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Thermal stabilization effect and oxygen 
replacement reaction together regulate N/S 
co‑doped microporous carbon synthesis
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Abstract 

Potassium thiocyanate (KSCN) activation showed great potential to prepare N/S co-doped microporous carbon for 
environmental remediation, however, predictable preparation for targeted application was a challenge. This study 
suggested that thermal stabilization effect and oxygen replacement reaction during KSCN activation could together 
regulate pore formation and N/S co-doping. Results showed that carbonaceous precursor with high thermal stability 
(expressed by high R50 index) could support stable carbon matrix for KSCN pore-forming. Meanwhile, carbonaceous 
precursor with high polarity (expressed by high O/C) was more prone to occur oxygen replacement reaction, promot-
ing N/S co-doping. N/S co-doped microporous carbon with high micropore surface area can promote BPA adsorption 
via the pore-filling mechanism. However, reaction induced by S contained groups can enhance heavy metal (Pb2+) 
adsorption while prepared material with S doping. In summary, a carbonaceous precursor with high R50 index was 
conducive to preparing carbon material for organic pollutant adsorption, while the carbonaceous precursor with high 
O/C was suit to fabricate carbon material with high adsorption capacity for Pb2+ immobilization. This study provided 
important insights into the directional synthesis of optimized N/S doped microporous carbon.

Highlights 

1) Thermal stabilization effect in KSCN activation regular micropore of carbon material.

2) Oxygen replacement in KSCN activation regular N/S doping of carbon material.

3) High R50 precursor was suit to prepare material for organic pollutant adsorption.

4) High O/C precursor was suit to prepare carbon material for Pb2+ immobilization.
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1  Introduction
At present, nitrogen and sulfur doped microporous car-
bons are known as very effective adsorbents in the field 
of environmental pollution control due to their devel-
oped porosity and variable surface chemical character-
istics (Gao et al. 2015; Sun et al. 2020; Tian et al. 2016a, 
b). According to previous studies, N-doping enhanced 
the electronic properties and improved the hydropho-
bic characteristics of carbon materials, while S-doping 
induced high chemical reactivity (Kasera et  al. 2022; 
Liang et  al. 2012). The pore filling of microporous 
structure and the complexation of N functional groups 
contribute to the immobilization of organic com-
pounds on carbon materials (Ahamad et  al. 2019; Luo 
et al. 2019). For example, Luo et al. fabricated N-doped 
carbon with high BET surface area (3046 m2/g) and N 
content (10.8%), which exhibited high BPA adsorp-
tion capacity (909 mg/g) (Luo et  al. 2019). In addition, 
effective S are essential for improving the heavy metal 
adsorption due to the complexation. Jia et al. reported 

that N/S-co-doped microporous carbon with high S 
content (10.9%) could effectively remove Pb2+ from 
wastewater (Jia et al. 2021).

In recent years, the preparation methods of N/S 
doped carbon materials were mainly divided into two 
categories: (i) the organic precursors rich in N and S 
were directly pyrolyzed without activator (Gao et  al. 
2015; Ma et al. 2019; Zhou et al. 2016) and (ii) the pore 
forming agent was combined with organic dopants 
(such as urea, melamine or thiourea) to prepare carbon 
materials (Tan et  al. 2018; Tian et  al. 2016a, b). How-
ever, these two methods brought some disadvantages, 
such as low doping efficiency of heteroatoms and the 
need to add excessive dopants, resulting in high invest-
ment and energy consumption. Our recent research 
found that potassium thiocyanate (KSCN) could be 
used as both porogen and N/S dopant in the prepara-
tion of N/S co-doped microporous carbon materials 
(Jia et  al. 2021). Research results confirmed that KSCN 
realized pore formation by activation reaction and 
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efficiency N/S co-doping by oxygen replacement reaction 
(2KSCN + CxHyOz → K2SO4 + Cx + 2HyOz-4N2S).

