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Abstract 

With the rapid development of nanotechnology, engineered nanomaterials (ENMs) have been produced and widely 
used in various fields, especially in environmental protection. ENMs would be released into the environmental media, 
particularly natural water, and then they exert great risks to ecosystem safety and human health. Dissolved organic 
matter (DOM) commonly exists in water environments. As a result, the interactions between DOM and ENMs are 
bound to occur. Herein, the multiple roles of DOM on ENMs are summarized. DOM can often interact with ENMs 
to positively or negatively influence nanomaterials-mediated pollutant removal through adsorption and catalytic 
degradation processes. On the other hand, DOM also regulates the potential ecotoxic effects of ENMs on organisms, 
either mitigation or enhancement. ENMs in turn would alter the physicochemical properties of DOM along with their 
environmental behaviors and risks. The present review aims to provide insight into DOM’s influence on environmental 
behaviors, environmental applications, and potential risks of ENMs.

Highlights 

Point 1 ENMs and DOM exist extensively in the environments and influence each other.

Point 2 DOM participates in ENMs-mediated pollutants removal processes.

Point 3 DOM exerts dual roles in ENMs-induced toxic effects on organisms.
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1 Introduction
As a new discipline, nanoscience has developed rapidly over 
the past decades. Nanotechnology has been extensively 
used in various fields recently (Chien et  al. 2021; Labchir 
et al. 2019; Xu et al. 2012). Nanotechnology is closely related 
to human daily life, including cosmetics, textiles, wall coat-
ing, medicine, food additives, and other aspects (Abbas et al. 
2020; Ali et  al. 2020; Singh and Nalwa 2007). With grow-
ing investment in nanotechnology, a large number of engi-
neered nanomaterials (ENMs) would inevitably enter the 
natural environment in the process of production, use, and 
disposition (Chen et al. 2020; Fabrega et al. 2009; Philippe 
and Schaumann 2014; Xu et al. 2020; Yu et al. 2018). Upon 
release and emission, ENMs would interact with other 

organic and inorganic contaminants in the environment, 
potentially leading to a co-exposure of organisms and the 
occurrence of mixture effects (Bundschuh et al. 2018, 2016; 
Naasz et  al. 2018). Although few studies have been con-
ducted to detect the environmental levels of commonly used 
nanomaterials, such as silver nanoparticles (Ag NPs), tita-
nium dioxide  (TiO2) and carbon nanotubes (CNTs) (Bunds-
chuh et al. 2018; Gottschalk et al. 2013; Sun et al. 2016), they 
indeed existed in the environment (Bauerlein et al. 2017). In 
the last few decades, various studies have demonstrated that 
such residual ENMs in the environment caused potential 
risks to aquatic organisms and human health (Bundschuh 
et  al. 2016; Mansano et  al. 2018; Oberdorster et  al. 2005; 
Saavedra et al. 2019; Sima et al. 2017; Zou et al. 2020).

Graphical Abstract



Page 3 of 21Zheng et al. Carbon Research            (2022) 1:27  

Nonetheless, ENMs are still widely used in various 
fields especially environmental remediation and pollution 
control (Chen et  al. 2020). To better apply these ENMs 
to treat environmental pollution in the real environment, 
several environmental factors should be investigated. 
Among these environmental factors, dissolved organic 
matter (DOM) widely exists in the natural environment, 
particularly the aquatic ecosystems (Hudson et al. 2007; 
Nebbioso and Piccolo 2013; Rippner et  al. 2018). The 
DOM is mainly derived from the micro-degradation 
and humification processes of animal and plant bodies 
(Komatsu et  al. 2020; Wang et  al. 2009). Once released 
into the natural systems, ENMs would interact with 
DOM (Philippe and Schaumann 2014; Yu et  al. 2018). 
DOM exerts great impacts on the environmental behav-
iors (i.e., aggregation, deposition, dissolution, migration, 
and transformation) of ENMs (Bundschuh et  al. 2016; 
Qiu et  al. 2020; Zehlike et  al. 2019), thus influencing 
their toxic effects on organisms (Meng et al. 2018; Ripp-
ner et al. 2018; Ye et al. 2018a) and removal efficiency on 
environmental pollutants (Zahra et  al. 2019). Because 
of its rich hydrophilic groups, DOM can alter the sur-
face properties of ENMs, thus regulating their biological 
toxicity (Hall et al. 2009; Yin et al. 2010; Yu et al. 2018). 
Nevertheless, more systematic and in-depth studies are 
needed to analyze the influences of DOM on nanoma-
terials’ toxicity along with the potential mechanisms. 
Similarly, the potential toxic effects of DOM on organ-
isms might also be changed by nanomaterials (Li et  al. 
2018; Zhu et al. 2020a). Overall, the interactions between 
ENMs and DOM along with the secondary effects on 
organisms and pollutants should be illuminated.

In this review, the interactions between ENMs and 
DOM are clarified along with the manners and underly-
ing mechanisms. Then, the secondary effects originating 
from ENMs-DOM interactions on pollutants removal 
and ecotoxicity are summarized. Meanwhile, the environ-
mental factors affecting the environmental behaviors and 
ecotoxic effects are investigated. Lastly, the key knowl-
edge gaps and future research directions are addressed.

