al. 2021). Finally, it can be directly applied as a sorb-
ent for carbon capture, utilization and storage (CCUS) 
(Cao et al. 2022; Jung et al. 2019). The detailed discussion 
on the role of biochar toward carbon neutrality in these 
different soil and non-soil applications is provided in the 
following sections (Sections 3 ~ 4).

Here we provide a preliminary calculation of the 
potential for biochar utilization toward carbon neu-
trality based on available data (Table  1, Fig.  1). It is 
assumed that 10% of traditional practices of biomass 
waste management, animal feeding, cement pro-
duction, CCUS, and land restoration are altered by 
biochar systems. Firstly, converting waste biomass 
into biochar, bio-oil, and syn-gas intrinsically stores 
2.20 ×  109 t  CO2e annually, because it turns labile car-
bon that will be rapidly mineralized into recalcitrant 
carbon whose half life exceeds 1000 years (Ippolito 
et  al. 2020; Lehmann et  al. 2021; Spokas 2010). Sec-
ondly, application of biochar to restore degraded land 
is the key area of carbon emission mitigation, consum-
ing 5.50 ×  108 t  CO2e of as-formed biochar annually 
even at a mild application rate of 1.5 t/ha. Amending 
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biochar also alters the GHG flux of the soil environ-
ment via altering the microbial activities, providing 
an additional mitigated emission of  CO2,  CH4, and 
 N2O, whose reduced emissions would be 2.97 ×    107 t 
 CO2e, 1.53 ×  108 t  CO2e, and 1.27 ×  108 t  CO2e per year, 
respectively (Bond-Lamberty and Thomson 2010; Le 
Mer and Roger 2001; Lyu et  al. 2022; Wu et  al. 2021). 
Thirdly, it requires 3.86 ×  107 t  CO2e biochar to be used 
as an additive to ruminant feed per year, which theo-
retically reduces 4.12 ×  107 t  CO2e of  CH4 emissions 
from ruminants annually. Besides, 3.01 ×  107 t  CO2e 
biochar can be incorporated into cementitious mate-
rials to improve their mechanical strength, reducing 
4.10 ×  106 t  CO2e emissions per year due to material 
replacement. Furthermore, application of biochar as a 
sorbent for  CO2 capture may directly sorb 4.5 ×  106 t 
 CO2e from the atmosphere, assuming that biochar 

accounts for 10%  CO2 sorption in CCUS. Finally, the 
remaining 6.93 ×  107 t  CO2e biochar can be used for 
other purposes including catalyst in chemical engi-
neering, supercapacitor for energy storage, wastewater 
treatment, contaminated site remediation, etc. The pre-
liminary calculation provided here highlights the huge 
potential of biochar to mitigate as high as 2.56 ×  109 t 
 CO2e total emissions per year, accounting for 5.0% of 
the global GHG emissions of 5.15 ×  1010 t  CO2e (UNEP 
2021). It is noteworthy that biochar production itself 
contributes 85.9% of the reduced emissions. A recent 
precise calculation provided by Lehmann et  al. (2021) 
suggested that the highest potential of biochar’s miti-
gation could reach 2.4 ×  109 t  CO2e ~ 3.9 ×  109 t  CO2e 
per year. Another calculation provided by Woolf et  al. 
(2010) suggested that 1.8 ×  109 t  CO2e annual net emis-
sions of GHG can be reduced via biochar systems.

Table 1 Calculating the highest potential of biochar towards carbon neutrality

a  Slow pyrolysis, which is the most widely used biochar fabrication method
b  A relatively mild rate of biochar application at field

Description Value Reference

Global annual biomass production 6 ×  1010 t of C (Kleiner 2009; UNEP 2009)

Rate of biomass to be discarded as waste 10% (Kleiner 2009)

Rate of waste biomass to be converted to biochar 10% Assumed

Biochar yield 50%a (Kleiner 2009; Laghari et al. 2016; Wang et al. 2020g)

Bio-oil and syn-gas yield 50%a (Kleiner 2009; Laghari et al. 2016; Wang et al. 2020g)

Global annual feed production 1.17 ×  109 t (IFIF 2021)

Proportion of ruminant feed 8% (IFIF 2021)

Proportion of animal feed with biochar amendment 10% Assumed

Biochar amending rate to animal feed 9% (Hansen et al. 2012)

Global annual methane production via ruminant emissions 9.7×  107 t  CH4 (Chang et al. 2019)

Methane emission reduction rate following biochar addition to 
animal feed

17% (Hansen et al. 2012)

Global annual cement production 4.1 ×  109 t (GCCA 2022)

Proportion of cement with biochar amendment 10% Assumed

CO2 generated per ton of cement production 0.5 t  CO2 (Ali et al. 2011; Andrew 2018)

Biochar application rate in cement 2% (Chen et al. 2020; Gupta et al. 2018b; Maljaee et al. 2021a)

Annual capture capacity of  CO2 in CCUS 4.5 ×  107 t (IEA 2022)

Proportion of  CO2 captured by biochar 10% Assumed

Adsorption capacity of biochar towards  CO2 40 mg/g (Cao et al. 2022; Huang et al. 2015; Karimi et al. 2022)

Total area of global degraded land that is committed to be 
restored

1 ×  109 ha (UN 2022)

Proportion of degraded land with biochar amendment 10% Assumed

Biochar application rate 1.5 t/hab (An et al. 2022; Paneque et al. 2016; Peng et al. 2021)

Percentage of soil  CO2 emission mitigation by biochar 1% (Lyu et al. 2022)

Average  CO2 emissions from soil without amendment 811 g C/(m2·year) (Bond-Lamberty and Thomson 2010)

Percentage of soil  CH4 emission mitigation by biochar 7% (Lyu et al. 2022)

Average  CH4 emissions from soil without amendment 87.6 g  CH4/(m2·year) (Le Mer and Roger 2001)

Percentage of soil  N2O emission mitigation by biochar 31% (Lyu et al. 2022)

Average  N2O emissions from soil without amendment 0.876 g  N2O-N/(m2·year) (Wu et al. 2021)
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3  Biochar as a soil amendment reducing GHG 
emissions

The promise of biochar as an organic fertilizer is tremen-
dous. Firstly, it delivers necessary inorganic nutrients to 
plants via dissolution of its ash components (Silber et al. 
2010; Wang et al. 2020f ). In this case, ash-rich and ani-
mal waste-derived biochars, such as manure biochar 
may be the best candidate for inorganic nutrient deliv-
ery (Binh Thanh et al. 2022; Hossain et al. 2020; Subedi 
et al. 2016). Secondly, the high cation exchange capacity 
and anion exchange capacity of biochar manifest itself 
as a good sorbent preventing nutrient loss (Al-Wabel 
et  al. 2018; Lawrinenko and Laird 2015). Low tempera-
ture biochars possess more ion exchange sites, which 
may have performed better in nutrient retention (Li et al. 
2019). The slow release nature of biochar-based fertiliz-
ers makes it a better candidate for soil fertility improve-
ment in the long term as compared with other traditional 
fertilizers (Sim et  al. 2021; Yao et  al. 2013). It could be 
that the well-developed pores of biochar serve as barri-
ers that delay nutrient release from biochar matrix to the 
soil environment (Rombel et  al. 2022). It’s critical that 
inorganic nutrients can be released gradually at a slow 
rate to prevent water contamination by nitrate and phos-
phate (Corbett et  al. 2022; Kumari and Maiti 2022; Yin 
et al. 2022; Zou et al. 2022). Thirdly, the organic matrix 
of biochar acts as promising habitat for plant growth 
promoting bacteria (PGPB) (Bertola et  al. 2019). Again, 
low-temperature biochars with low aromaticity are good 
candidates because bacteria can utilize aliphatic moieties 

much easier than aromatic ones (Luo et al. 2018; Zhong 
et  al. 2020). Stimulated microbial activities within the 
charosphere account for improved soil health within the 
rhizosphere, thus leading to an elevated plant biomass 
yield (Dissanayake et al. 2022; Weralupitiya et al. 2022).

