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Abstract
One of the main reasons why machine learning (ML) methods are not yet widely used in productive business processes is 
the lack of confidence in the results of an ML model. To improve the situation, interpretability methods may be used, which 
provide insight into the internal structure of an ML model, and criteria, based on which the model makes a certain prediction. 
This paper aims to consider the state of the art in interpretability methods and apply the selected methods to an industrial 
use case. Two methods, called LIME and SHAP, were selected from the literature and next implemented in the use case for 
image classification using a convolutional neural network. The research methodology consists of three parts, the first is the 
literature analysis, followed by the practical implementation of an ML model for image classification and the subsequent 
application of the interpretability methods, and the third part is a multi-criteria comparison of selected LIME and SHAP 
methods. This work enables companies to select the most effective interpretability method according to their use case and 
also to increase companies’ motivation for using ML.

Keywords Machine learning · Interpretability methods · LIME · SHAP · Image classification · Convolutional neural 
networks · Multi-criteria analysis · Industry

1 Introduction

Industry 4.0 and Smart Factory have become common terms 
in a modern business environment. There are numerous pro-
jects and initiatives to push digitalization in the industrial 
sector. Data are the driver for Industry 4.0, and in the last 
years, enormous amounts of data were generated and used 
for analyses in many industrial fields. Companies need to 
respond to the digitalisation trend to stay competitive in their 
business areas and gain a more automized and cost-efficient 
production process, leading to an economical advantage [1].

In the last few years, methods of machine learning (ML) 
have become increasingly important for industry digitaliza-
tion. The application of ML is getting assumed as a must-
have in every smart factory. ML approaches make human 
work less time-consuming, more efficient, and often provide 

stabler results [2]. Being successfully implemented, ML 
models can fully automize industrial processes, previously 
done by humans.

ML in image classification is a subset of artificial intel-
ligence algorithms, which aims to make decisions based on 
a developed model [3]. An ML model is obtained through 
studying, engineering, modelling, and training with data 
according to the use case. An image classification model 
can make predictions and help in various industrial settings, 
for example, in digital quality control. Accordingly, the input 
data quality and the ML model’s structure are crucial ele-
ments for image classification [2].

Due to the rising application of ML in image classification, 
several challenges came up. One of these challenges is the 
lack of transparency and interpretability of ML models and 
their prediction outcomes. Most of the existing models are 
“black boxes” that predict an outcome in a way, that humans 
do not understand the internal mechanisms of predictions. 
Understanding the behaviour of the ML model is important 
to give trust in the results and the ML approach itself. There-
fore, explainable and interpretable ML models have become 
progressively important [4]. Interpretable ML models provide 
insights into how the model works and why it produces the 
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results. There exist several methods concerning how to achieve 
those interpretations and how to understand them [5]. One of 
the most common is the Local Interpretable Model-agnostic 
Explanations (LIME) [6] and Shapley Additive Explanations 
(SHAP) [7] methods.

This research develops an approach to give interpretations of 
the predictions for image classification models with LIME and 
SHAP methods. The methodology includes both theoretical (lit-
erature analysis and multicriteria evaluation) and experimental 
stages. The experimental setup consisted of three parts. The first 
step was a collection of image data for training and validating 
the model. The second step contained the design and training 
of an ML model to get prediction results. This was performed 
iteratively through alternating model parameters, adapting image 
data, and reducing environmental influences. Then, the result 
was validated and verified. The last part included interpreting 
the final model predictions to explain why the model gave an 
accurate prediction and to understand the mapping between the 
model structure and a prediction result. Therefore, the following 
research questions are addressed:

What are the current approaches to support interpret-
ability in ML models for image classification?

To answer this question, literature analysis and multicriteria 
comparison of the existing methods are done:

What is the most effective interpretability method for a 
specific use case?

To answer this question, developed ML models were 
explored with selected interpretability methods. Their predic-
tions were examined to compare the methods.

This paper is structured as follows. Section 1 introduces 
the topic and formulates the problem statement and research 
questions.

Section 2 gives the machine learning fundamentals. It intro-
duces the principles of ML, focusing on convolutional neural 
networks (CNNs) and image classification.

Section 3 provides a theoretical overview of interpretability 
in ML models, focusing on the LIME and SHAP methods.

Section 4 describes the implementation part. The methodol-
ogy is discussed in detail, and the results are presented.

Section 5 is the comparison and evaluation section. The 
interpretability methods are compared and evaluated based on 
the literature research chosen metrics.

Section 6 provides a conclusion that summarizes the out-
come of the research and gives an outlook on future work.

2  Machine learning fundamentals

The ML approach consists in building a model based on 
a given data set, to make predictions without an explicitly 
programmed algorithm.

ML can help with a variety of different problems and has 
a lot of practical applications [8].

Classification algorithms solve the task of assigning a 
category to an item. Examples of that are classifying docu-
ments and assigning those to the categories, such as politics, 
sports, weather, etc., or classifying images and assigning 
those to the categories, such as a cat, a dog, or a bird. In 
some cases, the approach goes outside of discrete classes to 
predict real numbers with regression algorithms (e.g., stock 
values) [8, 9].

2.1  Convolutional neural networks

CNNs are deep Artificial Neural Networks (ANNs) that are 
trained with many layers [10]. The training process belongs 
to the category of supervised ML methods. They are mostly 
used for applications in computer vision, object recognition, 
biological computation, and image classification [11, 12]. 
Explanation of CNN starts with an introduction to ANN, 
proceeds with explaining different layers of a CNN, and fin-
ishes using CNNs for image classification.

2.1.1  Artificial neural networks

ANNs were inspired by the real-world biological neural net-
works in the brain [13]. The neuron has so-called dendrites 
which act as the signal transmitters to the cell body. The cell 
body processes these signals, and the axon is responsible for 
sending these signals to other neurons. To make this pos-
sible, the axon terminals are connected to the dendrites of 
another neuron. An NN is made up of one-to-many neurons 
which are in communication with each other. What one neu-
ron puts out can be used as input by another neuron [14].