At present, the synthesis approaches of carbon mate-
rials with target properties depended on trial and error, 
preparing predictable material was a challenge. Bio-
mass and its derived carbon materials were considered 
as renewable precursors of carbon materials because of 
their abundant content and sustainability in the environ-
ment (Hu et al. 2020; Maliutina et al. 2021; Xiong et al. 
2021). Previous studies had proposed that carbonaceous 
precursors properties strongly affected the as-prepared 
carbon materials physicochemical properties, which 
would finally affect its application performance (Adeleye 
et al. 2021; Alsewaileh et al. 2019; Lu et al. 2019; Teong 
et  al. 2021). Therefore, it is necessary to further study 
the influence mechanism of carbonaceous precursor on 
the structure and adsorption properties of N/S doped 
microporous carbon, so as to directly synthesize carbon 
materials with specific applications.

For this purpose, N/S co-doped microporous carbons 
were prepared from different carbonaceous precursors 
by KSCN activation method and used for BPA and Pb2+ 
adsorption. The influence mechanism of carbonaceous 
precursors properties (including thermal stability and 
polarity) on the properties (including surface area den-
sity, microporous surface area and N/S doping amount) 
of N/S co-doped microporous carbon was explored. 
The adsorption mechanism of BPA and Pb2+ on N/S co-
doped microporous carbon was also discussed. Finally, 
based on the relationship between carbonaceous precur-
sors properties and the adsorption capacity of N/S doped 
microporous carbon, the adaptability of raw materials to 
the target application was judged.

2 � Materials and methods
2.1 � Carbonaceous precursor for KSCN activation
Cellulose (CL), walnut shell (WS), sawdust (SD) and 
sawdust derived biochar with different thermal stability 
abilities and elemental compositions were used for KSCN 
activation. Walnut shell and sawdust were collected from 
rural areas in Shanghai. Cellulose powder and other rea-
gents were purchased from Shanghai Aladdin Biochemi-
cal Technology Co., Ltd. Pyrolysis derived biochar was 
prepared in a tube furnace at a heating rate of 10 °C/min 
to 300 °C with a N2 atmosphere. Air flow carbonization 
derived biochar was synthesized by heating to 300 °C or 
400 °C in a N2 atmosphere, then exposed to a flow of air 
for 10  min, after which the sample was cooled under a 
flow of nitrogen gas. Sawdust derived biochar prepared 
in this way was named N-X and A-X, where X repre-
sented the reaction temperature, N represented the sam-
ple activated in a nitrogen atmosphere and A represented 
the sample activated in air atmosphere.

Hydrothermal carbonization (HTC) derived biochar 
was prepared at a 1: 20 weight ratio between sawdust 
and deionized water in an autoclave with 180 °C or 300 °C 
heating temperature for 2 h. After the reaction, the prod-
ucts were washed with deionized water several times and 
dried overnight at 80 °C. The prepared hydrochar was 
represented by H-X, and X was the HTC experimental 
temperature (°C).

2.2 � Preparation N/S co‑doped microporous carbon 
materials by KSCN activation

Cellulose, walnut shell, sawdust and sawdust derived bio-
char with various properties were chemically activated 
by KSCN to prepare N/S doped microporous carbon. 
The mixture of carbonaceous precursor and KSCN at 
1:1 weight ratio was activated at 700 °C for 90 min under 
100 mL/min N2 flow with a 10 °C/min heating rate in a 
tube furnace. The carbonized samples were then washed 
by 2 M HCl and deionized water to nature pH. The sam-
ples were finally being dried to constant weight in an 
oven at 100 °C.

2.3 � Characterizations of carbonaceous precursor and N/S 
co‑doped microporous carbon

Elemental and thermogravimetric analyses were used 
to characterize the carbonaceous precursor. Elemental 
composition (C, H, N, S) was analyzed with an elemen-
tal analyzer (Vario EL III). The ash content was measured 
by heating the sample in an air atmosphere at 600 °C for 
2 h. Specifically, the O/C molar ratio was used to esti-
mate the polarity of carbonaceous precursors. In order to 
quantitatively calculate the thermal stability of carbona-
ceous precursor, TG analysis in air atmosphere was car-
ried out with heating from 30 ~ 800 °C at a rate of 10 °C/
min by a thermogravimetric analyzer (SDT Q600). The 
thermal stability of carbonaceous precursor indicated by 
R50 index was quantitatively calculated as follows (Harvey 
et al. 2012),

where T50, precursor, and T50, graphite were the temperature 
values corresponding to 50 % weight loss by oxidation 
and volatilization of carbonaceous precursor and graph-
ite, respectively. The values of T50, precursor and T50, graphite 
were obtained directly from TG thermograms corrected 
for water and ash content. A more detailed account for 
the calculation of R50 was given in previous literature by 
Harvey et al. (2012).