The indirect effect of biochar on plant growth pro-
motion should not be neglected. Improved water hold-
ing capacity (Bruun et  al. 2022; Razzaghi et  al. 2020), 
enhanced aggregation characteristics (Islam et al. 2021), 
suppressed acidity (Dai et  al. 2017), reduced salinity 
(Wang et  al. 2022f ), suppressed activities of pathogens 
(de Medeiros et al. 2021), as well as enhanced activities of 
soil fauna (Lehmann et  al. 2011) contribute to biochar’s 
performance in promoting plant growth.

Biochar has also been widely used as a sorbent for 
metal and organic contaminant immobilization in soil, 
whose mechanisms have been thoroughly reviewed 
(Ahmad et al. 2014; Bandara et al. 2020). Here we stress 
that application of biochar in remedies aligns very well 
with the ongoing Green and Sustainable Remediation 
(GSR) movement due to the following reasons (Fig.  2) 
(Hou 2020; Hou 2021a; Wang et  al. 2021b). Firstly, bio-
char material is a green amendment because it is waste-
derived and carbon-negative (Fig. 2a) (Glaser et al. 2009; 
Hou 2021c, 2022). Besides, application of biochar to the 
soil environment promotes soil health, thus leading to 
multifaceted benefits including enhancing plant growth, 
and increasing soil diversity on contaminated land 
(Fig. 2b) (Ayaz et al. 2022; Baveye 2021; Bolan et al. 2022). 
The restored ecosystems may also serve as a good place 

Fig. 1 Potential use of biochar for various applications toward carbon neutrality
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for leisure and entertainment (Fig. 2c) (Ghosh and Maiti 
2021). Furthermore, biochar application can increase the 
resilience and effectiveness of nature-based solutions 
(NBS) including phytoremediation, constructed wetland, 
and in-situ bioremediation with native soil microorgan-
isms (Fig.  2d) (Wang et  al. 2020a; Wang et  al. 2020e). 
Finally, engineered biochar can achieve excellent long-
term effectiveness, rendering elevated resilience to exter-
nal environmental changes (Fig. 2e) (Wang et al. 2022d; 
Zhao et al. 2020).

Apart from the fact that biochar application to soil 
directly increases the soil organic carbon pool, soil appli-
cation of biochar also provides an additional benefit for 
climate change mitigation, that is, reducing GHG emis-
sions from soil to the atmosphere. The following sec-
tions discuss how biochar application reduces soil GHG 
emissions.

3.1  CO2 emissions
Recent attempts have been made to reduce organic car-
bon loss from soils for climate change mitigation, whose 
measures include crop residue incorporation (Lupwayi 
et al. 2022; Zhu et al. 2022a), organic matter stabilization 
with clay and metal oxides (Baumann et al. 2022; Di et al. 
2022), fertilizer application (da Silva et  al. 2022; Gasser 
et al. 2022; Qiu et al. 2022; Thakur et al. 2022; Zhang et al. 
2022b), reduced or conservational tillage (Ferrara et  al. 

2022; He et al. 2022a; Islam et al. 2022), rotational graz-
ing (Abdalla et  al. 2022; Dong et  al. 2021), silvopastoral 
system (Aryal et al. 2019; Valenzuela Que et al. 2022), and 
ecological restoration (Howson et  al. 2022; Wang et  al. 
2020b; Zhao et  al. 2022). Among them, application of 
biochar is a promising one due to simultaneous achieve-
ment of waste management, nutrient delivery, contami-
nant immobilization, and climate change mitigation.

The role of biochar in regulating soil  CO2 emissions 
is quite complicated. Previous studies have shown that 
biochar amendment can increase (Johnson et  al. 2017; 
Yuan et al. 2014), decrease (Gascó et al. 2016; Sun et al. 
2014), or have negligible effect (Sackett et al. 2015; Zhou 
et al. 2017) on soil  CO2 emissions. Multiple mechanisms 
affect this process. Firstly, biochar itself contains certain 
proportions of labile carbon (i.e., aliphatic moieties) that 
can be easily metabolized by soil microorganisms (Wang 
et al. 2020f; Zhong et al. 2020). Secondly, biochar sorbs 
soil organic matter directly and form aggregates, thus 
preventing organic matter from being used by microor-
ganisms (Weng et  al. 2018; Zheng et  al. 2021). Besides, 
gaseous  CO2 within soil pores can be directly sorbed by 
biochar (Dissanayake et  al. 2020; Jung et  al. 2019). Bio-
char application also alters the activities of certain soil 
microorganisms that are involved in the carbon cycle 
(Chen et  al. 2016; Palansooriya et  al. 2019). The crop 
utilization efficiency of carbon is also altered following 

Fig. 2 How biochar application aligns with the ongoing GSR movement
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biochar application, leading to decreased  CO2 emissions 
(because of plant utilization of labile carbon) (Joseph 
et al. 2021). Furthermore, sorption of plant root exudates 
causes a diminished  CO2 emission mitigation effect due 
to biochar acidification (Weng et al. 2017).

Biochar is relatively stable in the soil environment, 
which may take over a thousand years to reach full min-
eralization (Lehmann et  al. 2012). Assuming that the 
mineralization of biochar carbon only had a minor con-
tribution to the total  CO2 flux annually, focusing on the 
mineralization of native soil organic matter is therefore 
a necessary step to predict  CO2 emissions from biochar 
amended soils. Hence it is crucial to judge whether and 
to what extent the mineralization process of native soil 
organic matter could be altered by biochar carbon.

Amending fresh organic amendments (e.g., manure, 
charcoal) to soil has long been acknowledged to alter the 
mineralization rate of native organic carbon, which is 
referred to as the priming effect (He et al. 2022c; Kuzya-
kov et  al. 2000; Santoni et  al. 2022). Both positive and 
negative priming could occur for biochar amended soils. 
The former one refers to the process where carbon min-
eralization is stimulated, while the latter one refers to the 
process where the mineralization rate is lowered (thus 
leading to suppressed  CO2 emissions) (Maestrini et  al. 
2015; Wang et al. 2022c). Positive priming is induced via 

the addition of fresh labile carbon which can stimulate 
the activities of soil microorganisms, thus accelerating 
the carbon mineralization process (Fang et al. 2019; Keith 
et al. 2011; Zimmerman and Ouyang 2019). In contrast, 
negative priming is achieved via the physical entrapment 
of labile organic carbon by biochar matrix, thus prevent-
ing organic matter from being mineralized (Abbruzzini 
et al. 2017; Liu et al. 2018b; Lu et al. 2014).