An ANN can be compared to a directed graph, where the 
nodes are the neurons, and the edges are the links between 
the neurons. The neuron gets a weighted sum of the out-
puts of neurons as input [15]. The perceptron is the simplest 
ANN, because it consists of one single neuron. It takes an 
input vector, resulting in a weighted sum, and applies a step 
function to the sum for the output.

The algorithm of an ANN uses mini-batches to work 
through the training data sets. Each time, it goes through a 
batch, a so-called epoch is finished. The mini-batch starts at 
the input layer, where it enters the network. After that, it is 
passed to the first hidden layer, where the output of all neu-
rons is calculated. This output is then passed to the next layer 
and this process continues until all layers are done and the 
output layer is reached. The next step of the algorithm is to 
recognize output errors, which are identified through a loss 
function that compares the required and the actual output. 
To further investigate the errors, every output connection is 



Industrial Artificial Intelligence            (2023) 1:10  

1 3

Page 3 of 15    10 

measured regarding how much it contributed to the made 
error. Thus, for every epoch, the algorithm makes a predic-
tion and measures its error. After this, the algorithm goes 
through all layers backwards to measure the contribution of 
each connection to the made error. In addition, based on that, 
it adapts the connection weights which helps the network to 
produce fewer errors in the future [13].

2.1.2  CNN layers

The CNNs are structured in layers. The first layer is con-
volutional, which focuses on detecting features. Those fea-
tures can be lines, edges, colour, or other visual components. 
The filters detect the features, and the more filters exist in 
the layer; the more features can be determined. The filter is 
specified by a hyper-parameter that controls its width and 
height. Furthermore, there are weights, defined between the 
convolutional layer and the previous layer. Those weights 
can be used in another convolutional layer, which reduces 
the processing time. The input 3D box has the same width 
and height as the image itself and its depth is based on the 
image’s colour depth. The input for the next layer is a 3D 
box, characterized by the hyper-parameters of the previous 
layer [2, 16].

The purpose of a pooling layer is to decrease the size of a 
3D box. It transforms each input point, arranged in groups of 
an image into a single value. Those groups can be compared 
to the pixels in an image. Pooling layers do not have weights 
and they do not influence the training of the network. There 
exist different pooling layers, where max pooling and aver-
age pooling are the most used ones. When using max pool-
ing, each group of input points is transformed into a single 
pixel with the greatest value of the group. Average pooling 
works the same way but with the difference that the value 
of the transformed pixel is the average of the group [2, 16].

Another layer type is the dense layer, which connects 
every neuron with the neurons of the previous layer. In a 
CNN, it means that every output 3D box is connected to 
every neuron of the dense layer and passed through an acti-
vation function. Dense layers are often used at the end of 
a neural network. The last dense layer usually makes the 
classification task. Each classification class will then be one 
output neuron with corresponding probabilities of the clas-
sification predictions [13, 16].

Dropout layers are necessary for preventing a neural net-
work to be overfitted. It sets in the training phase the number 
of input elements to zero, which can lead to higher learning 
rates. During the test, validation, and production phases, the 
dropout layer is not used. Dropout layers are used in big 
networks, where model overfitting is likely [2].

A convolutional neural network is made by putting all 
these layers together. How many layers of which type are 
used and depends on the use case [17].

2.2  Image classification with CNN

Image classification is one of the applications for a CNN. 
It takes an image as an input and generates an output that 
classifies the image to a certain class. The output also gives 
a probability of whether the image belongs to a certain class 
[18].

The classification task starts with data collection. Then, 
the data have to be split into a training data set, a test data set 
and a validation data set. The next step is to build the CNN 
according to the use case. Next, the model is trained with the 
training data set. During the training, the model is evaluated 
constantly with the validation data set [19, 20]. The model 
performance and accuracy are verified with the test data set.

If the classification task is binary, a single output neuron 
is enough. The neuron output shows the probability of the 
classification. In the case of more than one label, more out-
put neurons are needed [13].

3  Interpretability of machine learning 
models

ML algorithms are used as black boxes and it is often not 
clear how they produce specific results. At the same time, 
and especially in critical applications, there is a need to trust 
the algorithm, so that it makes the correct output [21]. Inter-
pretability in ML is the concept of understanding the predic-
tion of a model [22].

There exist several interpretability methods for human-
friendly explanations of ML models, especially their pre-
diction outcomes [23]. Without interpretability methods, 
models are often evaluated only with accuracy metrics. 
Explaining the prediction outcome means providing textual 
or visual tools to display the relationship between the pre-
diction of the model and the involved in training data. The 
focus of this research lies in explaining the two methods 
LIME and SHAP [24].

3.1  LIME

The LIME, which is short for Local Interpretable Model-
agnostic Explanation, is a model-agnostic method which can 
be used to provide simple interpretations to model predic-
tions. LIME is generally used for interpretations of models, 
which are not highly complex [22, 25]. The method works 
with the surrogate model technique, which suggests using a 
simpler model to generate a prediction in exchange for the 
complex original model. For ANN, this means that the origi-
nal model is transferred to an interpretable model, which 
tries to replicate the behaviour of the original one. This 
interpretable simpler model then produces the explanations 
for the original NN model [26].
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The overall idea behind LIME as an interpretability 
method may be explained based on Fig. 1. The model, which 
needs to be interpreted, is a black box model. With LIME, 
the goal is to create a white-box model, which is simpler 
and, therefore, easier to provide the local explanations for 
the original complex model. First, the influencing factors in 
the black-box model for a single point of interest need to be 
understood. The single point of interest, which is going to be 
explained, is marked as the black cross (Fig. 1). The nonlin-
ear background in two colours represents the decisions made 
about whether an instance belongs to one of the two classes. 
Around the point of interest, a new data set is generated to 
create the linear white-box model (a surrogate model). This 
new data set consists of sample points represented as the 
dots in Fig. 1.

These sample points are weighted corresponding to their 
distance to the point of interest. Weight is graphically dis-
played by their size. A local linear model which is displayed 
as the dotted line is then trained and used for the approxima-
tion of the original model. Instead of linear models, decision 
trees can also be used as a choice for the local surrogate 
model. Therefore, a local interpretation can be achieved, but 
is not globally correct [22, 27].