The characterization of the N/S co-doped micropo-
rous carbon was done using N2 adsorption/desorption, 
elemental analyzer, powder X-ray diffraction (XRD), 

R50 =
T50, precursor

T50,graphite
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X-ray photoelectron spectroscopy (XPS) and Raman 
spectra. The surface area and porosity of N/S doped car-
bons were conducted on a Quantachrome Autosorb iQ2 
instrument with N2 adsorption/desorption isotherms 
at − 196 °C. The specific surface area (SBET) and total 
pore volume (VT) were determined by the Brunauer-
Emmett-Teller (BET) equation. Micropore surface area 
(Smic  < 2 nm) was calculated via the t-plot analysis. Pore 
size distribution was evaluated via density functional 
theory (DFT) method (Zhu et al. 2015). The crystal struc-
ture of unwashed activated samples was performed by 
powder X-ray diffraction (XRD) with Cu Kα radiation 
at 40 kV, 40 mA in the 2θ range of 10–80° (X’ Pert PRO, 
Nalytical, Netherlands). Raman spectra were carried 
out using a XploRA Raman spectrometer with a 532 nm 
laser source, and the parameters were fitted five distinc-
tive Gaussian peaks, corresponding to G (~ 1580 cm− 1), 
D (~ 1350 cm− 1), I (~ 1220 cm− 1), D′ (~ 1620 cm− 1) and 
D″ (~ 1490 cm− 1) bands. The O, N and S-containing 
functional groups of activated samples were determined 
by X-ray photoelectron spectroscopy (XPS) technique 
(Thermo ESCALAB 250 XI). In detail, the O 1 s spectra 
(including C = O, C-O-C and COOH), the N 1 s spectra 
(including pyridinic N, pyrrolic N, quaternary N, and 
oxidized N) and S 2p spectra (including C-SO2, C-SO3, 
C-S-C 2p1/2, and C-S-C 2p3/2) in the activated samples 
were fitted by the deconvolution method. The binding 
energies of high resolutions spectra were calibrated at C 
1 s of 284.6 eV.

2.4 � Adsorption experiments
Organic pollutant (bisphenol A, BPA) and heavy metal 
(Pb2+) were selected to explore the water purifica-
tion ability of N/S doped microporous carbon. For BPA 
adsorption isotherms, 3 mg material was dispersed in 
30 mL BPA solution with different initial concentrations 
(2 ~ 200 mg/L). The mixture was shaken at 150 rpm for 
12 h until adsorption equilibrium. The supernatant was 
filtered using a 0.45 μm polytetrafluoroethylene (PTFE) 
membrane filter to analyze the BPA concentration. The 
filtrate was measured by a UV–visible spectrometer 
(CARY 300, Agilent, USA) at 280 nm absorbance. In addi-
tion, the adsorption kinetics was achieved at 2, 5, 10, 30, 
60, 120, 240, 480 min in the concentration of 150 mg/L 
BPA and 100 mg/L N/S co-doped microporous carbon at 
25 °C. The adsorption isotherms were fitted to the Lang-
muir model and the adsorption kinetics were interpreted 
by the pseudo-second-order model, as detailed in our 
previous work (Zhu et al. 2014a, b).

In Pb2+ adsorption, 20 mg material was added in 
40 mL Pb2+ solution with different initial concentra-
tions (20 ~ 600 mg/L). 10 mM MES solution was used to 
stabilize the solution pH at about 5. The solution was 

continuously stirred at 150 rpm for 12 h to reach adsorp-
tion equilibrium and then the filtrates were measured 
by using Inductively Coupled Plasma-Atomic Emission 
Spectrometry (ICP-AES, Hitachi P4010) to determine the 
resultant Pb2+ concentration. The transmission electron 
microscopy (TEM, Tecnai G2 F20 S-Twin, FEI) and X-ray 
photoelectron spectroscopy (XPS, Thermo ESCALAB 
250 XI) were used to characterize the Pb-adsorbed N/S 
co-doped microporous carbon to explore the adsorption 
mechanism.