The intrinsic carbon stability and bioavailability of 
biochar is the key determinant of the priming direction 
(Fig. 3). Amending Florida soils with a range of biochars 
produced at different temperatures, Zimmerman et  al. 
(2011) found that low-temperature biochars (250 and 
400 °C) induced positive priming while high-temperature 
biochars (525 and 650 °C) induced negative priming. 
A high lignin content of the feedstock also favors nega-
tive priming, because the resulting biochar should pos-
sess higher aromatic moieties which are much harder to 
be metabolized as compared with aliphatic ones (Wang 
et al. 2020g). A low ash content is also favorable for nega-
tive priming, because of the limited introduction of inor-
ganic nutrients for microbial growth (Murray et al. 2015). 
Besides, it is believed that the introduction of certain 
toxic substances of biochar such as polycyclic aromatic 
hydrocarbons (PAHs) also contributed to negative prim-
ing because of suppressed microbial activity (Lyu et  al. 

Fig. 3 Effects of biochar properties and soil characteristics on priming directions, affecting BC priming effects. Reproduced with permission from 
Rasul et al. (2022). Copyright 2022 Elsevier
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2016). Soil type is also an important factor affecting the 
direction of priming (Fig. 3). Wood biochars caused posi-
tive priming in clay-poor Inceptisol, but induced negative 
priming for clay-rich soils including Oxisol and Vertisol 
(Fang et al. 2015). A high organic carbon content, a low 
soil pH is also favorable for negative priming (Rasul et al. 
2022). Previous meta-analysis suggested that biochar 
application generally tended to induce negative priming 
(average retardation of soil organic matter mineralization 
by 3.8%) (Wang et al. 2016).

It is of note that at the initial stage of biochar appli-
cation positive priming may be the dominant process 
because of the microbial utilization of labile carbon 
fractions from biochar, followed by decreased or even 
reversed priming intensity following several months of 
biochar application (Rasul et al. 2022). The initial stimu-
lated positive priming upon biochar application is attrib-
uted to the activities of r-strategist microorganisms that 
respond rapidly to the fresh carbon sources amended to 
soil (Chen et al. 2021a). The long-term aging of biochar 
at field benefits negative priming via different mecha-
nisms. A 9.5-year long-term field trial of biochar priming 
suggested that field aged biochar led to negative priming 
(via slowing down soil organic matter mineralization by 
5.5%) (Weng et  al. 2017). Formation of microaggregates 
protected native soil organic matter from mineraliza-
tion. Sorption of root exudates, and enhanced organo-
mineral protection also accounted for negative priming 
(Weng et al. 2017). A previous study developed a boosted 
regression trees machine learning model to depict bio-
char-induced soil priming effects (Ding et  al. 2018). 
Interestingly, the modeling result suggested that incuba-
tion conditions affected priming  more (accounting for 
36.5%) as compared with biochar properties (33.7%) and 
soil properties (29.8%). The major factor among incuba-
tion conditions was the incubation time (27.1%). Biochar 
application for the initial 2 years were modeled to exhibit 
positive priming, after which this trend was reversed to 
negative priming (Ding et al. 2018).

It should be noted that although negative priming sta-
bilizes soil organic carbon effectively, it may also sup-
press plant growth via decreasing the bioavailability of 
nutrients, therefore reducing plant absorption via photo-
synthesis (Kuppusamy et  al. 2016; Qayyum et  al. 2017). 
Finding a suitable biochar amendment that can simulta-
neously stabilize intrinsic soil organic carbon while simul-
taneously provide carbon source for plant growth is the 
key to use negative priming for carbon sequestration in 
soil.

3.2  CH4 emissions
Biochar application has great potential for the mitiga-
tion of soil  CH4 emissions. The meta-analysis provided 

by Lyu et al. (2022) found that biochar reduces soil  CH4 
emissions by 7% on average. The meta-analysis provided 
by Shakoor et  al. (2021) suggested that biochar applica-
tion was more effective for  CH4 (natural log response 
ratio − 0.399) emission mitigation as compared to  CO2 
(natural log response ratio − 0.108). Wood biochars 
possessed highest potential to mitigate  CH4 emissions 
(− 1.198), followed by biosolids (− 0.544) and herbaceous 
(− 0.263) biochars (Shakoor et al. 2021). Besides, a high 
pyrolysis temperature is also favorable for  CH4 emission 
mitigation due to lower available organic carbon con-
tent suppressing methanogenesis (Jeffery et  al. 2016; Ji 
et  al. 2020). The meta-analysis by Shakoor et  al. (2021) 
also suggested that neutral soil pH (6.6 ~ 7.3) favored 
 CH4 emission mitigation, whereas an acidic nature of the 
amended soil promoted  CH4 emissions following biochar 
application (Shakoor et  al. 2021). However, there’s still 
controversy over whether an elevation of soil pH should 
necessarily lead to a reduction in  CH4 emissions. The 
activities of methanogens may be enhanced at neutral or 
alkaline environments, whereas the methanotrophs are 
more tolerant to soil pH changes. Therefore, an elevation 
of soil pH following biochar application should theoreti-
cally stimulate  CH4 emissions (Yu et  al. 2013). Another 
meta-analysis by Jeffery et al. (2016) also drew a contra-
dictory result that biochar has much higher potential to 
mitigate  CH4 emissions in acidic soils.

Soil moisture content greatly affects  CH4 emissions of 
the biochar amended soil. A moderate water content is 
favorable for the reduction of  CH4 emissions, whereas 
a nearly saturated water content greatly stimulates  CH4 
emissions (Yu et  al. 2013). This is because a decreased 
soil Eh suppresses the activities of methanotrophs while 
stimulates the growth of methanogens. This is the reason 
why rice paddies release  CH4 at a higher rate as com-
pared with upland soils (Feng et  al. 2012). Numerous 
attempts have therefore investigated the effectiveness of 
biochar application on  CH4 emissions in rice paddy. A 
decreased bulk density, along with an improved soil aera-
tion, is the main reason for  CH4 emission reduction in 
such reduced environments. From a more mechanistic 
perspective biochar application regulates the abundance 
of certain functional genes including mcrA (methanogen, 
 CH4 synthesis, suppressed) and pmoA (methanotroph, 
 CH4 oxidation, enhanced) (Lyu et al. 2022).

The time following biochar application may have also 
altered the activities of methanogens and methano-
trophs. A 4-year field trial conducted in rice paddy sug-
gested that release of labile organic carbon accounted 
for the stimulation of both methanogens and methano-
trophs in the first year of biochar application, whereas 
the stimulation effect was much more significant for the 
latter group. However, biochar suppressed the activities 
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of methanogens (via increased soil porosity) while exhib-
ited little impact on methanotrophs in the next 3 years 
(Wang et al. 2019). The findings highlighted the fact that 
changes in soil physical and chemical properties by bio-
char require much time. Aging serves as a pivotal factor 
affecting biochar’s performances in  CH4 emission mitiga-
tion at field. A faded liming effect, a gradual decrease of 
labile organic carbon content, as well as a slow improve-
ment of soil aggregation and aeration are all potential 
influencing factors (Nan et al. 2021a; Nan et al. 2021b).