The LIME method is implemented as a library in Python 
and R for creating explanations of individual predictions. 
The input data format can be text, images, or tabular data. 
LIME can be used for multi-class predictions [23]. The 
method was proposed in 2016 by Ribeiro et al. [24]. LIME 
generates explanations for single instances by mapping input 
data to an interpretable representation. This could be pixels 
when working with images or a set of words when working 
with text data [26].

In more detail, LIME perturbs the input data samples 
and observes the change in the predictions to understand 
the model [22]. Here, perturbation is a method that is used to 
explain feature relevance. This is done by measuring altera-
tions in the prediction outputs when features are modified. 
To succeed in explaining feature contribution, perturbation 
replacing, ignoring nonsignificant features, and learning 

attribution masks. LIME requires a large number of ran-
domly perturbed samples to compute local explanations for 
complex ANN models. To produce an actual explanation, 
a prediction of the class of every sample has to be done, 
which needs significant computational power in the case of 
a large-size network [26].

3.1.1  LIME for images

Using LIME for image interpretation differs from tabular 
or text data. Here, the target cannot be reached by perturb-
ing individual pixels, because a huge number of pixels is 
involved in predicting the class. The approach here is to seg-
ment the image into so-called superpixels that may be turned 
on or off. During this process, several image variations are 
generated. The superpixels consist of a number of intercon-
nected pixels, having a similar colour. Superpixels can be 
turned on or off, where turned-off pixels are coloured in a 
specific colour, for example, grey [22].

The steps for creating an image interpretation with LIME 
are as follows. First, a prediction of the correct image class 
with the trained ML model is to be made. The class with 
the highest probability to be correctly predicted is used for 
the interpretation. To create an interpretation, LIME builds 
a new data set of random perturbations. A local surrogate 
model is fitted, where the computed superpixels for the input 
image are used to create the random perturbations. Those 
superpixels are computed with the quick shift algorithm. 
The number of perturbations is user-specific. The trained 
model predicts the class of each perturbed image. Before fit-
ting the surrogate model, weights of the images, close to the 
original image, have to be applied to suggest the importance 
of the perturbed images. This importance is calculated with 
a distance metric that gives the gap of each perturbation 
to the original image (when all superpixels are on). This 
weighting is done for all perturbed images in the data set. 
Then, the surrogate model is fitted with the perturbations, 
predictions, and weights. As result, a factor for each super-
pixel is calculated, which states the effect of the superpixel 
on the right class prediction. The sorted factors are used to 
decide on the most important for the prediction superpixels. 
In addition, a heatmap can be overlayed to see the contribu-
tion of superpixels.

This result is the LIME interpretation, where shown 
superpixels have the strongest impact on the prediction. In 
addition, the result allows users to understand that the model 
makes the prediction based on significant parts of the image 
according to the predicted class. To validate the model, sev-
eral sample images are to be interpreted, and the overall 
result must be evaluated [22, 28].

Fig. 1  Idea behind the LIME method [27]
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3.1.2  Advantages and disadvantages

Because of the representation of interpretable data, LIME is 
used frequently for image and text analysis. It is one of the 
few interpretability methods that could work with tabular 
data, text data and images. The inner algorithm of LIME is 
based on the generation of a simpler model to approximate 
the original model. It allows the use of the same local, inter-
pretable model to do the interpretation [27, 29].

For an end user, it is easy to find an explanation in the 
interpreted parts of an image or text and to understand it. 
LIME is a good option for not very experienced ML users, 
because LIME produces human-friendly explanations.

At the same time, LIME might not be the best option to 
use when detailed prediction explanations are required.

For tabular data, LIME may also not be the best option, 
since there are issues in finding the correct interpretable 
representation. At the same time, there have been attempts 
to solve this problem with several different transformation 
methods.

What should also be considered when working with 
LIME is that the needed data points are sparse and defining 
a local neighbourhood is not a simple task. If the neighbour-
hood is changed, the explanation results are different, caus-
ing instability in the method. Due to the unstable outcomes 
in the repeating sampling process, there is a need to check 
for every iteration if interpretations make sense. As a result, 
LIME is a promising method for high-dimensional data, 
and its issues are to be overcome in its further development 
phases [27, 29].

3.2  SHAP

SHAP is the abbreviation for Shapley Additive exPlanations. 
It is an interpretability method with the idea to explain ML 
models using a game theory approach [7]. This approach 
considers a feature for a data instance as a player and the 
prediction as a playout. The SHAP method works based on 
Shapley values, which are used to rank the ML model’s fea-
tures. Overall, the SHAP approach considers all predictions, 
which makes it more reliable and ensures stable results as 
opposed to LIME. At the same time, this makes it more 
computationally time-consuming. SHAP can be used both 
for model-agnostic and model-specific techniques [23, 25]. It 
is a post-hoc method used mainly in local interpretations, but 
global ones are also possible. Before discussing, the SHAP 
values are considered in more detail.

3.2.1  Shapley values

Shapley’s values came from the game theory. The relation-
ship between them can be seen as the players being included 

in the model and the game reproduces the result of the ML 
model [22]. For example, the Shapely values may be used to 
predict the price of an apartment. For example, we are look-
ing for an apartment with the characteristics of being near a 
park, having 50  m2 on the second floor with no cats allowed 
and the price of €300,000. This prediction may be explained 
by looking at each of these feature values individually and 
explaining their contribution to the overall prediction. Say, 
the amount of €310,000 is the average prediction the model 
made for all apartments. The goal now is to compare the 
average prediction to the prediction with emphasis on how 
much each feature value contributed to that. For linear mod-
els, the effect is calculated through the weight of the feature 
times the feature value.