2  Sources, properties and environmental 
implications of DOM

2.1  Sources and environmental distribution
DOM is ubiquitous in water environments ranging 
from 0.5 and 100 mgC/L (Zheng et al. 2022) and it plays 
important roles in the global carbon cycle (Zhu et  al. 
2020b). DOM can be divided into endogenous and 
exogenous sources according to the production path. 
Among them, humic acid (HA) and fulvic acid (FA) are 
the representative types in water bodies (Keller et  al. 
2010). Apart from the water environment, DOM also 
accumulated in soil and sediment in the form of soluble 

organic polymer through a series of biochemical pro-
cesses (Qiu et  al. 2020; Zahra et  al. 2019). These bio-
chemical processes include enzymatic decomposition, 
metabolic oxidation, and biological reuse of the excre-
ments or residues of living animals and plants by natu-
ral detoxifiers. Specifically, the sediment often acted as 
an adsorbent to control DOM’s solubility and surface 
chemistry (Hudson et  al. 2007). Actually, DOM is a 
source of energy and organic forms of nutrients, such as 
nitrogen and phosphorus, which are really available to 
soil microbiota (Gmach et al. 2020).

DOM partly comes from surface migration of the 
hydrological system due to the influence of geology, land 
use, and hydrology, while the other part is generated 
in situ by microbial/algal activities (Hudson et al. 2007). 
Particularly, the extracellular secretions (EPS) generated 
from the biochemical decomposition of microbial and 
algal cell residues are the main forms of natural DOM (Ni 
et al. 2015; Wang et al. 2014; Zhu et al. 2008).

Some other studies have shown that fresh C substrates 
are also important sources of DOM (Wang et al. 2016d). 
These C substrates primarily come from plant residues, 
roots as well as their secretions, such as phenols, sug-
ars and amino acids. Human activity, of course, is also a 
huge source of DOM (Elliott et al. 2006). The anthropo-
genic input is often considered unstable due to various 
uncertain manners, including direct discharge, indirect 
infiltration into groundwater, or airborne transmission 
into water bodies. However, these chemically synthe-
sized DOM majorly contributes to the chemical oxygen 
demand (COD) (Zhuo et al. 2010).

In addition, DOM can also be released from carbona-
ceous nanomaterials (CNMs), such as biochar and acti-
vated carbon (Feng et al. 2021; Lai et al. 2022; Yang et al. 
2021). These CNMs originated from incomplete combus-
tion or pyrolysis from biomass, as well as rock formation 
processes. When CNMs are used, they enter the envi-
ronment in large quantities. As a result, large amounts 
of carbon would be released from CNMs (Castan et  al. 
2020; Sigmund et al. 2018). Particularly, biochar has been 
widely introduced into the soil environment for contami-
nant remediation, soil improvement, and carbon mitiga-
tion in recent years (Castan et al. 2020; Yang et al. 2021). 
Apart from CNMs, traditional carbon-based nanomate-
rials, such as carbon nanotubes, fullerenes and graphite, 
can enter the environment unintentionally during any 
stage of their life cycles (Gil et al. 2018; Wang et al. 2018; 
Ye et al. 2014).

2.2  Physicochemical properties and environmental 
implications

DOM is a complex mixture of aromatic and aliphatic 
hydrocarbon structures. The structures of DOM are 
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connected with various functional groups, such as 
amides, carboxyl groups, hydroxyl groups, ketones as well 
as other secondary functional groups (Guo et  al. 2012; 
Sutton et al. 2005; Zhang et al. 2018b), as shown in Fig. 1. 
Due to its unique properties, such as abundant functional 
groups, huge molecular charge and hydrophilicity, the 
adsorption, dissolution, migration and accumulation of 
DOM in water and soil will affect the environmental bal-
ance (Wu and Tanoue 2001).

Several studies have shown that DOM could affect 
the physical, chemical, and biological processes of vari-
ous environmental pollutants (i.e., organic pollutants 
and inorganic heavy metals) in aquatic ecosystems, thus 
changing their bioavailability (Brunner et al. 2006; Kel-
ler et al. 2010; Ma and Yates 2018). Moreover, DOM has 
been considered to affect several abiotic and biological 
processes in freshwater environments (Leenheer and 
Croué 2003). The heterogeneous molecular aggregates 
in natural water, in turn, also increase the complex-
ity of DOM (Leenheer and Croué 2003; Ly et al. 2020). 
For instance, Brunner et  al. found that DOM could be 
formed as byproducts combined with other pollut-
ants under different biochemical conditions (Brun-
ner et  al. 2006; Maqbool et  al. 2017). It’s worth noting 
that high concentrations of DOM can also be toxic to 
aquatic organisms (Ye et al. 2018a). However, DOM var-
ies greatly in concentration, composition, and chemical 
properties. Such differences depend on its source (exog-
enous or native) and environmental conditions, includ-
ing water ambient temperature, ionic strength, pH, and 
cation composition (Hudson et  al. 2007). Importantly, 
DOM has also been considered as one of the major 

pollutants in drinking water sources, and its degrada-
tion significantly contributes to greenhouse gas emis-
sions (Cory et  al. 2014). The greenhouse effect in turn 
would accelerate water eutrophication to some extent, 
and then increase the amount of algal organic matter. 
The environmental conditions, of course, exert great 
impacts on its quantity.

3  Interactions between DOM and ENMs
Due to the development of nanotechnology, all kinds 
of ENMs have been widely synthesized and applied in 
various areas, including the sustainable chemistry indus-
try, environmental analysis and pollution remediation, 
medicine, and food additives (Chen et al. 2020). Unfor-
tunately, such emerging nanotechnology would inevi-
tably facilitate these ENMs releases into environmental 
media (Liu et al. 2018b), and then threaten eco-environ-
ment safety and human health. Meanwhile, ENMs can 
often invariably come across and interact with various 
environmental factors, including DOM and various pol-
lutants existing in the environment (Liu et  al. 2018b). 
In particular, DOM would interact with ENMs to alter 
their environmental behaviors and potential ecotoxicity 
(Chowdhury et  al. 2014). As a result, the removal effi-
ciency of environmental pollutants mediated by ENMs 
(Tang et  al. 2014; Yu et  al. 2018) and ENMs-induced 
toxic effects (Zhang et al. 2018a; Zhao et al. 2013) would 
be changed. On the other hand, nanotechnology is grad-
ually used for DOM degradation since several studies 
have demonstrated DOM as an emerging environmental 
pollutant (Li et al. 2018; Zhu et al. 2020a).