3.3  N2O emissions
The potential of biochar to mitigate soil  N2O emissions is 
tremendous. The global meta-analysis by Borchard et al. 
(2019) suggested that biochar application could mitigate 
soil  N2O emissions by 38% on average. Another meta-
analysis by Cayuela et al. (2014) reached more inspiring 
results of 54% mitigation on average. The recent work by 
Lyu et al. (2022) found that the GHG mitigation potential 
of biochar followed the order  N2O >  CH4 >  CO2. From a 
regional perspective, Lee et al. (2021) suggested that bio-
char application to East Asian soils had the potential to 
mitigate soil  N2O emissions by 21.1%. Biochar applica-
tion rapidly reduces  N2O emissions. The lab incubation 
experiment using seven different biochars suggested that 
short-term application of biochar was effective to reduce 
 N2O emissions dramatically by 52% ~ 84% within only 
14 days (Nelissen et  al. 2014). Besides,  N2O emission is 
not necessarily associated with limited N bioavailability 
in biochar amended soil, suggesting that chemical fer-
tility can be remained apart from a reduction of GHG 
emissions (Case et al. 2015).

Biochar and soil characteristics are also key factors 
affecting the mitigation effect. Biochar produced from 
wood is the best candidate (Borchard et  al. 2019). A 
high pyrolysis temperature over 400 °C is also favorable 
for  N2O emission mitigation (Lee et al. 2021). Low C/N 
biochars (below 30) have limited mitigation potential, 
whereas high C/N biochars are effective for emission mit-
igation (Cayuela et al. 2014). The underlying mechanism 
may be that higher aromaticity and adsorption capacity 
(toward soil organic matter) of high C/N biochars reduce 
the bioavailable carbon content, thus suppressing denitri-
fication which is a facultative process that requires exter-
nal organic carbon as the electron donor (Cayuela et al. 
2014). Another reason is that biochars with higher aro-
maticity are more conductive, thus favoring the electron 
transfer to denitrifiers (Lyu et al. 2022). The H:Corg ratio 
can also be applied to predict biochar’s mitigation poten-
tial. Biochar with a high aromaticity possesses a H:Corg 
ratio below 0.3, which lowers  N2O emissions by 73 ± 7% 
on average. In contrast, biochar with a high H:Corg ratio 
over 0.3 is much less effective (i.e., lowers  N2O emissions 

by 40 ± 16%) (Cayuela et al. 2015). The strongest reduc-
tion in  N2O emissions was observed for paddy soils and 
sandy soils via meta-analysis (Borchard et  al. 2019). 
Besides, a low soil organic matter content usually results 
in higher  N2O emission mitigation (Cayuela et al. 2014). 
 N2O emissions in upland soils are affected more follow-
ing biochar application as compared with waterlogged 
rice paddy (Lyu et al. 2022).

Biochar application is known to promote the expres-
sion of nosZ gene of the denitrifiers, leading to a complete 
reduction of  NO3

− to  N2 instead of  N2O (Harter et  al. 
2014; Lyu et al. 2022; Van Zwieten et al. 2014). An eleva-
tion of soil pH stimulates this process. A higher appli-
cation rate of biochar also leads to improved mitigation 
effect (Cayuela et al. 2014). For instance, applying biochar 
at 1% ~ 2% reduces  N2O emissions by 27% on average, 
whereas a higher dosage over 10% reduces its emissions 
dramatically by 87% (Cayuela et  al. 2014). Application 
rate and type of N fertilizers also affect this process (Van-
geli et al. 2022). Lee et al. (2021) found that a moderate 
N fertilizer application rate of 500 ~ 600 kg/ha is favora-
ble for  N2O emission mitigation, whereas higher applica-
tion rate beyond this value leads to reduced mitigation 
potential. Ammonium nitrate (reduction 32.3%) is bet-
ter than urea (22.7%) and ammonium sulfate (15.2%) to 
assist biochar’s  N2O emission mitigation (Lee et al. 2021). 
Physical immobilization of  NO3

− is another important 
mechanism (Case et  al. 2012). Formation of a distinct 
“charosphere” that is locally anaerobic and alkaline also 
promotes complete denitrification (Ameloot et al. 2016).

A diminished mitigation effect may take place dur-
ing field aging of biochar. The meta-analysis by Bor-
chard et al. (2019) suggested that the effectiveness would 
remain effective only in the first year of biochar applica-
tion. A 4-year field trial also found that biochar’s miti-
gation potential was 31.5% ~ 42.4% during the first year 
but diminished gradually to 6.9% ~ 21.3% in the 3rd and 
4th years (Liao et al. 2020). Another long-term field trial 
also found that biochar did not significantly reduce  N2O 
emissions after 7 years of in-situ field aging (Liao et  al. 
2021). With progressive aging the surface of biochar will 
be more oxidized, thus reducing biochar’s liming effect 
(Cayuela et al. 2014; Yang et al. 2022). Aged biochar may 
have also stimulated both ammonia-oxidizing archaea 
and ammonia-oxidizing bacteria induced  N2O produc-
tion (Zhang et al. 2019). Direct application of artificially 
aged biochar provides further support for the faded miti-
gation potential. In a recent work biochar suffered from 
proton attack were applied to a Luvisol, exhibiting no 
mitigation potential toward  N2O (Zhang et al. 2022a). It 
is notable that certain types of biochar may remain its 
mitigation potential with aging. For instance, wood bio-
char with a high aromaticity can continuously reduce 
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 N2O emissions for 3 years in a field trial (Hagemann et al. 
2017).

4  Biochar as sustainable material with low carbon 
footprint in non‑soil applications

4.1  Bioenergy generation
Biomass pyrolysis generates biochar, bio-oil, and syngas. 
Bio-oil is the liquid byproduct generated during bio-
char pyrolysis. It is a dark brown liquid with a pungent 
smell (Gupta et al. 2021a). Major components of bio-oil 
include alcohols, phenols, hydroxyketones, esters, car-
boxylic acids, etc. (Brassard et al. 2017; Sekar et al. 2021). 
Owing to the high energy density, bio-oil is a promising 
energy for combustion engines and boilers. However, rel-
atively high oxygen and moisture content (due to release 
of internal moisture of the biomass and the dehydration 
process) affects its performances when directly using it 
as an energy source (Kung et al. 2022; Lee et al. 2020a). 
Upgrading is therefore a necessary step. Physical upgrad-
ing using density differences, or chemical upgrading via a 
catalytic cracking and catalytic hydrotreating are feasible 
ways to improve the quality of bio-oil to meet the qual-
ity of hydrocarbon grade fuels (Gupta et al. 2021a). Syn-
gas consists of  H2, CO,  CH4,  C2H4, etc., which can also be 
used as a clean energy source (Amenaghawon et al. 2021; 
You et al. 2018). In particular, it can be directly used for 
a supplementary energy source of the reactor during 
pyrolysis. Typical yield of syn-gas is below 40% (Amena-
ghawon et al. 2021). Higher pyrolysis temperature favors 
syn-gas generation due to enhanced release of volatile 
matters and tar formation.