SHAP estimates the effect through local models and 
Shapley values, by assigning payouts to players, which 
depends on their contribution to the total pay-out. The game 
in this setting is the prediction task for a single element in 
the data set. The earning is the made prediction minus the 
average prediction for all elements. The players, as men-
tioned before, are the feature values of the element, which 
help to get the earnings. In the apartment example, the pre-
diction of €300,000 was achieved through the feature val-
ues describing its characteristics. The goal of explaining the 
difference was achieved by subtracting the €300,000 from 
the average predicted €310,000 resulting in a difference of 
− €10,000. The interpretation of the ML model could be, 
for example, that the park contributed €30,000, the area 
€10,000, the 2nd-floor €0 and the banned cat − €50,000 
which results in the sum of − €10,000.

The Shapley value for one feature is calculated by the 
average marginal contribution of this feature value above 
all potential coalitions. A sample contribution of the banned 
cat feature value appended to a coalition of a park is nearby 
and the area can look like the following. A random apart-
ment from the data set is selected and its value for the floor 
feature with a coalition of a park nearby, the banned cat and 
the area feature. The previously 2nd-floor feature is now set 
randomly as a 1st-floor feature. With this information, the 
price of €310,000 is predicted. The next step is to elimi-
nate the banned cat feature and substitute it with a random 
allowed or banned cat feature. Then, the price with the park 
nearby and area coalition may be €320,000. The banned cat 
feature contributed − €10,000 to the prediction, calculated as 
€310,000 minus €320,000. These steps to create the interpre-
tation are based on the values for the floor and cat features 
values from the randomly selected apartment. The estima-
tion will improve with every sampling step, whereby the 
contributions are getting averaged. Such calculations need 
to be done for all potential coalitions resulting in the Shapley 
value, which is the average of all contributions to all poten-
tial coalitions [29].
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Shapley values are often used in the approximate solu-
tion, because their calculating takes up a lot of time due to 
many possible coalitions. Furthermore, Shapley values tend 
to be misinterpreted in a way that they are the difference 
between the predicted value after deleting a certain feature 
from the model. Instead, a Shapley value is the contribution 
of a feature value to the difference that exists between the 
mean and the actual prediction. This interpretability method 
uses all features as opposed to LIME, where the option to 
select is given. Shapley values deliver a full explanation, 
provided through the full distribution among all included 
feature values of the data instance. In addition, comparison 
against a subset or a single data point is possible, not only 
for average predictions as LIME does [26, 29].

3.2.2  SHAP method

SHAP is implemented as a python library. Due to the 
assumption that the local surrogate model must not be linear, 
SHAP is more time-consuming than LIME [30].

SHAP provides an interpretation, based on explaining 
individual predictions. This is done by calculating the con-
tribution of every feature to the prediction with the Shapley 
values. The feature values of an example data instance can 
be seen as a player in a coalition according to the game 
theory approach. A player can be a cluster of feature values 
or a single feature value. As an example, the single feature 
value can be distributed on superpixels for images. SHAP 
has three required properties. The first one is local accuracy 
to make the method efficient. The second one is missingness, 
which helps with keeping the local accuracy in place and 
is mostly relevant for constant features. The third property 
is consistency. It ensures that if the model changes by its 
contribution of a feature value, then the Shapley value also 
changes accordingly [29].

There exist several approximation methods for calculat-
ing Shapley values, where KernelSHAP and TreeSHAP 
[26] are most used once. KernelSHAP is a kernel-based 
approximation approach and TreeSHAP is efficient for 
tree-based models [29]. KernelSHAP is a combination of 
linear LIME, and Shapley values and is a model-agnostic 
implementation of SHAP. It is an algorithm that makes 
the Shapley value approximation locally referred to a data 
instance, by creating samples of possible coalitions. The 
kernel in this case has the function of weighting the coali-
tions [26, 31]. To be more specific, the first step to cal-
culate the contribution of a feature to the prediction is to 
define sample coalitions, and then to get a prediction for 
each one of them. Afterwards, the SHAP kernel applies 
weights, and the weighted linear model is fitted to return 
the Shapley values to be further processed. The differ-
ence to LIME is that SHAP applies weights to the sample 

instance based on the weight of the coalition and LIME 
applies weights based on the original instance. The idea 
here is to learn about features when they are isolated. For 
example, when the coalition has only one feature, then the 
effect this feature has on the prediction can be derived. The 
same principle applies when the coalition consists of many 
features. TreeSHAP uses the model-specific approach and 
is faster than KernelSHAP. The principle of TreeSHAP is 
to generate computations down the tree at the same time. 
TreeSHAP may have the issue that a feature, which does 
not influence the prediction, can be assigned other than 
the zero value. This is the case, when a feature correlates 
with another feature, significantly influencing the predic-
tion [22].

3.2.3  SHAP for images

SHAP for images is used mostly for image classification. 
The idea here is to determine for every pixel in the predicted 
image the level of pixel contribution to a certain class. To 
make the interpretation, an NN model for image classifica-
tion is to be trained and next used for a prediction on a test 
set image for every class. Finally, the SHAP values with the 
help of the SHAP library are generated and visualized. The 
interpretation of visualization of the images shows high-
lighted parts in shades of red and blue. The image labels 
show the predicted classes in descending order of probabil-
ity. The red pixels indicate SHAP values that contributed in 
a positive way to the classification of the labelled class. The 
blue pixels indicate the opposite meaning, i.e., they contrib-
ute negatively to the prediction [32].

3.2.4  Conclusion

The SHAP interpretability method has a sound theoreti-
cal foundation. The method uses the distributed feature to 
generate the Shapley values. SHAP relates to LIME, taking 
the interpretable ML area a step further to be unified in an 
overall approach. The possibility of providing global and 
local explanations is also an advantage of SHAP. The Tree-
SHAP allows a user to create fast interpretations. The slower 
KernelSHAP may be applied for the models, where TreeS-
HAP is not feasible. KernelSHAP can be time-consuming 
for the computation of Shapley values if a lot of instances 
are involved. In addition, creating misleading interpretations 
is possible, for example, to hide biases [27, 29]. The final 
comparison and evaluation of the LIME and SHAP methods 
will be done in Sect. 5. The metrics will be derived from the 
literature research.
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4  Implementation

For the implementation, a use case in the Smart Production 
Lab of the FH JOANNEUM University of applied sciences, 
Austria, was developed. The focus was on creating an ML 
model for image classification for quality control and on 
providing interpretability options for the developed model. 
The product of the selected use case was a watch, manufac-
tured in the Smart Production Lab. One part of the product, 
namely, the watch stand, was chosen for quality control. 
The developed ML model classified two types of images. 
The image taken of the watch stand could be considered 
as “good”, which means that the product has the desired 
quality, so that it can be further processed to be assembled 
into the whole product. The other type of image classifies 
the products with defects, with the consequence that these 
products cannot be further processed. Therefore, the devel-
oped model distinguished between these two types, which 
resulted in a binary classification problem. To analyse, why 
the developed ML model made a certain prediction, the 
methods LIME and SHAP were implemented. The results 
were compared to provide a selection approach, helping the 
industry in choosing a proper method based on the use case.