3 � Results and discussion
3.1 � Thermal stability and polarity of carbonaceous 

precursor
Pyrolysis, air flow carbonization and hydrothermal car-
bonization were selected for carbonizing the raw sawdust 
into biochar, and the sawdust derived biochar together 
with cellulose, walnut shell and sawdust were used as 
activated carbonaceous precursors. The aim was to 
achieve carbonaceous precursors with different thermal 
stability (expressed by R50 index) and polarity (indicated 
by O/C). Based on previous study (Hirst et al. 2018; Zhu 
et  al. 2015), pyrolysis, air flow carbonization and HTC 
increased the thermal stability ability of samples but 
reduced O/C. Moreover, the changes increased with the 
rise in reaction temperature.

As shown in Table 1, the R50 index was in a wide range 
of 0.3 ~ 0.53, and the value of A-300 (from air flow car-
bonization at 300 °C) was the largest, indicating that it 
had strongest thermal stability, while cellulose had weak-
est. These conclusions showed that the biochar derived 
from high reaction temperature had stronger ther-
mal resistance. In addition, compared with the O/C of 
untreated precursors, the O/C of carbonized precursors 
decreased. The A-400 with the lowest O/C was derived 
from air flow carbonization and high reaction tempera-
ture, consistent with the conclusion that the carboniza-
tion process reduced the O content and increased the C 
content of carbon materials (Balahmar et al. 2017; Balah-
mar and Mokaya 2019; Hirst et al. 2018; Zhu et al. 2015). 
In addition, all carbonaceous precursors contain almost 
little N/S element (Table S1).

3.2 � Porosity and doping evolution of N/S doped 
microporous carbon

Table  2 provided the yields, pore structure characteris-
tics and element composition of N/S doped micropo-
rous carbon. As expected, N/S co-doped microporous 
carbon had high BET surface area (832 ~ 1532 m2/g) and 
pore volume (0.46 ~ 1.21 cm3/g). As shown in Fig. S1, the 
N2 adsorption isotherm of all samples exhibited type I, 
revealing the presence of a large number of microporous 
structures. And the pore size distribution of N/S doped 
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microporous carbons was mainly about 1 ~ 2 nm, which 
indicated that the samples were microporous materials. 
Based on the previous study (Altwala and Mokaya 2020), 
the surface area density (the ratio between BET surface 
area and pore volume) was a parameter that defined 
porosity and measure the sensitivity of carbonaceous 
substances to activation. The high surface area density 
of porous materials was usually produced by the prepon-
derance of micropores. Therefore, the higher the surface 
area density, the more micropores of carbon materi-
als. As shown in Table 2, the surface area density of N/S 
co-doped microporous carbon was changed within the 
range from 967 to 2187 m2/cm3. The results of elemen-
tal analysis showed that the prepared material possessed 
similar N (4.66 ~ 5.28%) but various S (9.43 ~ 14.44%) 
doping ability.

3.2.1 � Thermal stabilization effect criterion
The literature had well documented that the thermal 
stability of carbonaceous precursors affected the for-
mation of pore structure in carbon materials (Harvey 
et  al. 2012; Zhu et  al. 2015). High surface area den-
sity indicated that more micropores in N/S co-doped 
microporous carbon materials. The positive linear 
correlation between the surface area density of N/S 

co-doped microporous carbon and R50 index of the car-
bonaceous precursors (R2 = 0.89, Fig.  1a) proved that 
the carbonaceous precursor with high R50 was condu-
cive to the formation of developed micropores. This 
was because that unstable carbonaceous precursor was 
easy to volatilize and lack of effective carbon matrix for 
pore-forming. The carbonaceous precursor with high 
R50 occurred intense thermal stabilization effect, more 
carbon matrix was better activated by KSCN to form 
micropores. High graphitization degree corresponded 
to high activation degree. The increased graphitization 
degree (expressed in reduced ID/IG value) of N/S co-
doped microporous carbon with the increased R50 fur-
ther proved that carbonaceous precursors with high R50 
were easier to be activated (Fig. 2b and S2a). In a word, 
the different degrees of thermal stabilization effect 
occurred during the activation of the carbonaceous 
precursor by KSCN regulated the pore structure in N/S 
doped microporous carbon. The stronger the thermal 
stabilization effect, the more micropores in N/S doped 
microporous carbon. In addition, the positive linear 
correlation between the microporous surface area of 
N/S co-doped microporous carbon and R50 index of the 
carbonaceous precursors (R2 = 0.72) indicated that the 
N/S co-doped microporous carbon materials produced 