Bio-oil and syngas formed during biomass are sustaina-
ble energy sources contributing to carbon neutrality. This 
is primarily because GHG emissions generated during 
biomass pyrolysis are regarded as carbon neutral because 
of their biogenic origin (Lu and El Hanandeh 2019; US 
EIA 2021). Previous calculations suggested that effective 
utilization of bio-oil and syn-gas as clean energy could 
greatly contribute to carbon neutrality. Ideally, a rough 
calculation assumes that one third of the aforementioned 
6 billion tonnes of biomass could be converted to bio-
oil used for tranport, thus reducing carbon emissions by 
an additional 1.8 billion tonnes per year (Kleiner 2009). 
The life cycle analysis by Roy and Dias (2017) suggested 
that global warming potential (GWP) of bio-oil utiliza-
tion could be 54.5% lower than that of  fossil fuels. Fan 
et  al. (2011) provided a life cycle analysis of bio-oil uti-
lization for electricity generation. Results suggested that 
bio-oil combustion led to life cycle GHG savings ranging 
from 77% ~ 99% as compared with fossil fuel combustion. 
Another life cycle analysis of biochar systems suggested 
that biomass conversion into biochar, bio-oil, and syngas 
yielded a positive net energy while achieving negative 

net GHG emissions (Roberts et al. 2010). Slow pyrolysis 
of one ton of plant biomass yielded a net energy value 
ranging from 3044 ~ 4899 MJ, whereas syngas heat energy 
production (3507 ~ 5787 MJ) was the primary contribu-
tor to the net positive energy. In the meantime, net GHG 
emissions were negative within biochar production sys-
tem, whose values ranged from − 885 ~ − 793 kg  CO2e 
per ton of dry biomass.

4.2  Animal feed
From the  early  19th to  20th, charcoal had been applied 
widely to treat digestive disorders in animals, including 
horses, pigs, and dogs (Bolan et al. 2022; Man et al. 2021). 
In recent years, a few attempts have been made using 
modern biochar as a feed additive for animals. An appli-
cation rate of < 10% in daily diet could achieve significant 
weight gain, egg weight, and survival rate (Man et  al. 
2021). Biochar has multifaceted benefits in aquaculture. 
Firstly, it is a promising nutrient source which benefits 
animal growth and immunity enhancement (Evans et al. 
2017; Gerlach and Schmidt 2012; Saleem et  al. 2018). 
Secondly, it is an excellent sorbent to remove toxic ele-
ments and organic substances from animal gut (Jandosov 
et  al. 2017). Third, biochar suppresses the activities of 
certain pathogens (such as Clostridium tetani) (Prasai 
et al. 2016).

A stringent feedstock selection is crucial for biochar 
application in aquaculture. For instance, European Bio-
char Foundation proposes that the feedstock should be 
free of paint, solvent, plastic, and rubber, and that only 
those feedstock on the “positive list” can be pyrolyzed for 
animal feeding (Man et al. 2021). Other criteria include: 
carbon content should reach at least 80% of dry matter, 
polycyclic aromatic hydrocarbons (PAHs) concentration 
should below 4 mg/kg. As, Pb, Cd, and Hg concentration 
should below 2, 10, 1, and 0.1 mg/kg, respectively (Man 
et al. 2021).

Several evidences have shown that biochar addition 
to animal diet could effectively reduce the emissions of 
methane by ruminants (e.g., cattle and goat). The emis-
sion of methane from enteric fermentation of live-
stock reached 171 million tons  CO2e (Man et  al. 2021). 
Amending biochar in animal diet may serve as a potent 
measure to mitigate this source of GHG emissions. The 
reason why biochar suppresses the emission of methane 
lies in the fact that biochar provides a suitable habitat for 
gut methanotrophs. Therefore, the oxidation of methane 
(which is generated by methanogens) is greatly enhanced 
(Black et  al. 2021; Hansen et  al. 2012; Leng et  al. 2012) 
(Fig.  4). Besides, biochar itself also directly sorbs meth-
ane, which also accounts for reduced methane emis-
sions from ruminants (Fig.  4). However, a recent study 
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by Romero et  al. (2022) found that biochar addition to 
manure as a cattle diet did not significantly reduce  CO2, 
 N2O or  CH4 emissions. More evidences are needed to 
test whether and which types of biochar addition could 
successfully reduce ruminant GHG emissions.

4.3  Green catalyst for biorefinery
Biochar can act as a proxy for traditional activated car-
bon as a novel support for metal catalysts. For instance, 
a novel Ru-ReOx catalyst was loaded onto biochar sup-
port pyrolyzed from rice straw, which can produce value 
added chemicals from furan (such as tetrahydrofuran and 
1,4-butanediol) (Lee et al. 2020b). The biochar supported 
catalyst was  exhibited three times more active than the 
one supported by traditional activated carbon (Lee et al. 
2020b). Presence of alkali minerals in the ash component 
of rice straw biochar contributed to the catalytic perfor-
mance of biochar-supported catalysts (Lee et al. 2020b). 
It was suggested by Ramos et al. (2022) that biochar sup-
ported metal catalysts can be used for biorefinery, includ-
ing transesterification (Hazmi et  al. 2021; Zhang et  al. 
2016a), hydrogenation/hydrodeoxygenation (Liu et  al. 
2018a; Santos et  al. 2020), reforming and gasification 
(Shen et al. 2014; Yao et al. 2016), pyrolysis (Nejati et al. 
2020; Richardson et  al. 2010), and hydrolysis reactions 
(Wei et al. 2020; Zhang et al. 2014). Successful incorpo-
ration of metal and metal oxides is the key to catalyst 
fabrication. Therefore, an abundant oxygen-containing 

functional group on the biochar matrix favors metal 
decoration (Xiong et al. 2017). Besides, a relatively high 
ash content assures the presence of alkali minerals (i.e., 
K), which have been proven to exhibit additional catalytic 
performances toward certain reactions such as transes-
terification (Ramos et al. 2022).

4.4  Low‑carbon infrastructure
Portland cement contributes to 8% of the global  CO2 
emissions (Andrew 2018). To mitigate the carbon foot-
print of this conventional building material, several 
attempts have been made to use biochar as a green addi-
tive to traditional cement (Table  2). It was found that 
adding biochar application at a dosage below 10% will not 
cause detrimental impacts on the mechanical properties 
of cements (Danish et al. 2021). Actually, previous study 
suggested adding merely 1% of biochar to the cement 
matrix could increase its compressive strength dramati-
cally by 8.9% (Wang et al. 2020d). Elevated elastic mod-
ulus (Gupta et  al. 2018b), decreased water absorption 
behavior (Gupta et  al. 2020a), and improved shrinkage 
properties (Gupta et  al. 2018a) were also observed. The 
stability of biochar incorporated into the cementitious 
matrix is excellent as compared with direct incorporation 
of fresh biomass, which is because of the same alkaline 
nature of cement matrix and pyrolyzed biochar.

Hydration is a key process of cement-based materials, 
during which silicate phases of portland cement react 
with water to form calcium silicate hydrate (C-S-H). 

Fig. 4 Possible processes leading to  CH4 emission mitigation by ruminants after incorporating biochar into animal feed
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Table 2 Biochar as an additive to cementitious materials

Biomass feedstock Pyrolysis temperature 
(°C)

Cement type Addition rate (%) Key findings Reference

Wheat straw 650 Magnesium phosphate 
cement

1.5 Biochar addition 
improved the resist-
ance of cement in 
water.

(Ahmad et al. 2020)

Rice husk and bagasse 700 Portland cement 5, 10 Biochar addition 
increased the com-
pressive and tensile 
strength.