4.1  Machine learning model implementation

Figure 2 shows the methodology flowchart for the imple-
mentation stage of the ML model for image classification. 
It is segmented into four major phases, namely, collection, 
preprocessing, learning, evaluation, and prediction.

The starting point was to collect data by taking product 
pictures, changing the lighting conditions, and adjusting 
angles and perspectives. This process was done with prod-
ucts of the class “good” and “defect”. The second phase 

started with splitting the image data into a train and test 
set and labelling the images according to their class. The 
last step was data augmentation to prepare for building the 
CNN model. Layers and parameters were adjusted before the 
training starts and the trained model could be validated. If 
the results were not acceptable, then the adjusting repeated 
again. After this, the model was verified by classifying a test 
image data set to determine whether the model made the 
correct prediction. The individual steps and milestones are 
described next in more detail.

4.1.1  Experimental setup

The development of the ML model was done with a virtual 
machine on a High-Performance Cluster (HPC) provided 
by the FH Joanneum. The HPC is a network of servers that 
works in parallel to increase computing power and, there-
fore, makes model training faster. To upload the image data 
on the HPC, the open-source server- and client-software 
FileZilla was used. Furthermore, Anaconda was applied 
as the environment management system for installing, run-
ning and updating packages and their dependencies. Conda 
was used in combination with the programming language 
Python. As a development environment, the Jupyter-Note-
book was applied, which is an open-source, browser-based 
tool that enables users to create documents with live-code, 
text and visualizations. For the CNN implementation, the 
open-source platform TensorFlow was used. TensorFlow 
incorporates a lot of tools and libraries for ML applications. 
In detail, the module Keras, which runs on top of Tensor-
Flow, was used. It is a deep learning Application Program-
ming Interface, written in Python for simple, flexible and 
powerful use to solve ML tasks. Keras has a lot of libraries, 
which can be used for the implementation of the ML model, 
especially for image classification.

4.1.2  Data collection and preprocessing

For this use case, the images of the watch stands were made 
with the camera of a smartphone. The camera of the brand 
Sony has 64 megapixels, which was enough for the distinc-
tion between the classes. Furthermore, the images were 
downsized to accelerate the computations. A possible series 
of “good” products are shown in Fig. 3. Examples of defec-
tive parts are shown in Fig. 4.

These images were organized in a directory structure 
for the model training and its further steps. The main data 
directory had two subdirectories, called “train” and “test”. In 
addition, these two directories both had two subdirectories 
called “defect” and “good”. This structure is due to using 
Keras, because it recognizes the classes according to the 
directory names. 80% of acquired data were used for model 
training and 20% for testing purposes. The number of images Fig. 2  Methodology flowchart of the model implementation
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taken for one class was 6007. This number was split into 
the “test” and “train” directories, resulting in 4806 pictures 
(both “defect” and “good”) in the “train” directory and 1201 
images in the “test” directory (“defect” and “good”). In total, 
12,014 images were taken to generate the data to create an 
image classification ML model. To speed up the process, 
image retrieval was performed by making a video of the 
product parts in different angles and positions with different 
lighting conditions. Then, the video frames were cut out to 
be used as the images.

4.1.3  Model description

The implementation of the ML model was based on Keras 
libraries. The model consists of the core data structure of 
Keras, namely, layers. The simple sequential model was 
used, which is a linear stack of several layers. The model 
consisted of three major convolutional layers, three Max-
Pooling layers, one flattens layer and one dense layer. This 
structure had been chosen by an experimental approach. This 
means, during the development phase, different design struc-
tures were created and evaluated. Once the desired result 
with the intended accuracy was achieved, this model struc-
ture was selected to work with.

The next step was compiling the model to initiate the 
learning process. Then, the actual training could start. 
This was done by iterating over the training data with the 
fit() function. The training was done for 10 epochs, which 
means that the entire training data set was passed through 

the developed CNN ten times. For every epoch, the weights 
were changed to create higher accuracy outputs. To opti-
mize passing the entire data set through the network, data 
were divided into batches with the size 50 (the number of 
images used at once to pass the CNN). Iterations of batches 
were used until all images from the data set were through 
to complete one epoch. For this configuration, the training 
process took up around 2 min and 20 s to complete. The 
entire process, from loading the images to training the model 
to verify the results, took up 6 min and 30 s.

The overall model accuracy at the end of the training 
with 10 epochs was about 99%. The corresponding confu-
sion matrix for the model validation can be seen in Table 1. 
The model made the prediction for every 1201 «good» and 
1201 «defect» images. The model predicted 1197 images, 
that were labelled as good, to actually be good, and only four 
of these good images got predicted as defective ones. The 
second line in the confusion matrix says that 1199 images 
that are labelled as «defect» were classified correctly and 
only two of those were classified as «good» ones.

4.2  LIME interpretation methodology

The methodology of creating the interpretation with LIME 
included several steps (Fig. 5). The first step is to choose 
an image from the test data set. After this, the data were 
randomly perturbed by turning superpixels on and off and 
those newly generated samples were weighted. The weight-
ing of the samples was done by the means of their proxim-
ity to the region of interest. Based on the new samples, a 
prediction was made with the original model. Thereafter, a 
new weighted model with the newly generated data set was 
trained and referred to as the interpretable or the local sur-
rogate model. After the feature selection, the local surrogate 
model was interpreted with the prediction on the test image 
and its result was displayed.