Table 1  Ash contents, elemental compositions, and R50 index of different carbonaceous precursors

1 Mole ratio of oxygen to carbon
a Cellulose, bWalnut shell, cSawdust, dSawdust-derived hydrochar prepared at 180 °C, eSawdust-derived biochar prepared at 300 °C in N2 atmosphere, fSawdust-derived 
biochar prepared at 300 °C in air atmosphere and gSawdust-derived hydrochar prepared at 300 °C

Sample Ash (%) C (%) H (%) O (%) R50 O/C1

CLa 0.00 44.4 6.17 49.4 0.30 1.11

WSb 1.67 48.2 4.69 45.2 0.37 0.70

SDc 0.62 50.0 7.52 41.9 0.33 0.63

H-180d 2.58 51.5 6.45 39.5 0.34 0.57

N-300e 1.76 59.9 4.00 34.3 0.50 0.43

A-300f 1.29 62.3 5.77 30.6 0.53 0.37

H-300g 0.85 68.9 5.10 24.9 0.50 0.27

Table 2  Elemental compositions and textural properties of different N/S doped microporous carbon

a Code name of different N/S doping microporous carbon, bBET surface area, ctotal pore volume and dsurface area density (BET surface area / total pore volume) and 
emicropore surface area, the values in parenthesis was the Smic/SBET and the unit was %

Sample IDa Yield (%) C (%) O (%) N (%) S (%) SBET
b (m2/g) Vt

c (cm3/g) SADd (m2/cm3) Smic
e (m2/g)

NSC-CL A 30 58.9 19.4 5.28 14.4 832 0.86 967 654 (79)

NSC-WS B 39 66.7 12.7 5.25 13.0 1247 0.84 1485 1051 (84)

NSC-SD C 37 64.0 16.4 4.87 13.2 1532 1.21 1266 1068 (70)

NSC-H-180 D 44 65.1 15.8 4.88 12.4 1422 1.09 1305 1095 (77)

NSC-N-300 E 58 63.7 19.0 4.66 11.1 1495 0.78 1907 1330 (89)

NSC-A-300 F 60 69.9 12.5 4.97 10.8 1507 0.78 1932 1293 (86)

NSC-H-300 G 84 67.7 15.7 5.12 9.98 1465 0.67 2187 1354 (92)
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Fig. 1  a Linear correlation between the R50 index of carbonaceous precursors and the surface area density (defined as the ratio between total 
surface area and total pore volume) of N/S co-doped microporous carbon and b Raman spectrum of N/S co-doped microporous carbon was fitted 
using the five Gaussian peaks (color lines) (A: NSC-CL, B: NSC-WS, C: NSC-SD, D: NSC-H-180, E: NSC-N-300, F: NSC-A-300, G: NSC-H-300)

Fig. 2  a XRD patterns of the unwashed N/S doped microporous carbon, b S2p spectra of N/S co-doped microporous carbon (S1: C-S-C 2p3/2, 
S2: C-S-C 2p1/2, S3: C-SO2 S4: C-SO3) and c linear correlation between the O/C of carbonaceous precursors and the S content of N/S co-doped 
microporous carbon (A: NSC-CL, B: NSC-WS, C: NSC-SD, D: NSC-H-180, E: NSC-N-300, F: NSC-A-300, G: NSC-H-300)
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by carbonaceous precursors with high thermal stability 
had high micropore surface area (Fig. S2b).