(Asadi Zeidabadi et al. 
2018)

Wood 700 Portland cement 10, 20, 30 Biochar addition at 30% 
sequestered 59 kg  CO2 
per ton of cement.

(Chen et al. 2022a)

Corn straw 300 Portland cement 1, 3, 5 Biochar addition 
compensated for the 
strength loss caused by 
carbonation curing.

(Chen et al. 2022b)

Sewage sludge 500 Portland cement 2 Biochar addition accel-
erated hydration.

(Chen et al. 2020)

Sewage sludge 700 Portland cement 1, 2, 5, 10 Biochar addition accel-
erated hydration.

(De Carvalho et al. 2022)

Wood 500 Portland cement 2, 5, 8 Biochar addition accel-
erated hydration.

(Dixit et al. 2019)

Wood waste and coco-
nut shell

500 Portland cement 5 Biochar addition 
reduced autogenous 
shrinkage.

(Gupta et al. 2020a)

Wood 300, 500 Portland cement 2 Biochar addition pro-
moted mechanical and 
permeability properties.

(Gupta and Kua 2018)

Wood 500 Portland cement 0.25, 0.50, 1, 2 Biochar addition accel-
erated hydration.

(Gupta and Kua 2019)

Wood 300, 500 Portland cement 1, 2, 5, 8 Biochar addition 
increased the compres-
sive strength, but did 
not significantly affect 
tensile strength.

(Gupta et al. 2018a)

Food waste, rice waste, 
wood

500 Portland cement 1, 2, 5 Biochar addition 
increased the com-
pressive and tensile 
strength.

(Gupta et al. 2018b)

Wood 300 Portland cement 2 Biochar addition 
increased the compres-
sive strength and 
improved permeability.

(Gupta et al. 2018c)

Wood 500 Portland cement 0.5, 1, 2 Biochar addition 
increased the compres-
sive strength.

(Gupta et al. 2020b)

Rice husk, wood 500 Portland cement 1, 2 Biochar addition 
increased the compres-
sive strength and 
decreased permeability.

(Gupta et al. 2021b)

Corn straw 400 Magnesium oxychlo-
ride cement

5, 10, 15, 20 Biochar addition 
formed an internal 
network with excellent 
cohesion strength.

(Han et al. 2022)

Bagasse, coconut husk, 
peanut husk, rice husk, 
wheat husk

500 Portland cement 1, 2, 3, 4, 5 Biochar addition pro-
moted hydration and 
decreased the settling 
time.

(Haris Javed et al. 2022)
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Evidences have shown that biochar addition acceler-
ates the hydration process (Lv et  al. 2022) (Table  2). 
This is because fine biochar particles fill the voids 
between cement particles and aggregates, and promote 
the formation of clusters due to electrostatic interac-
tion between their negatively charged surfaces and the 
positively charged cement particles. This results in the 
formation of nucleation clusters, favor the hydration 

process by attracting more surrounding particles as 
compared with the unamended cement (Fig. 5) (Danish 
et al. 2021; Gupta et al. 2021b). Besides, biochar addi-
tion also shortens the setting times, which is possibly 
due to the high hydrophobicity of biochar that reduces 
the segregation of concrete (Chen et al. 2020).

Carbonation is another major process which affects 
the longevity of cementitious materials. It was found 

Table 2 (continued)

Biomass feedstock Pyrolysis temperature 
(°C)

Cement type Addition rate (%) Key findings Reference

Bamboo 650 Portland slag cement 0.2, 0.4, 1, 2, 3, 4 Biochar addition 
increased the compres-
sive strength and built 
resistance to cracking.

(Liu et al. 2022a)

Olive stone, rice husk, 
wood

500 Portland cement 0.5, 1, 2, 4 Biochar addition pro-
moted hydration.

(Maljaee et al. 2021b)

Oilseed rape, wood 700 Portland cement 2, 4, 6, 8 Biochar addition 
increased the compres-
sive strength.

(Park et al. 2021)

Poultry litter 450 Portland cement 10, 20, 40 Biochar addition 
decreased the density 
and increased the com-
pressive strength.

(Praneeth et al. 2021)

Poultry litter 450 Portland cement 20, 40 Crushed biochar-
cement motar 
effectively sorbed Zn, 
Cu, and Pb in aqueous 
media.

(Praneeth et al. 2022)

Wood 500 Portland cement 0.65, 3.2, 6.5, 9.5, 13.5 Biochar addition pro-
moted hydration.

(Qin et al. 2021)

Sugarcane bagasse 200 Portland cement 2 Biochar addition pro-
moted hydration.

(Rodier et al. 2019)

Wood 400 Portland cement 2, 5 Biochar addi-
tion improved the 
microstructure of the 
concrete.

(Sirico et al. 2022)

Wood 900 Portland cement 1, 2.5 Biochar addition did 
not affect mechanical 
properties.

(Sirico et al. 2020)

Wood 400, 500, 600, 700 Portland cement 0, 1, 3, 5, 10 Biochar addition 
decreased fluidity.

(Tan et al. 2020)

Wood 500 Portland cement 1, 3, 5, 8 Biochar addition 
increased the com-
pressive and tensile 
strength.

(Tan et al. 2022)

Wood Gasification biochar Magnesia cement and 
magnesia cement-Port-
land binary cement

2 Biochar addition pro-
moted hydration.

(Wang et al. 2021a)

Wood 500, 700 Portland cement 1, 2, 5 Biochar addition 
increased the compres-
sive strength.

(Wang et al. 2020d)

Rice husk 550 Portland cement 2, 5 Biochar addition 
decreased the com-
pressive strength.

(Yang and Wang 2021)
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that biochar addition could facilitate this carbonation 
process, resulting direct  CO2 capture from the atmos-
phere (0.033 mmol  CO2/g biochar ~ 0.138 mmol  CO2/g 
biochar) (Fig.  5) (Legan et  al. 2022). In this case higher 
specific surface area led to higher  CO2 absorption per-
formance of biochar amended concrete. However, one 
should not neglect the detrimental impact of carbona-
tion on mechanical properties of the concrete material. 
C-S-H reacts with  CO2 to form calcite, which precipi-
tates within the pores of concrete (Fig. 5), thus reducing 
its mechanical strength. Besides,  CO2 diffusion causes 
decrease in pH, which results in corrosion (Ekolu 2016; 
Qiu 2020). It deserves further explorations concern-
ing whether mechanical improvements following biochar 
addition outplay the detrimental impact resulting from 
accelerated carbonation.

The rise in impervious surfaces in cities increases sur-
face runoff, which leads to more frequent flooding events 
in urban areas with climate change (He et  al. 2022b; 
Wang et al. 2022a). In this context, low impact develop-
ment (LID) (also known as Sponge City in China) has 
emerged as an effective urban runoff prevention philoso-
phy (Eckart et al. 2017; Jia et al. 2017). Apart from acting 
as an additive to cementitious materials, biochar can also 
be used in infiltration-based LID to treat stormwater as 
an bioretention system. To be used for bioretention, a fil-
ter material should possess a high hydraulic conductivity 
plus a high storage volume. The porous nature of biochar 
makes it an excellent candidate in this case as compared 
with other geomedia such as clay. It also offers multiple 
benefits such as the removal of potentially toxic elements 
(PTEs) from stormwater, increased groundwater replen-
ishment, improved growth of plants, and an elevated 
resilience to the changing environment (Mohanty et  al. 
2018; Tsang et al. 2018). In addition, it can also be applied 
as green roof to reduce urban runoff by increasing water 
holding capacity (Werdin et al. 2021).