Fig. 3  Series of product images of the class “good”

Fig. 4  Series of product images of the class “defect”

Table 1  Confusion matrix

Predicted good Predicted 
defective

Actually good 1197 4
Actually defected 2 1199

Fig. 5  Methodology chart of the LIME method
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The idea behind the process is that LIME uses deci-
sion boundaries for the two classes. The prediction of an 
instance, also called a data point, gets then the explanation. 
This explanation is generated by creating a new data set of 
around the data point’s located perturbations. Every per-
turbation gets predicted from the ML model and classified 
into the class “good” or “defect”. Every perturbation has a 
level of importance. Perturbations are more important when 
the distance to the original data point is small. Next, these 
distances are used to calculate the weights. These prepara-
tions are used to create the local surrogate model. The key 
components to make the interpretation, therefore, are the 
newly generated data set, the predictions on the new samples 
and their weights.

4.2.1  Software implementation

For implementation, the LIME libraries of version 0.2.0.1 
were used. The LimeImageExplainer was used to create the 
LIME explainer instance. The parameters were the image, 
on which the interpretation should be done and the model to 
be used for the prediction. The top_labels parameter induces 
to have a look at the top two predictions for the test image, 
since in this use case there were only two classes. The hide_
color parameter represents the colour for a superpixel that 
is turned off (i.e., it is not relevant for the prediction made). 
In addition, the num_samples parameter sets the number of 
the generated artificial data points.

Applying the LIME explainer results in the explanation 
of the prediction in the form of the LIME interpretation. The 
first image in Fig. 6 shows the top five superpixels that are 
the most important towards the correctly classified class. 
The rest of the image is hidden. The second image in Fig. 6 
shows the same interpretation but in a different representa-
tion style.

The red highlighted parts equal the hidden parts of the 
first image and indicate that these parts contribute negatively 
or have no impact on the correctly made prediction. Whereas 
the green highlighted parts contribute positively to the made 
prediction and played a significant role in it. The coloured 

parts show the increase or decrease in the probability of the 
image to be classified to the first or the second class.

Another explanation method of LIME interpretation is 
to use a heatmap, which plots the explanation weights (see 
Fig. 7). The colorbar on the right displays the values of the 
weights in the image. To create this heatmap, every expla-
nation weight was mapped to its corresponding superpixel 
and then plotted using different colours. With that, a more 
detailed insight into the interpretation can be given, showing 
how the superpixels are contributed. For example, the light 
pink part in the middle is an important one, belonging to the 
positively contributed part.

4.2.2  Result interpretation

Figures 8 and 9 allow us to get a better understanding of the 
LIME interpretations on different sample images. In these 
images, the green highlighted parts represent the positively 
contributed superpixels to the correct prediction and the red 
highlighted parts are the negatively or not contributed super-
pixels. For all presented in Figs. 8 and 9 sample images, the 
ML model made the correct prediction. It classified all the 
images in Fig. 8 as “good” products and all images in Fig. 9 
as “defect” ones. With this graphically displayed interpreta-
tion, it gets clear that the edges and screws on the images of 
the class “good” were important for the made predictions. 
For the “defect “class, LIME interpretations focused on the 

Fig. 6  LIME interpretation image

Fig. 7  Heatmap of the LIME interpretation image

Fig. 8  Example of LIME interpretations of the class “good”
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edges and the screws of the product; and also, the holes 
played a significant role. It coincides with the way a human 
would classify the images, which makes the model more 
comprehensible and promotes confidence towards its real-
life application in the industry.

To describe the interpretation in more detail, the first 
image of Fig. 8 may be used. In this image, the bottom screw 
is the most important for the correct prediction. The parts of 
the image towards the upper screw increased the probability 
the image was classified into the correct class “good”. In 
the first image of Fig. 9, it appeared that nearly part of it 
contributed positively to the correct prediction. However, 
one corner with an exactly framed screw is highlighted red. 
This means that the model considered this screw as a part 
of a “good” product, but because of the other three screws, 
the model classified it to the class “defect”. In this way, a 
close look at interpreted images is needed to understand the 
LIME interpretation and to encourage the model’s decisions. 
Another result can be that the model makes its prediction 
based on irrelevant parts of the image and thus it should not 
be trusted.

4.3  SHAP implementation

Figure 10 summarizes the most important steps of a SHAP 
interpretation. SHAP is also a post-hoc method, meaning the 
interpretation is done on a single image from the test data set 
after the model training. The original ML model makes the 
prediction on the chosen test image. Then, the contribution 
of each feature is calculated. The obtained information is 
used to compute the Shapley values to make the interpreta-
tion. The last step is to display the interpretation by plotting 

the test image with the visualized SHAP interpretation over 
it.

SHAP interpretation process aims at explanation of the 
prediction of a single instance in the test image. This is 
achieved by calculating the contribution of each feature to 
a certain prediction class. Shapley values are computed to 
provide information on distribution of the prediction among 
the features. For image classification, the pixels in an image 
are grouped into superpixels and the prediction is allocated 
to them.

4.4  Software implementation

Programming of the SHAP interpretation method starts with 
importing and initializing the shap Python package. In the 
implementation, SHAP of the version 0.40.0 was used. The 
two class labels “good” and “defect” were defined. After 
this, an image from the test data set was chosen and loaded 
into the Jupyter-Notebook. To create the visual explana-
tion of the test image, a mask to be defined for blurring 
the interpretation of the original image. The shape of the 
image needed to be defined to place the correct fitting mask 
over the original image. The next step is to use the SHAP 
library to generate the SHAP values. The primary explainer 
of SHAP was used to create the interpretation of the predic-
tion of the image. This explainer using every combination 
of the model and the masker to return a subclass object. This 
is achieved with the explainer constructor with parameters: 
the trained CNN model, the previously described masker 
and the class labels in the form of a list. The parameters of 
the object include the image on which the interpretation is 
to be made and the number of sample images that should 
be taken from the test data set. Furthermore, the number of 
evaluations of the ML to estimate the SHAP values were 
defined. This number defines the duration of the explanation, 
and correspondingly, the quality of the approximation. In 
this use case, the size of the batch of the evaluation was set 
to 50. The output includes two interpreted images and the 
original image. The last step is then to plot the SHAP values 
to see the interpretation visually.