Fig. 1 The proposed two- and three-dimensional structure of DOM. Gray spheres represent C, red spheres O, white spheres H, blue spheres N, and 
yellow spheres S. Reproduced with permission from Ref. (Sutton et al. 2005)
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Generally, the interactions between DOM and nano-
materials are bidirectional. With rich hydrophilic 
groups, DOM would easily adsorb ENMs through elec-
trostatic adsorption, ligand exchange or hydrophobic 
interactions, and then change ENM’s surface physico-
chemical properties, such as dispersion, stability, and 
adsorption capacity (Khomutov 2004; Sun et  al. 2013; 
Yu et al. 2018). However, the interaction mode between 
DOM and ENMs varies among nanomaterials. Multi-
ple interactions, of course, may occur simultaneously. 
According to the different properties of nanomateri-
als, the interactions between DOM and ENMs can be 
divided into the following six modes.

i) Electrostatic interaction is considered as one of the 
most important adsorption mechanisms of nano-
materials (Sun and Lee 2012). For magnetite, ZnO 
NPs and  Al2O3 NPs, which carry positive charges, 
the zero charge point is much higher than the ambi-
ent pH value. These ENMs can react with negatively 
charged DOM through electrostatic attraction.

ii) Ligand exchange is considered to be another main 
mechanism of DOM adsorption by metal and metal 
oxide nanomaterials (Yu et al. 2018). The acidic func-
tional groups of DOM (i.e., -COOH and phenol –
OH groups) and hydroxyl groups on the surface of 
metallic oxide are the main causes of the reaction.

iii) Hydrophobic interactions preferentially occur 
when ENMs have hydrophobic surfaces, such as 
carbon nanomaterials (CNMs) and quantum dots 
(QDs). The aromatic part of DOM can be strongly 
adsorbed on the surface of ENMs through the 
hydrophobic effect, but the hydrophobic interac-
tion is weaker than other interactions (Yang and 
Xing 2009).

iv) Similar to hydrophobic effects, hydrogen bond inter-
actions are strongly dependent on pH. Hydrogen 
bonding is weak and usually not the driving force. 
The abundant polar functional groups in DOM 
(i.e., -COOH and -OH groups) often act as hydro-
gen bond donors, while the benzene ring of graph-
ite sheet in CNMs acts as hydrogen bond acceptor, 
resulting in the interaction between nanomaterials 
and DOM (Yu et al. 2018; Zhao et al. 2014).

v) The π-π interaction is widely used to explain the 
interaction between DOM and CNMs (Smith et  al. 
2012; Yu et al. 2018). DOM contains a large number 
of aromatic groups and C = C double bonds, which 
can provide enough π electrons. Additionally, the 
benzene ring on the surface of CNMs contains π 
electrons. As a result, π-π electron coupling between 
DOM and nanomaterials largely enhanced the DOM 
adsorption.

vi) Cation bridging is also an important way of mutual 
adsorption between DOM and ENMs. Divalent 
or multivalent metal ions (i.e.,  Ca2+ and  Mg2+) can 
bridge oxygen-containing functional groups (i.e., 
-COOH and -OH groups) of ENMs and DOM, due 
to the cation bridging effect not only between DOM 
and ENMs but also between adjacent DOM inter-
faces (Dong and Lo 2013; Yu et al. 2018). Therefore, 
DOM adsorption on the surface of ENMs may be 
multilayered.

4  Dual roles of DOM in nanomaterials‑mediated 
pollutants removal

4.1  ENMs exert excellent performance in the removal 
of environmental pollutants

Due to their versatile physicochemical characteristics, 
including large specific surface area, good stability and 
broad-spectrum adsorption capacity, ENMs exert excel-
lent performance in the removal of various environ-
mental pollutants, as depicted in Fig.  2 and Table S1. 
Adsorption and degradation (i.e., photochemical degra-
dation, electrochemical degradation, and their coupled 
degradative technologies) are the two main manners by 
which nanomaterials effectively remove environmental 
pollutants, such as organic pollutants (e.g., EDCs, antibi-
otics, and organic dyes) and heavy metals (Hassan et al. 
2020; Maggini et al. 2013; Tang et al. 2014).

Recently, several two-dimensional (2D) nanomateri-
als, including single-walled carbon nanotubes (SWC-
NTs), multiwalled carbon nanotubes (MWCNTs), 
graphene oxide (GO), and molybdenum disulfide 
 (MoS2) show excellent adsorption performance, so they 
are widely used in contaminants removal (Gil et  al. 
2018; Liu et al. 2018b; Wang et al. 2018; Ye et al. 2014). 
Deeply, as an important contributor to greenhouse gas 
emission (Cory et al. 2014), SWCNTs exhibit favorable 
adsorptive capacity on DOM at low pH, temperature, 
and ionic (Lou et al. 2011).

Apart from adsorption, nanomaterials (i.e.,  TiO2 NPs, 
ZnO NPs,  Ag2S NPs) also exert good photochemical and 
electrochemical properties, and are thus widely used in 
catalytic degradation of environmental pollutants under 
illumination or current conditions (Anantha et al. 2020; 
Jiang et al. 2015; Khan et al. 2011). Such degradative pro-
cesses are mainly mediated by various reactive oxygen 
species (ROS), such as  H2O2, •O2

−, •OH, and 1O2.
These nanomaterials, of course, have their draw-

backs in pollutants adsorption (Gil et  al. 2018; Wang 
et  al. 2018; Zhang et  al. 2014). Numerous nanocom-
posites, therefore, have been synthesized for the 
adsorption of pollutants (Liu et al. 2020; Raghu et al. 
2018). For instance, the  CeO2/MoS2 nanocomposites 
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show effectiveness for the removal of Cr(VI) through 
adsorption and photochemical degradation (Wang 
et  al. 2016a). Similarly,  MoS2/ZnO shows good pho-
tochemical properties and removal effects on organic 
dyes (Awasthi et  al. 2016). Previously, several nano-
composites have also been synthesized for the removal 
of organic dyes and heavy metals by our research 
group (Chen et al. 2019a, 2016, 2019b). By combining 
the above different removal methods, the microbial-
electro-Fenton system can effectively remove various 
environmental contaminants, as mentioned in our 
previous study (Dai et  al. 2021) and others (Hassan 
et al. 2020).