4.5  Novel batteries and supercapacitors
The application of biochar for energy storage applications 
is a very impressive route of creating additional value 
apart from long-term carbon storage. Biochar has been 
recently used as the anode material for the conventional 
lithium-ion batteries due to its well developed porous 
structure. The interconnected pores promote  Li+ trans-
fer, introduce heteroatoms, making biochar a good proxy 
to graphite (Chen et  al. 2021b; Ryu et  al. 2016; Salimi 
et al. 2017; Wang et al. 2022g). Biochar doping with cer-
tain elements (e.g., Sn, Ni) can further improve its dis-
charge capacity and reusability (Nie et  al. 2021; Zhang 
et al. 2021). It can also be used as novel cathode materials 
for other types of batteries. For instance, Lei et al. (2021) 
fabricated a  Fe3C-biochar composite as the cathode for 
lithium sulfur battery, which remained a steady discharge 
capacity of 555 mAh/g even after 250 cycles. Zhong et al. 
(2022) synthesized biochar composite co-doped with N, 
P, and O from waste biomass feedstock generated follow-
ing phytoextraction of heavy metals. The as-formed com-
posite was used as the cathode for lithium sulfur battery, 
which had 80% of its discharge capacity remained follow-
ing 200 cycles. Qiao et al. (2021) synthesized KCl and heat 
modified biochar and used it as a cathode for zinc-air 
battery. Compared with the conventional Pt/C based zinc 
air battery, biochar-based battery exhibited higher spe-
cific capacity (767 mAh/g Zn vs 684 mAh/g Zn) and peak 
power density (141 mW/cm2 vs 126 mW/cm2) (Qiao et al. 
2021). Furthermore, biochar has also been used as a pig-
ment in solar absorber coatings owing to its possibility to 
reduce the reflectance of the material (Gonzalez-Canche 
et al. 2021). It can also be utilized as a proxy to traditional 
Pt catalyst in dye solar cells (Tiihonen et al. 2021).

Another novel type of energy storage tech-
nology, namely, supercapacitor, has gain much 
attention because of its rapid charge-discharge char-
acteristics and high reusability (Salanne et  al. 2016). 

Fig. 5 Biochar incorporation accelerates the hydration and carbonation processes of cementitious materials. Key information obtained from Gupta 
et al. (2021b), Legan et al. (2022), and Danish et al. (2021)
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Supercapacitors can be divided into two categories. 
The first one is the electrochemical double-layer 
capacitor (EDLC) which physically sorbs and desorbs 
the electrolyte ions on the electrodes under external 
voltage (Jeanmairet et  al. 2022). In this case, a high 
specific surface area and electrical conductivity of 
the biochar material as the electrode favors energy 
storage (Osman et  al. 2022). Biochar or biochar-
derived material with a 3D interconnected hierar-
chical porous structure performs well in an EDLC 
(Fig.  6) (Gao et  al. 2020; Li et  al. 2021). Micropores 
below 2 nm provide much specific surface area for 
physical sorption, whereas mesopores (2 ~ 50 nm) and 
macropores (> 50 nm) favor ion transport because 
the ion diffusion distance is shortened (Cuong et  al. 
2021). Steam activation (Kim et  al. 2019), alkaline 
modification (Liu et  al. 2015), metal modification 
(e.g.,  ZnCl2) (Hou et  al. 2015), and organic modifica-
tion (e.g., EtOH) (Zhang et  al. 2016c) were reported 
to create hierarchical porous structures (Cuong et  al. 
2021). Besides, a high pyrolysis temperature produces 
a graphite-like structure with high electrical conduc-
tivity, which is also favorable for biochar application 
as an EDLC (Keiluweit et al. 2010; Rawat et al. 2022). 
The other type of supercapacitor is a pseudocapaci-
tor (PC) whose electrode consists of redox materials. 
A PC stores energy via reversible faradaic reactions 
(redox reactions) near the electrode surface (Choi 
et  al. 2020). Although biochar-based supercapaci-
tors mostly belong to the former group, several works 
have successfully fabricated biochar-based EDLC/PC 
composite supercapacitors (Fig.  6). Transition metal 
oxides, including  MnO2 (Nirmaladevi et al. 2021), NiO 
(Paravannoor 2018), and  Co3O4 (Liu et  al. 2016), and 
certain organic polymers such as polyaniline (Thines 

et al. 2016) have been used to modify biochars to fab-
ricate EDLC/PC composite supercapacitors. Reported 
specific capacitance of biochar supercapacitors ranged 
from 106 to 1950 F/g, whose reusability was all above 
1000 cycles (Cheng et al. 2017). 6 M KOH is the most 
widely used type of electrolyte for a biochar superca-
pacitor (Cheng et al. 2017).

4.6  Sorbent for  CO2 capture, utilization, and storage
Carbon capture, utilization, and storage (CCUS) is an 
important strategy toward carbon neutrality, which may 
contribute nearly 12% of global mitigation to achieve the 
goal of limiting global temperature rise within 2 °C (Wei 
et  al. 2021). As a porous sorbent itself, biochar can be 
directly used for  CO2 capture. Physical sorption plays a 
vital role in this process, suggesting that higher specific 
surface area should result in higher adsorption capacity 
(Fig.  7). For instance, Cao et  al. (2022) fabricated wood 
and straw biochars for the adsorption of  CO2. Wood 
biochars possessed much higher specific surface areas 
(which were 2.7 ~ 4.4 times larger than that of the straw 
biochars), thus resulting in higher adsorption capacities 
(41.2 ~ 45.8 mg/g vs 26.5 ~ 41.5 mg/g). High reversibility 
was observed for  CO2 adsorption by biochar. The adsorp-
tion capacity of biochar could remain above 96.5% follow-
ing 10 adsorption-desorption cycles, as observed by Cao 
et al. (2022). In addition,  CO2 adsorption is an exother-
mic process. An increase in operating temperature led to 
decreased adsorption capacity (Cao et al. 2022). Biochar 
modification with KOH is a popular way to increase its 
physical adsorption capacity, because KOH removes the 
impurities and enhances the evaporation of volatile mat-
ter, thus leading to a widened pore size, increased pore 
volume and increased specific surface area (Coromina 
et al. 2016; Deng et al. 2014; Manyà et al. 2018). However, 

Fig. 6 Schematic diagram of biochar-based EDLC (left) and EDLC/PC composite (right) supercapacitors
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one should note that the concentration of KOH should 
be selected with care, because a high KOH concentration 
may cause damage to the porous structure (due to swell-
ing of lignin structure) (Wang et al. 2020c).