Applying the SHAP values and plotting the result can 
be seen in Fig. 11. The first image is the original image 
from the test data set. The second image shows the SHAP 
interpretation and provides the information of the predic-
tion result. Here, the test image was classified as “good”. 
The third image is assigned to the class with the second 
highest probability. Note, it is possible to show more than 
two classes for multiclass classification problems. Whether 
the prediction was done correctly or not can be seen in the 
plotted SHAP result. The image highlights the SHAP inter-
pretation in the shades of red and blue (in the background 
the original product can be seen).

Fig. 9  Example of LIME interpretations of the class “defect”

Fig. 10  Methodology process chart of the SHAP method
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The highlighted by red parts mean that they contributed 
positively to the made prediction. In addition, the blue high-
lighted parts contributed negatively to the prediction. Work-
ing with superpixels makes it easier to recognize the parts in 
the image that are important for the prediction. The darker 
the shade of red or blue is the higher is the contribution 
to the classification of the particular class. This means the 
parts, which were shaded darker are more important vs the 
pale colors. It can also be seen by the colorbar at the bot-
tom, which represents the SHAP values corresponding to 
the color shade.

4.4.1  Result interpretation

The SHAP method was executed on different sample images 
from the test data set. A collection of the class “good” is 
shown in Fig. 12 and of the class “defect” in Fig. 13. Both 

collections contain eight randomly chosen images from the 
test data set that got interpreted with the SHAP method. 
On these images, the red highlighted parts represent the 
positively contributed superpixels to the correct prediction 
and the image parts with the blue highlighted superpixels 
contributed negatively to the prediction. All these 16 exam-
ple images were classified correctly to their classes by ML 
model. Unlike the visual interpretation of LIME, the edges 
of the products in case of the SHAP do not play an important 
role in the explanation of the prediction. At the same time, 
important become the screws, which are placed correctly in 
the “good” images, misplaced besides the product and also 
holes without screws in the “defect” images.

To describe the interpretation of SHAP in more detail, 
let us consider the first plotted result in Fig. 12. It shows 
the product of the class “good” with two correctly placed 
screws. The visualized interpretation presented besides the 
actual image highlighted superpixels in shades of red and 
blue according to the computed SHAP values. The dark-
est highlighted parts are shown in the places of the screws. 
This makes it easy to understand why the model classified 
this image as “good”. There are also red highlighted parts 
but with a lighter shade. For this and for other images, the 
black shadow of the screw is sometimes considered as a 
hole, which is a significant feature for a “defect” product. 
These are then highlighted blue, because the ML model 
would classify a product with a hole as “defect”, even though 
the product is “good”. Thus, these pixels contributed nega-
tively to the result. However, the image is still classified 
as “good”, because the other features are superior. It can 
be seen for the second classification with the label “defect” 

Fig. 11  SHAP interpretation image

Fig. 12  Example collection of SHAP interpretations of the class 
“good”

Fig. 13  Example collection of SHAP interpretations of the class 
“defect”
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that the highlighted pixels have exactly the opposite colour 
on the same place. This shows that if the image had been 
classified as “defect”, then the parts of the image that are 
actually considered “good” in that case contribute negatively 
to the prediction.

Let us also consider the first image of the class “defect” 
in Fig. 13. This example has nearly the same amount of 
highlighted red and blue parts, which means that it was not 
completely sure for the ML model to which class the image 
belongs. The two holes in the product contributed positively 
to the correctly made prediction, since they were highlighted 
in a darker-shaded red. However, the two additional screws 
were highlighted blue, which means that they contributed 
in a negative way. This behaviour can be explained by the 
fact that “good” products have exactly two screws in the 
same position. These are the features that contributed to the 
“good” classification. Another aspect here is the shadow 
of the product, which showed these parts of the image as 
important for the prediction. Looking at sample images 
which were interpreted with SHAP, it gets clear based on 
which features the ML model makes its classification predic-
tion. Having this knowledge, the ML model can be improved 
further, for example, by eliminating shadows that interfere 
with the significant parts of the image.

5  Comparison and evaluation

This section compares LIME and SHAP methods through 
functionality metrics, derived from the literature.

5.1  Computational time to explain the prediction

The computational times, needed to derive the explanation 
of the prediction, were retrieved during the execution of the 
Python code for each method in the same controlled condi-
tions. There were two types of times measured. The first one 
was the CPU time (execution time). It measures how much 
time has elapsed until the CPU has executed the core pro-
gram (without initializing variables and plotting the result). 
The second one was the wall time (running time), which 
measures the total time to execute the program. Since the 
execution of the program was done on a high-performance 
cluster, the wall time was smaller than the CPU time to 
compute the interpretation. For LIME, the CPU time for the 
same ML model was 12.2 s, and for SHAP, it was 11.8 s. The 
wall time for LIME was 4.8 s and for SHAP 2.29 s. Thus, for 
this specific use case, program implementation of the SHAP 
method is slightly faster than LIME. In addition, based on 
the literature, LIME is generally faster when not used for 
image data, but for text or tabular data.

5.2  Presentation of the interpretation

Both methods present their results visually in a simple, 
and easy-to-understand form. The representation of the 
explained prediction in both cases is an overlay to the origi-
nal image from a test data set. Indicating the positive or 
negative contributed parts is made by the colour palette, both 
for LIME and SHAP. However, LIME uses only two colours, 
which highlights either a strictly positive or negative con-
tribution. Whereas SHAP uses different shades of the two 
colours, which makes the interpretation more expressive. 
Thus, SHAP provides more information, and a conclusion 
can be drawn, which positively contributed parts are more 
important than others. A similar option provides the LIME 
heatmap, by segmenting the superpixels according to their 
weights, but this is only to be seen as additional information. 
To conclude on the explanatory power, SHAP appears to 
have a more informative way of expressing and representing 
the interpretation of the ML model prediction.