4.2  DOM participates in ENMs‑mediated pollutants 
removal processes

4.2.1  DOM is widely used in environmental pollutants 
removal in different manners

Owing to its large surface area and excellent photo-
electric-chemical properties, DOM has been widely 
used in environmental pollutants removal for its 
adsorption and catalytic performance, as indicated 

in Fig.  3 and Table S2. Generally, DOM exerted good 
adsorption properties on environmental pollutants, 
particularly heavy metals (Ma et al. 2015; Valipour et al. 
2018). With unique functional groups (i.e., carboxyl 
group and hydroxy group), DOM could become stable 
coupling with heavy metals (Chien et  al. 2021; Zhao 
et  al. 2018). For instance, Zhao et  al.  (2018) showed 
that the − COOH and − OH groups in DOM exert 
important roles in the complexation of  Cu2+. Similarly, 
numerous studies have demonstrated that DOM plays 
an important role in Hg(II) adsorption in soils (Dong 
et  al. 2011; Yang et  al. 2008). But, Yang et  al.  (2008) 
found that the DOM promoted Hg desorption from 
the soil. Therefore, understanding the effect of DOM 
on the adsorption and mobility of Hg(II) in the soil will 
provide more useful information to explain the risk of 
Hg(II) to surface water or groundwater.

Actually, DOM is not only a redox medium but 
also an electron shuttle, in which organic molecules 
can be reduced/oxidized reversibly, thus having the 
ability to act as an electron carrier in various redox 
reactions (Van der Zee and Cervantes 2009). At that 

Fig. 2 Different removal approaches of environmental pollutants by ENMs
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point, our laboratory systematically investigated 
DOM-mediated degradation of environmental endo-
crine-disrupting chemicals (i.e., EE2 and E2) through 
different pathways, including photocatalysis (He et al. 
2020b, 2018a; Ren et  al. 2017), electrocatalysis (He 
et  al. 2016), microbial degradation (Gu et  al. 2019, 
2018, 2016) and coupling-degradative system (Dai 
et al. 2021; Wan et al. 2020). Several reactive oxygen 
species (ROS), such as •OH, 1O2, superoxide radical 
(•O2

−/HO2•),  H2O2, and peroxide radicals (ROO•), 
have been found mediating the catalytic processes. 
Apart from promoting oxidative degradation of estro-
gen, the quinone/hydroquinone group in the DOM 
structure can be used as an electron shuttle to partic-
ipate in the quinone respiration process of HA-reduc-
ing bacteria, which contributes to the reduction and 
transformation of heavy metals (Gu et al. 2016). Inter-
estingly, Janssen et  al.  (2014) found that DOM plays 
dual roles as both sensitizer and quench agents in the 
photo-degradation process of tryptophan. Similar 
phenomena have been found in EE2 photocatalytic 

degradation in our previous study (Ren et  al. 2017). 
Recently, Tian et  al.  (2019) demonstrated that extra-
cellular organic matter (EOM) showed higher photo-
sensitive efficiency than that NOM, suggesting that 
the photo-sensitivities of DOM are closely related to 
their physicochemical properties.

On the contrary, DOM also exerts opposite effects 
on the degradation of environmental pollutants. For 
example, when DOC (an important contributor to 
DOM) is present in raw water, the removal perfor-
mance of antibiotics generally deteriorates due to 
their competition with organics (Choi et al. 2007). In 
terms of photochemical degradation, higher DO con-
centrations inhibit CT degradation due to the reac-
tion between DO and excited triplet state CT (3CT*) 
or HA (3HA*) (He et  al. 2018b). Ren et  al.  (2017) 
found that the photodegradation of EE2 was also 
inhibited when the dissolved humic acid (DHS) was 
more than 10 mg/L. Moreover, photobleaching could 
reduce the yield of ROS produced by DOM (Niu 
et al. 2016).

Fig. 3 DOM mediated the removal of environmental pollutants through different approaches
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4.2.2  DOM acts as an environmental impact factor 
to influence the ENMs‑mediated pollutants removal 
process

Apart from participating in the removal of environ-
mental pollutants themselves, DOM can also interact 
with ENMs to influence nanomaterials-mediated pol-
lutant removal processes. As an environmental fac-
tor, DOM exerts both negative and positive effects on 
nanomaterial-mediated pollutant removal, as shown in 
Fig. 4 and Table S3.

DOM inhibits ENMs‑mediated pollutants removal As 
mentioned in Section  4.1, nanomaterials can effectively 
remove environmental pollutants through adsorption 
and catalysis degradation. Deeply, as an environmental 
factor, DOM can inhibit pollutant removal mediated by 
nanomaterials, as shown in Fig. 4A.