3.2.2 � Oxygen replacement reaction criterion
The existence of K2SO4 in unwashed N/S co-doped 
microporous carbon indicated that oxygen replacement 
reaction occurred during the carbonaceous precursor 
activated by KSCN (Fig.  2a). As a result, O in carbona-
ceous precursor can be substituted by S and N heter-
oatoms from KSCN, the generated S and N can be doped 
into the carbon materials. Three peaks were observed in 
representative N/S co-doped microporous carbon (NSC-
CL) by deconvolution of O1s spectra, including C=O 
(531.3 eV), C-O-C (532.3 eV) and COOH (533.5 eV) (Fig. 
S3). And Four peaks, including pyridinic N, pyrrolic N, 
quaternary N, and oxidized N, were observed in the N/S 
doped microporous carbons via deconvolution of N 1 s 
spectra (Fig. S4). The deconvolution spectrum of S 2p 
showed that O can complex with S to form sulfur-oxygen 
functional groups (C-SO2 and C-SO3, Fig. 2b). The above 
results indicated that N was mainly doped on the carbon 
skeleton, while S could complex with O to improve the 
stability. Therefore, it should be noted that N and S had 
different sensitivities to heating, S was more stable dur-
ing the reaction, while N would further occurred ther-
mally decompose. This lead the contents of N and S in 
the carbon showed different trends, and the N contents 
were similar in various carbon precursors. The strong 
positive linear relationship observed between the S con-
tent of N/S doped microporous carbons and O/C of 
carbonaceous precursors (R2  = 0.90, Fig.  2c) indicated 
that carbonaceous precursors with high O/C were more 
prone to occur oxygen replacement reaction in the KSCN 
activation. Meanwhile, the oxygen replacement reaction 
could adjust the S content in carbon materials, so the 
higher the content of S in N/S co-doped microporous 

carbon materials prepared from carbon precursor with 
high polarity.

As described above, the thermal stabilization effect and 
oxygen replacement reaction could together regulate the 
synthesis of N/S doped microporous carbon, especially 
affecting the surface area density, micropore surface 
area and S doping ability of carbon materials. Carefully 
selecting the carbonaceous precursors and clarifying the 
mechanism of their properties affecting the properties of 
N/S doped carbon were conducive to the directional syn-
thesis of carbon materials with target functions.

3.3 � N/S co‑doped microporous carbon for water 
purification

BPA and Pb2+ were selected as typical pollutants to 
explore the water purification ability of N/S co-doped 
microporous carbon materials. The adsorption kinetic 
and isotherms experiments of BPA for N/S co-doped 
microporous carbon in aqueous solution were demon-
strated in Fig. S5 and the calculated parameters were 
shown in Table S2. Results indicated that the adsorption 
equilibrium time was about 60 min (Fig. S5a). The results 
of isothermal adsorption showed that the maximum 
adsorption capacity of N/S co-doped microporous car-
bon materials for BPA reached 714 mg/g, indicating that 
N/S co-doped microporous carbon had excellent removal 
ability for BPA in aqueous solution.

Figure S6 showed that the qBET of N/S co-doped 
microporous carbon materials was higher than that of 
porous carbon, indicating that N doping could improve 
the adsorption performance. Due to the similar content 
of N in prepared carbon materials, we did not conduct 
further correlation analysis of N. As shown in Fig. 3a, a 
positive correlation (R2 = 0.97) between micropore sur-
face area and BPA maximum adsorption capacity indi-
cated that materials with high micropore surface area 

Fig. 3  a Linear correlation between BPA-qm and micropore surface area of N/S co-doped microporous carbon and b linear correlation between 
R50 of carbonaceous precursors and BPA-qm of N/S co-doped microporous carbon (A: NSC-CL, B: NSC-WS, C: NSC-SD, D: NSC-H-180, E: NSC-N-300, F: 
NSC-A-300, G: NSC-H-300)
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usually correspond to high adsorption performance, 
which may be dependent on the pore-fitting mechanism 
(Luo et  al. 2019). Further, a positive correlation can be 
observed between the R50 of carbonaceous precursor and 
the adsorption performance of N/S doping microporous 
carbon materials for BPA (Fig.  3b). This result showed 
that the carbonaceous precursor with high R50 was suit-
able for the preparation of N/S co-doped microporous 
carbon materials with strong adsorption capacity for 
BPA.