5.3  Interpretability

LIME and SHAP are primarily local interpretability meth-
ods, meaning that they are unaware of the inner structure 
of the model. The option that SHAP provides for global 
interpretability is to sum all individual predictions of the 
SHAP values. Although both methods are primarily local, 
they use different approaches. LIME builds local surrogate 
linear models for each prediction that gets explained. This 
creates a white-box model from the initial black-box model. 
However, this approach is limited to the local neighbourhood 
of the model. SHAP uses the Shapley values to determine 
the average marginal contribution of all feature values for 
all possible coalitions. This means that SHAP investigates 
all possible predictions of the image or non-image data. This 
approach ensures that the interpretations of SHAP are accu-
rate and consistent. In some literature sources, it is suggested 
that LIME is a subset of SHAP with a lack of consistency 
or accuracy.

5.4  Applicability

LIME and SHAP are the most common methods in ML 
interpretability. Therefore, they are applicable to differ-
ent use cases and different data types in industrial set-
tings. Both methods have Python implementation, which 
is currently the most used programming language in ML 
applications. We need to note that the selection of the 
method may depend on a specific ML algorithm. In this 
use case, both methods were applied for CNN. At the same 
time, for a model built with the k-nearest neighbour algo-
rithm, computing the SHAP values will take a long time, 
in comparison with LIME. Furthermore, using LIME and 
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SHAP on Keras machine learning models works out of 
the box. However, LIME, for example, cannot be used on 
an XGBoost machine learning model without creating a 
workaround. In conclusion, LIME and SHAP are generally 
well-applicable in industrial settings in contrast to similar 
methods, for example, Anchors.

5.5  Replicability and reliability

Recomputing the SHAP values on similar images will 
always result in a similar explanation output. Thus, SHAP 
is a stable interpretability method, where the explanation 
output can be replicated. On the other hand, for the LIME, 
explanation outputs for similar images can be different. This 
problem arises because of the rather weak approximated 
local surrogate model in relation to the original black-box 
model. This is the case because of the perturbation step of 
LIME, which can differ when repeated. For our use case, 
LIME results differ slightly in the form of smaller bound-
ary shifts from the positively or negatively contributed side. 
Superpixels, which were at the tipping point between the 
positive or negative contribution, changed in the repeated 
sampling process. However, the differences in the results for 
LIME interpretations were minimal.

5.6  Implementability effort

Both methods are easy to implement with a correspond-
ing python library. The programming effort depends on 
the industrial use case, available data and the selected ML 
model. After the data preparation step, the right design is to 
be found for the ML model. In conclusion, the implementa-
bility effort of LIME or SHAP methods for a programmer 
is quite similar.

5.7  Limitations

Implementation of the method should be always examined, 
and the results should not be blindly trusted. Due to sample 
variations, LIME lacks a guarantee of producing stable and 
consistent results for similar images. Furthermore, LIME 
limits itself to producing local surrogate models with dif-
ferent quality levels, since the fit of the data to the model 
cannot be controlled. There are no clear instructions on how 
many features to select for the local surrogate LIME model, 
which may result in either too complex or too simple inter-
pretation. In addition, SHAP is generally known to be slower 
than LIME when many instances need to be computed. This 
can be a significant criterion for the selection of the corre-
sponding method in the industrial context.

6  Conclusion and future work

The development in artificial intelligence and especially 
ML methods is fast-moving and makes enormous progress 
every year [33–37]. While in some industrial areas, ML 
concepts are used productively, in others implementation 
is lagging. Industries, which want to stay competitive must 
deal with the introduction of ML in their corporate pro-
cesses, for example, in automated quality control. At the 
same time, ML is often used without proper interpreta-
tion of the models. The question of why the model makes 
a certain prediction cannot be answered. Therefore, the 
use of explainability and especially, interpretability meth-
ods, becomes an increasingly important approach, which 
should be established in every company that uses machine 
learning applications.

This work introduces the ML interpretability methods 
for image classification in industrial use. Specifically, it 
implements and examines LIME and SHAP methods. To 
limit the area of application, the focus was given to apply-
ing the methods for a binary image classification, which 
was performed using a CNN algorithm. Due to a limited 
scope, the research insights and recommendations are 
valid for the developed use case. At the same time, the 
proposed recommendations and evaluation scheme can be 
used in similar use cases in the industry.

Application of the interpretability methods to the pre-
dictions of an ML model provides a better understanding 
of the model work. In our use case, based on the interpret-
ability methods, the ML model for image classification 
was redesigned and reached an accuracy score of 99%.

Another result is giving users insights to understand 
the incorrect image classification, for example, that the 
ML model may consider a shadow of a screw as a hole 
(which is a criterion for a “defect” product). In general, 
any shadows of the product played a significant role in ML 
prediction. From that, it can be concluded that the experi-
mental setup should be improved by adding light sources 
to minimize the shadows.

The literature research provides the answer to the first 
research question and selects the approaches (the LIME 
and the SHAP methods). The results of the comparison 
of the methods showed that they produce similar results 
based on different approaches. The SHAP method is, in 
some aspects, superior to the LIME method. SHAP has a 
more elaborated theoretical foundation behind the com-
putation of the interpretation values and produces more 
stable and consistent results. In addition, in the SHAP 
method, the visual interpretation is more detailed and rea-
sonable, which leads to the possibility to draw rich conclu-
sions. While LIME was described in the literature sources 
as the faster alternative for SHAP, for the selected use 
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case, SHAP was faster than LIME. Both methods operate 
at a local level, which means they interpret not the whole 
model, but only the final predictions. Based on these 
results, the second research question is answered with the 
selection of the method SHAP. It can be recommended as 
the most effective option when providing interpretability 
for an ML model for image classification in the industrial 
context.

Future work would be to evaluate the selected methods 
on different use cases and ML models Further research 
must be done, since the existing interpretability methods 
are only at the beginning of their development and need to 
be evaluated in their industrial applications towards gain-
ing an understanding of ML results.
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