The existence of DOM often negatively influences 
nanomaterials-mediated adsorption processes. DOM can 
compete with the adsorption sites of pollutants, therefore 
reducing nanomaterials’ adsorption capacity on envi-
ronmental pollutants, such as phenanthrene, pyrene and 
trichloroethylene, and heavy metals (Ersan et  al. 2016; 
Zhang et  al. 2012b). Particularly, the adsorption capac-
ity may decrease due to the competition of DOM with 
pollutants through site competition and pore/interstice 
blockage. DOM adsorption by ENMs is highly dependent 
on its composition and is governed by the size, hydro-
phobicity and aromaticity of DOM (Engel and Chefetz 
2019). DOM competition for nanomaterial adsorption 
sites depends on DOM type and DOM preloading condi-
tions. The size and polarity of ENMs, pore structure, and 
surface chemistry will also affect the DOM competitive 
adsorption sites. Moreover, the adsorption capacity of 

Fig. 4 DOM as environmental factors influences nanomaterials-mediated pollutant removal processes
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DOM-coated nanomaterials for environmental pollut-
ants would slightly decrease due to the newly exposed 
adsorption sites (Wang et al. 2008; Yang et al. 2017).

As for catalysis degradation, DOM presented in water 
matrices can often act as the “inner UV filter” for its 
strong absorptive capacity in UV and near UV range. As 
a result, the presence of DOM in water would decrease 
the availability of UV light for nanomaterials to induce 
the production of ROS and  h+ (Ye et al. 2018b). Besides, 
DOM can also act as a scavenger of photoinduced •OH 
and  h+ (Brame et  al. 2014; Ye et  al. 2018b). Similarly, 
NOM could compete for oxidants with organic contami-
nants, thus decreasing their elimination in water matri-
ces (Yang et al. 2015). All the above studies indicate that 
DOM has negative impacts on nanomaterial-mediated 
pollutant removal, particularly in photocatalytic and 
electrocatalytic processes.

DOM promotes ENMs‑mediated pollutants removal On 
the contrary, DOM sometimes may promote nanoma-
terial-mediated pollutants removal under certain condi-
tions, as shown in Fig. 4B. Firstly, when the concentration 
of pollutants is low, DOM can enhance the adsorption of 
environmental pollutants due to surface complexation. In 
this case, the competitive effects of DOM on nanomateri-
als’ adsorption sites can be ignored (Prarat et al. 2020; Tan 
et al. 2008). Among these different DOM types, FA has a 
stronger effect on the adsorption of heavy metal ions onto 
titanate nanotubes than that of HA (Sheng et  al. 2011). 
Secondly, the photosensitivity of DOM will be enhanced 
at low pH values (Gupta and Nayak 2012; Ye et al. 2019). 
As a result, nanomaterial-mediated pollutant degradation 
is synergistically promoted. Thirdly, the common coexist-
ing anions, such as phosphate and bicarbonate, can also 
reduce the negative effects of NOM by reducing surface 
adsorption and hole scavenging (Ye et al. 2019).

4.3  DOM‑modified nanocomposites promote pollutants 
removal

As mentioned above, both DOM and nanomaterials 
could effectively remove several environmental pollut-
ants, such as EDCs, antibiotics, and heavy metals, via 
adsorption and catalytic degradation due to their unique 
physicochemical properties. Presently, a few studies 
are focusing on the removal of environmental pollut-
ants with DOM-modified nanocomposites (Gautam and 
Tiwari 2020; He et al. 2020a; Peng et al. 2012). The appli-
cations and involved mechanisms are shown in Fig. 5 and 
Table S4.

Our research group has synthesized HA-modified 
carbon nanotube composites using the hydrothermal 

method and found that such  Fe3O4/CNTs/HA nano-
composites exerted high removal efficiency on Cr(VI) 
and methyl orange (He et  al. 2020a). The DOMox/
DOMred and Fe(III)/Fe(II) cycles could capture the 
generated electrons from microbial metabolism, which 
played vital roles in the removal of Cr(VI) and methyl 
orange (He et al. 2020a). Apart from the hydrothermal 
method, ultrasound could also promote the degrada-
tion of dyes in  Fe3O4/HA nanocomposites by form-
ing acoustic cavitation (Gautam and Tiwari 2020). 
Similarly, Peng et  al.  (2012) found that  Fe3O4/HA 
nanocomposites possessed good adsorption effects 
on Rhodamine B under acid conditions. Also, Ag-HA 
nanocomposites showed higher antibacterial activities 
(Liu and Man 2017). These studies demonstrate that 
DOM-modified nanocomposites have a good pros-
pect in the removal of environmental pollutants. We, 
therefore, speculate that DOM may have similar effects 
on other modified nanomaterials. Moreover, DOM-
modified nanocomposites would be broadly applied 
even to realize industrialization in the future. When 
considering the actual natural water, DOM-modified 
nanocomposites might be formed to participate in the 
transformation of environmental pollutants under nat-
ural conditions, and then maintain the balance of the 
ecosystem.

5  Dual roles of DOM in the ecotoxicity of ENMs
As mentioned in Section  4.1, nanomaterials have been 
widely used in the removal of various environmental 
pollutants. Unfortunately, these nanomaterials would 
inevitably be  released into environmental media to 
harm eco-environmental safety and human health. The 
toxic effects of ENMs on aquatic and terrestrial systems 
have received increasing attention over the past decades 
(Table S6). However, several environmental factors (i.e., 
dissolved oxygen, ionic strength, light irradiation, and 
DOM) would change their physicochemical properties 
and environmental stability, ultimately affecting their 
potential toxicity on organisms (Bundschuh et al. 2016; 
Zou et al. 2018, 2019). DOM, as an important environ-
mental factor commonly exists in environmental media 
may potentially affect the environmental behavior and 
toxicity of nanomaterials (Liang et  al. 2020). Actually, 
DOM exerts dual roles in regulating the ecotoxicity of 
ENMs involving oxidative stress, membrane damage, 
lipid oxidation, and metabolism regulation (Tong et  al. 
2019; Zou et al. 2020). Exploring the potential influences 
of DOM on nanomaterial-mediated toxic effects is of 
great importance in investigating the potential environ-
mental risks of nanomaterials in the real environment.
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5.1  ENMs exert toxic effects on organisms 
through different pathways

Generally, nanomaterials exert their toxic effects on 
organisms through complexation, adsorption, electro-
static force, oxidation/reduction, catalysis, etc. (Chen 
et  al. 2020; Tang et  al. 2014). The toxic mechanism of 
ENMs is mainly due to the mechanical damage caused by 
ENMs, the generation of ROS under external force, and 
the release of metal ions from metal nanomaterials, as 
indicated in Fig. 6. Moreover, ENMs also act as carriers 

for environmental contaminants, facilitating or the entry 
of these substances into cells, subsequently leading to an 
increased toxicity on organisms.