Apart from physical sorption, chemical binding may 
have also played an additional role. Nitrogen-containing 
functional groups, such as –NH2 and –NH, react with 
 CO2 directly to form carbamates (Fig. 7) (Chatterjee et al. 
2018; Shafawi et  al. 2021; Zhang et  al. 2016b). There-
fore, chemical modification of biochar by amine serves 
as an effective means to improve its performance in  CO2 
adsorption (Chatterjee et al. 2018).  NH3 ambience pyroly-
sis is also a simple way to introduce nitrogen-containing 
functional groups (Wang et al. 2020g). But the reversibil-
ity of sorption may be impeded by elevated proportion of 
chemisorption. In particular, aliphatic C-N/C-O groups 
cannot be regenerated following  CO2 sorption (Jung et al. 
2019). Another strategy to improve  CO2 adsorption is to 
introduce metal oxides onto biochar (Fig. 7). For instance, 
Liu et al. (2013) fabricated MgO-modified biochar with a 
high adsorption capacity of 5.45 mmol/g. This is due to the 
fact that  CO2 also reacts with MgO on the biochar surface 
to form  MgCO3, and interacts with surface hydroxyl via 
hydrogen bonding apart from physical adsorption (Liu 
et al. 2013).  CO2 adsorption onto MgO modified biochar 
is also highly reversible (Lahijani et al. 2018). Modification 
by other metals can also increase the adsorption capacity 
as compared with the virgin biochar, but they may not be 
as effective as Mg loading. Lahijani et al. (2018) found that 
the sequence of the adsorption capacity for metal-biochar 
composites followed the order Mg > Al > Fe > Ni > Ca. An 
elevated abundance of basicity of biochar following metal 
doping (due to substitution of proton by metal ions) also 
accounted for increased  CO2 adsorption (Jung et al. 2019).

5  Selection of a suitable biochar for specific 
applications

To assure biochar’s performances for specific applica-
tions, a wise selection of feedstock and pyrolysis condi-
tion is crucial. Figure 8 provides a practical guide for the 
selection of suitable feedstock and biochar fabrication 
conditions for specific purposes. Plant biomass as the 
feedstock material renders a low ash content as com-
pared with animal waste or sludge feedstocks (Wang 
et  al. 2020g). A high pyrolysis temperature results in 
elevated aromaticity and specific surface area (Keilu-
weit et  al. 2010; Zhu et  al. 2022b). Therefore, high ash 
and low temperature biochars are suitable for soil fertil-
ity improvement due to nutrient delivery and high labile 
carbon content (Hossain et al. 2020). High ash and high 
temperature biochars favor chemical catalysis due to 
the presence of alkali minerals as well as high conduc-
tivity (Ramos et al. 2022). Low ash and low temperature 
biochars are suitable to be applied for animal feeding 
because of high carbon content as well as high bioavail-
ability of aliphatic carbon (Man et al. 2021). Low ash and 
high temperature biochars are suitable to be used for 
soil GHG emission mitigation (Lyu et  al. 2022), CCUS 
(Jung et  al. 2019), cement additive (Danish et  al. 2021), 
and energy storage (Rawat et  al. 2022) due to high car-
bon stability and high adsorption capacity. Biochars 
pyrolyzed at a medium temperature favor contaminant 
remediation because the co-existence of well-developed 
pores and abundant oxygen-containing functional groups 
(Ahmad et al. 2014; Hou et al. 2020; Hou et al. 2021; Xie 
et  al. 2015). High ash biochars favor metal immobiliza-
tion due to enhanced precipitation (Wang et al. 2021b), 
whereas low ash biochars favor organic contaminant 
retention due to enhanced hydrophobic interactions (Dai 

Fig. 7 Mechanisms involved in  CO2 capture by biochar
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et  al. 2019). Besides, engineered biochars may also be 
fabricated, whose engineering methods are summarized 
by our previous works (Wang et  al. 2022e; Wang et  al. 
2020g). For instance, nano-biochar with extremely high 
sorption capacities can improve biochar performances in 
CCUS (Kumar et al. 2020b).

6  Challenges and future directions
In this study it was found that biochar application miti-
gates as high as 5% of the global annual GHG emissions. 
Application of biochar to restore degraded land exhib-
its the highest potential for GHG emission reduction, 
whereas other potential non-soil applications, including 
aquaculture, green catalysis for biorefinery, cement addi-
tive, energy storage, and CCUS also hold much promise 
towards carbon neutrality. Despite the huge potential 
of biochar toward carbon neutrality, several challenges 
remain prior to its large-scale application for climate 
change mitigation, where future studies should work on.

For soil applications of biochar to mitigate GHG emis-
sions, one crucial factor that future work should focus 
on is the long-term effectiveness. Evidence is mount-
ing that biochar ages following field application, lead-
ing to a diminished or reversed priming effect. Biochar 

acidification, mineral dissolution, and  dissolved organic 
carbon release in the long term also alter the microbial 
communities of the rhizosphere, leading to unpredict-
able GHG flux from soil to the atmosphere. The release 
and sorption of plant root exudates, and plant uptake of 
labile C and N also add much complexity to this system. 
Another challenge is that the biochar’s performances 
for GHG emission mitigation are highly case specific. 
Dynamic and tunable physicochemical property of bio-
char on the one hand provides much opportunity to make 
use of this material for different soil applications. Never-
theless, it adds much uncertainty to the effectiveness of 
biochar for climate change mitigation in specific cases 
(Fig. 8). For instance, misuse of low temperature biochar 
for soil GHG emission mitigation would result in posi-
tive priming instead of negative priming, thus leading to 
stimulated loss of intrinsic soil organic carbon stock. In 
addition, the unneglectable role of soil matrix on biochar 
performances should also be taken into account. Previous 
meta-analyses have well proven that soil pH, texture, tax-
onomy, and organic matter content greatly alter biochar’s 
performances in the soil environment. The effectiveness 
of biochar for GHG emission mitigation is also highly 
dependent on soil properties. Although existing reviews 

Fig. 8 Optimum biochar properties for different applications towards carbon neutrality
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and meta-analyses provide very useful information for 
the selection of a suitable biochar amendment, both lab 
and pilot-scale demonstrations are recommended prior 
to field implementation of biochar for GHG emission 
mitigation.

For non-soil applications of biochar towards carbon 
neutrality, more evidences from pilot scale demonstra-
tions rather than lab experiments should be acquired. 
Biochar uses as animal feeding, energy storage, and 
CCUS are still in their infancy with only proof-of-con-
cept studies at the lab scale. Underlying mechanisms 
are also poorly understood. For instance, there is still 
controversy over how biochar as an animal feed reduces 
methane emissions in ruminants. It is also still in doubt 
whether biochar can really improve the mechanical 
strength and carbon absorption characteristic simulta-
neously, because accelerated carbonation deteriorates 
the hydration products. To expand biochar’s applica-
tion towards carbon neutrality beyond traditional soil 
amendment, pilot- or full-scale demonstrations are 
required. Besides, engineered biochars, such as acti-
vated biochar, nano-biochar, and biochar composite, 
can be fabricated for specific purposes.

It’s notable that using biochar as a “sustainable” 
amendment does not necessarily mean that the entire 
life cycle impact on ecosystem is always lower than 
that without biochar. Technical, economical, and social 
concerns should be carefully resolved (Hou 2021b; Jin 
et  al. 2021; Wang et  al. 2020e). Apart from aforemen-
tioned technical problems, several economical and 
social concerns should also be considered. The cost of 
the biochar system also affects the overall sustainabil-
ity. Waste biomass should be obtained locally without 
a long traveling distance. The bio-oil and syn-gas reuse 
systems should be affordable for local communities and 
stakeholders. Besides, the farmer’s motivation of using 
biochar against other soil amendments, and adding 
biochar to ruminant feed, should also be stimulated to 
assure biochar’s successful fight against climate change.
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