Adsorption isotherm experiment results of Pb2+ onto 
prepared materials were shown in Fig. S7a. Using the 
Langmuir model to fit the adsorption isotherm, it can 
be seen that the maximum adsorption capacity of N/S 
co-doped microporous carbon for Pb2+ varies from 
286 mg/g to 357 mg/g (Table S3). Interestingly, a posi-
tive correlation (R2  = 0.78) was observed between S 
content of N/S co-doped microporous carbon and maxi-
mum adsorption capacity for Pb2+ (Fig. 4a). Meanwhile, 
the N content of N/S co-doped microporous carbon 
prepared from different carbonaceous precursors was 
stable. It was speculated that Pb2+ was fixed by complex-
ing with S-containing functional groups in N/S doped 

microporous carbon. The uniform changes in the distri-
bution and mass transfer of S and Pb, the non-uniform 
changes of N and Pb showed by TEM-EDS and the exist-
ence of PbS showed by XPS proved the above conclu-
sion (Figs.  4b and c). In addition, as shown in Fig. S8, 
the adsorption capacity of N/S co-doped microporous 
carbon for Pb2+ was much greater than that of porous 
carbon without S doped, indicating that the S functional 
group rather than oxygen-containing functional group 
played promoting role in Pb2+ adsorption. According to 
previous studies, N/S doped microporous carbons exhib-
ited stronger adsorption efficiency for Pb2+ than porous 
carbon in water and its adsorption equilibrium time was 
only 60 min (Jia et al. 2021). Therefore, it was concluded 
that the excellent adsorption capacity of Pb2+ on the N/S 
co-doped microporous carbon might be attributed to the 
the S containing functional groups toward Pb2+. Further, 
a positive correlation was observed between O/C and 
Pb2+-qm (Fig. 4d), it revealed that carbonaceous precur-
sor with high O/C was suitable for the preparation of N/S 
co-doped microporous carbon with strong adsorption 
capacity for Pb2+.

Fig. 4  a Linear correlation between Pb2+ maximum adsorption capacity (Pb2+-qm) and S content of N/S doped microporous carbon, b 
representative TEM-EDS line profiles of elements in the selected NSC-CL (derived from cellulose activated by KSCN) after Pb2+ adsorption, c XPS 
profiles of PbS in the selected NSC-CL after Pb2+ adsorption, A: PbS (Pb 4f7/2), B: PbSO3 (Pb 4f7/2), C: PbS (Pb 4f5/2), D: PbSO3 (Pb 4f5/2) and d linear 
correlation between O/C of carbonaceous precursors and Pb2+ maximum adsorption capacity (Pb2+-qm) of N/S co-doped microporous carbon (A: 
NSC-CL, B: NSC-WS, C: NSC-SD, D: NSC-H-180, E: NSC-N-300, F: NSC-A-300, G: NSC-H-300)
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According to the above discussion, the developed 
microporous structure and high N doping in N/S co-
doped microporous carbon were conducive to adsorb 
BPA, while the high S doping promoted Pb2+ adsorption. 
Meanwhile, the thermal stability and polarity of carbona-
ceous precursor control the microporous structure and 
N/S doping content of N/S doped microporous carbon, 
respectively. Therefore, it can be further concluded that 
the adsorption capacity of N/S co-doped microporous 
carbon for BPA and Pb2+ can be predicted directly by the 
properties of carbonaceous precursor. The carbonaceous 
precursor with high thermal stability was suitable for 
preparing N/S co-doped microporous carbon with strong 
adsorption capacity for BPA, and the carbonaceous pre-
cursor with high O/C was suitable for preparing N/S 
co-doped microporous carbon with strong adsorption 
capacity for Pb2+.

4 � Conclusion
In the present study, we found that the thermal stabili-
zation effect and oxygen replacement reaction during 
the activation of carbonaceous precursor by KSCN sig-
nificantly regulated the microporosity (express by surface 
area density and micropore surface area) and N/S dop-
ing ability of N/S doped microporous carbon. Results 
confirmed that the carbonaceous precursor with high R50 
index occurred strong thermal stabilization effect during 
activated by KSCN, which produced more micropores. 
The carbonaceous precursor with high O/C occurred 
strong oxygen replacement reaction in the process of 
being activated by KSCN, which increased the S con-
tent. Further, high micropore surface area was essen-
tial for improving the BPA adsorption ability and high 
S doping was essential for improving the Pb2+ adsorp-
tion ability. In summary, the carbon material suitable for 
organic pollutants adsorption derived from the carbon 
precursor with high R50 index, while the carbon material 
with high adsorption capacity for Pb2+ derived from the 
carbon precursor with high O/C. Our results provided 
new insights into the directional, predictable and con-
trollable activation of carbon materials, and provided a 
new way to solve the challenges of microporous material 
development.
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