5.1.1  Particle‑related toxicity by ENMs
Particles in suspension are generally considered as the 
main factors causing the toxicity of suspending nano-
particles. The stability and agglomeration behaviors 
of nanoparticles depend largely on the type and struc-
ture of particles, chemical composition, and coating or 

Fig. 5 DOM-modified nanocomposites used in pollutants removal along with the related mechanisms
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functionalization (Ulrich et al. 2012), as shown in Fig. 6I 
and Table S5. Specifically, ENMs with smaller particle sizes 
(mostly in the range of nanoscale) have a larger specific 
surface area and higher surface activity. Meanwhile, they 
can easily enter the organic body through cell wall pores 
and ion channels, and then cause mechanical damage to 
cell structures such as plasma membrane, cytoskeleton, 
and chromosomes (Liang et al. 2020; Qiu et al. 2020; Zou 
et al. 2020). For example, the accumulation of  TiO2 NPs in 

the cell wall of maize roots has been found to reduce the 
pore size of the cell wall and the hydraulic conductivity of 
corn roots, resulting in an inhibition of transpiration and 
growth of seedlings (Asli and Neumann 2009). It should 
be indicated that although the toxicity of nanomaterials is 
mainly caused by suspended particles (Xiao et al. 2018), it 
can be changed when their surface properties and hydrau-
lic radius are altered in environmental media (Lamelas and 
Slaveykova 2007; Liang et al. 2020).

Fig. 6 Toxicological effects of nanomaterials along with their mechanisms
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5.1.2  Reactive oxygen species generation under external 
force

ROS, as a reactive species of molecular oxygen, is the 
major signaling molecule during cell homeostasis and 
cell signaling (Makhdoumi et al. 2020). Specifically, when 
the content of ROS is too high, oxidative stress becomes 
the main biological toxicity mechanism of nanoparticles 
(Dalai et  al. 2012; Goodwin et  al. 2015; Schlagenhauf 
et  al. 2015). Nanoparticles might produce ROS upon 
interaction with organisms or agents present in the envi-
ronment (Li et  al. 2015). The ROS-related toxic mecha-
nisms are shown in Fig. 6II.

Due to their strong surface activity, ENMs can gener-
ate ROS when they absorb energy or contact electron 
donors (Kovacic and Somanathan 2010). External forces, 
such as light, temperature, and nanomorphology, can 
also induce the production of ROS (Battin et  al. 2009; 
Dodd and Jha 2009; Hund-Rinke and Simon 2006; Yang 
et al. 2013). Zou et al. (2019) have demonstrated that sun-
light-induced reactions can also affect the production of 
ROS although the process is slow at room temperature. 
Besides, some metals (such as Cu and Fe) transfer elec-
trons to  O2 to form •O2

− or to  H2O2 to form excessive 
•OH, thus strengthening the oxidative stress on organ-
isms (Sharma and Dietz 2009; Sima et al. 2017).

Generally, the antioxidant enzyme system and non-
enzyme antioxidant system in the organism can remove 
excessive ROS in time to protect themselves from harm. 
However, high levels of oxidative stress can lead to oxida-
tive damage to biomacromolecules (i.e., lipids, proteins, 
and DNA) and organelles (Chen et  al. 2018; Yang et  al. 
2013; Zou et al., 2020, 2018, 2019).

5.1.3  Metal ions release for metal nanomaterials
Metal-based nanomaterials can often dissolve part of 
metal ions and then interfere with the biochemical pro-
cesses of organisms by destroying their redox balance. 
Specifically, environmental condition changes (i.e., tem-
perature rise, oxygen increment, and solar radiation) 
would accelerate the release of heavy metal ions (i.e.,  Ag+, 
 Cu2+, and  Zn2+) from the corresponding metal nanoma-
terials, and then cause harm to aquatic and terrestrial 
animals and plants as well as human beings (Azimzada 
et al. 2017; Fauss et al. 2014; Perreault et al. 2014; Sima 
et al. 2017; Sobhanan et al. 2020), as shown in Fig. 6III. 
For instance, free  Cu2+ can easily path through biologi-
cal membranes by converting them into  CuOH+ (Ahmed 
et al. 2021). Importantly,  Cu2+ often exerts higher cyto-
toxicity and genotoxicity than CuO nanomaterials 
(Henson et al. 2019). Similar results have been found in 
cadmium-based quantum dots (Sobhanan et al. 2020). It 
should be noted that Cu-, Ag- and Ti-based nanoparticles 

could not release their metal ions under anoxic condi-
tions, thus exerting low toxicities on organisms (Mulenos 
et al. 2020).

5.2  DOM mitigates ecotoxicity of ENMs on organisms
As mentioned above, nanomaterials exert their toxic 
effects through mechanical damage, ROS-mediated 
oxidative stress, and metal ions release. However, 
DOM often coexists in the environment and partici-
pates in the regulation of nanomaterial-induced toxic 
effects on organisms. Herein, various studies have 
demonstrated that DOM could mitigate the biologi-
cal toxicities of organisms. The involved mechanisms 
can be found in Fig. 7A–C and are detailed as follows. 
Besides, DOM adsorption on ENMs can enhance the 
electronegativity of ENMs, increase the steric hin-
drance and electrostatic repulsion between parti-
cles and organisms, and prevent the contact between 
ENMs and organisms, thus reducing the toxicity of 
ENMs (Edgington et  al. 2010; Fabrega et  al. 2009). 
Moreover, DOM as an antioxidant can reduce the 
accumulation of ROS induced by ENMs, which is 
also the mechanism of alleviating biological toxicity 
(Meng et  al. 2018; Zhang et  al. 2018a). Specifically, 
Yin et al. (2012) found that DOM can reduce  Ag+ and 
 Au3+ into metal nanoparticles under sunlight induc-
tion. These related pathways are indicated in Fig.  7 
and Table S6.

5.2.1  DOM decreases the amounts of metal ions in aquatic 
ecosystems

With abundant functional groups, DOM can interact with 
nanomaterials or released metal ions (Tang et  al. 2014). 
DOM not only can inhibit the release of metal ions but 
also forms DOM-Mm+ complexes (Baken et al. 2011; Gun-
solus et al. 2015; Mousavi et al. 2015; Wang et al. 2016b). 
As a result, the amounts of metal ions are decreased 
(Fig.  7A). Interestingly, DOM can reduce  Ag+ and  Au3+ 
into metal nanoparticles under sunlight induction, because 
the reduction was mediated by superoxide from photoir-
radiation of the phenol group in DOM (Yin et  al. 2012). 
Therefore, DOM can affect the amounts of metal ions.

DOM binds to metal ions to form complexes DOM 
reduces the number of metal ions in nanomaterials 
mainly because DOM combines with metal ions to form 
complexes (Baken et al. 2011; Huang et al. 2019b). Spe-
cifically, the chemical composition of DOM is complex 
and contains a variety of metal-binding ligands (Aiken 
et al. 2011; Baken et al. 2011; Croué et al. 2003). However, 
due to its unique characteristics, not only the distribu-
tion of complexing sites on DOM and the chemical ratio 
between metal ions and complexing sites in complexing 
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reactions should be considered, but also the competition 
of other reactions should be considered (Pradhan et  al. 
2016; Unsworth et al. 2006).

Various studies have confirmed that DOM can form 
organometallic complexes with heavy metals (Lu and 
Allen 2002; Valipour et  al. 2018; Wang et  al. 2016c). 
For example, the humic substances can form organo-
metallic complexes with Pb, Cr, and Cd, so that metal 
ions can be isolated by adsorbents (Zhang et  al. 2019). 
Similarly, Zhang et  al.  (2012a) found that DOM can 
form complexes with Cu. Therefore, understanding the 

complexation of DOM with heavy metals, as well as the 
influence of external conditions, is more conducive to 
explaining the combination of DOM with metal ions 
released from metal nanomaterials.

Furthermore, DOM can block the release of metal 
ions by binding with them (Gunsolus et al. 2015; Meng 
et al. 2018; Mousavi et al. 2015; Wirth et al. 2012). For 
example, DOM can block the release of  Ag+ by binding 
with free  Ag+, thus reducing the toxicity of silver nan-
oparticles (Gunsolus et al. 2015; Mousavi et  al. 2015). 
Deeply, sulfhydryl and carboxyl functional groups 
in the DOM have strong complexation effects on the 

Fig. 7 DOM regulates nanomaterials-mediated toxic effects



Page 14 of 21Zheng et al. Carbon Research            (2022) 1:27 

 Zn2+ and thus affect the mobility and bioavailability of 
free  Zn2+ in water (Wang et al. 2016b).

DOM suppresses metal ions release Due to the struc-
tural characteristics of DOM, especially the molecular 
size and the concentrations of corresponding functional 
groups, it is helpful to study the inhibitive mechanisms 
of DOM to metal ions (Khoshnamvand et al. 2020; Vaca-
Paulín et al. 2006). For example, although HA and FA are 
similar in structure, the release of metal ions in the envi-
ronment would be different due to their different molec-
ular weights (Zhang et al. 2009).

Generally, DOM can reduce metal ions into metal 
nanoparticles under external conditions, thus reduc-
ing the release of metal ions (Dong et al. 2020; Yin et al. 
2012). Yin et  al.  (2012) have demonstrated that DOM 
can reduce  Ag+ and  Au3+ into metal nanoparticles 
under sunlight induction since the reduction is mediated 
by superoxide from photoirradiation of the phenol group 
in DOM. Importantly, the influence of environmental 
factors (e.g., temperature, ultrasound, and pH) on the 
release of metal ions by ENMs can not be ignored in the 
presence of DOM (Liu et  al. 2018a; Sheng et  al. 2010; 
Sun et al. 2012).

5.2.2  DOM hinders the interaction of ENMs and organisms
The adsorption of DOM on ENMs can enhance the elec-
tronegativity of ENMs, and then increase the steric hin-
drance and electrostatic repulsion between particles and 
organisms, thus preventing contact between ENMs and 
organisms. As a result, the toxicities of ENMs are reduced 
(Fig. 7B). DOM, as a biological protective agent, can miti-
gate the toxicity of nanoparticles by reducing their bioavail-
ability to micro-crustaceans and bacteria (Edgington et al. 
2010; Fabrega et  al. 2009; Zhao et  al. 2013). Interestingly, 
organisms can form a protective layer by secreting extracel-
lular polymeric substances (EPS) to eliminate the toxicity 
of CuO NPs (Dimkpa et  al. 2011). With similar chemical 
compositions, DOM can alleviate the toxicity of CuO NPs 
similar to EPS.

5.2.3  DOM consumes ROS generated by ENMs
As mentioned in Sect. 4.1.2, the toxicity of nanomaterials 
is mainly due to the production of ROS either by the nan-
oparticles themselves or by derived ions-induced intra-
cellular oxidative stress (Dalai et al. 2012; Goodwin et al. 
2015; Nel et al. 2006; Schlagenhauf et al. 2015). However, 
DOM was found to consume ROS produced by ENMs, 
thus reducing the toxicity of ENMs (Meng et  al. 2018; 
Zhang et al. 2018a; Zhao et al. 2019), as shown in Fig. 7C. 
For instance, the external addition of DOM could reduce 
Ag-induced oxidative stress on clam (Zhang et al. 2018a).

5.3  DOM enhances ecotoxicity of ENMs on organisms
Oppositely, several other studies have demonstrated 
that DOM could increase the ecotoxicity of ENMs to 
organisms. The regulated mechanisms involved are 
illustrated in Fig.  7D–G. Firstly, DOM could inhibit 
the aggregation of ENMs and increase their suspension 
performance (Fig.  7D), and then enhance the migra-
tion performance and bioavailability of ENMs (Furman 
et  al. 2013; Lamelas and Slaveykova 2007; Wang et  al. 
2011; Yang et  al. 2013). Generally, nanomaterials can 
exist and accumulate in organisms (Service RF, 2003). 
Specifically, ENMs can also be transmitted and ampli-
fied through the food chain, resulting in toxic effects on 
high trophic organisms.

Secondly, DOM can promote the release of metal ions 
from nanomaterials (Khoshnamvand et  al. 2020; Wang 
et  al. 2011), and then improve the toxicity of ENMs on 
aquatic organisms (Fig. 7E). Additionally, when the DOM 
concentration changes, it will affect the degradation of pol-
lutants by nanomaterials, and then change the inhibition 
of pollutants on the growth of organisms (Ye et al. 2018a; 
Zou et al. 2018), as shown in Fig. 7F. As an example, Wang 
et  al. (2011) found that HA at low concentrations could 
inhibit the removal of Cr(VI) by zero-valent iron (ZVI) 
nanoparticles.

Lastly, DOM can also be used as a source of ROS in the 
water environment (Cory et al. 2009; Latch and McNeill 
2006), as shown in Fig.  7G. In detail, DOM contains a 
large number of chromophores, which can absorb light 
energy to produce reactive substances (RS), including 
exciting HA (3HA*),  H2O2,1O2, and •OH (Huang et  al. 
2019a). For instance, HA-coated  TiO2 NPs are more toxic 
than uncoated  TiO2 NPs, indicating that increased oxi-
dative stress may be the cause of the increased mortality 
observed in the presence of HA (Yang et al. 2013).

6  Conclusions and perspectives
The unique physicochemical characteristics of ENMs 
make them play an excellent role in removing various envi-
ronmental pollutants, including EDCs, antibiotics, organic 
dyes, and heavy metals. Similarly, DOM has also been 
used in the adsorption or catalytic degradation of these 
environmental pollutants. Apart from participating in the 
removal of environmental pollutants themselves, DOM 
can also interact with ENMs to positively or negatively 
influence nanomaterials-mediated pollutant removal pro-
cesses. Particularly, DOM-modified nanocomposites are 
gradually applied for pollutant removal due to the unique 
properties of DOM and ENMs, including antibiotics and 
heavy metals.

Although ENMs possess higher efficiency in the 
removal of environmental pollutants, they would be 
inevitably released into environments, and then harm 
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ecosystem safety and human health. ENMs exert toxic 
effects on organisms by mechanical damage, metal ions 
release, and ROS-mediated oxidative stress. DOM as a 
typical environmental factor often participates in nano-
material-induced toxic effects. Most studies have shown 
that DOM could mitigate the biological toxicities of 
ENMs on organisms, whereas there are still a few findings 
that demonstrate that DOM could enhance ENMs’ eco-
toxicity. To sum up, DOM exerts multiple roles in nano-
materials-mediated pollutant removal and potential risks. 
However, there are still many problems worthy of further 
study.

i) Considering that the application of ENMs is a mat-
ter of balancing their rewards and risks, what we can 
do at present is to make full use of their advantages 
for environmental pollutants removal and to pre-
vent environmental hazards. Specifically, early-stage 
research on the potential risks to environmental 
safety and human health should be an essential task 
now and in the future.

ii) The antagonistic interactions between ENMs and 
DOM are important and worth further investiga-
tion. Presently, studies on the interaction between 
DOM and ENMs are mainly on representative 
surrogates of DOM, such as HA and FA, but the 
interactions with naturally occurring DOM are 
still limited. So, how will the toxic effects of ENMs 
change when they interact with different types and 
origins of DOM?

iii) Understanding the characteristics of different 
functional groups of DOM is of great significance 
for exploring the interactions between DOM and 
ENMs. Actually, the chemical structure and com-
position of DOM are complex, whereas available 
characterization methods for DOM analysis are 
still limited.

iv) The concentrations of ENMs used in most previous 
studies often exceed the concentrations anticipated 
under realistic conditions. Thus, upcoming research 
should attempt to simulate more representative con-
centrations of ENMs in the environment while devel-
oping techniques for their detection.

v) Developing highly effective DOM-modified nano-
composites for the removal of all kinds of pollutants 
along with the associated mechanisms is an impor-
tant and urgent task.

vi) Since DOM especially anthropogenic sources are gradu-
ally regarded as a new type ofenvironmental contami-
nant, research on the environmental transformation and 
removal by nanomaterialsneeds to be further studied.

vii) ENMs and anthropogenic DOM are released 
into the ecosystem and interact with each other, 

ultimately threatening ecological safety and human 
health, the comprehensive assessment therefore 
should be conducted in real environments or at least 
using well-controlled experiments to mimic realistic 
environmental conditions as closely as possible.
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