
Vol.:(0123456789)1 3

Industrial Artificial Intelligence (2023) 1:10
https://doi.org/10.1007/s44244-023-00009-z

RESEARCH

Approach to provide interpretability in machine learning models
for image classification

Anja Stadlhofer1 · Vitaliy Mezhuyev1

Received: 10 January 2023 / Accepted: 27 June 2023
© The Author(s) 2023

Abstract
One of the main reasons why machine learning (ML) methods are not yet widely used in productive business processes is
the lack of confidence in the results of an ML model. To improve the situation, interpretability methods may be used, which
provide insight into the internal structure of an ML model, and criteria, based on which the model makes a certain prediction.
This paper aims to consider the state of the art in interpretability methods and apply the selected methods to an industrial
use case. Two methods, called LIME and SHAP, were selected from the literature and next implemented in the use case for
image classification using a convolutional neural network. The research methodology consists of three parts, the first is the
literature analysis, followed by the practical implementation of an ML model for image classification and the subsequent
application of the interpretability methods, and the third part is a multi-criteria comparison of selected LIME and SHAP
methods. This work enables companies to select the most effective interpretability method according to their use case and
also to increase companies’ motivation for using ML.

Keywords Machine learning · Interpretability methods · LIME · SHAP · Image classification · Convolutional neural
networks · Multi-criteria analysis · Industry

1 Introduction

Industry 4.0 and Smart Factory have become common terms
in a modern business environment. There are numerous pro-
jects and initiatives to push digitalization in the industrial
sector. Data are the driver for Industry 4.0, and in the last
years, enormous amounts of data were generated and used
for analyses in many industrial fields. Companies need to
respond to the digitalisation trend to stay competitive in their
business areas and gain a more automized and cost-efficient
production process, leading to an economical advantage [1].

In the last few years, methods of machine learning (ML)
have become increasingly important for industry digitaliza-
tion. The application of ML is getting assumed as a must-
have in every smart factory. ML approaches make human
work less time-consuming, more efficient, and often provide

stabler results [2]. Being successfully implemented, ML
models can fully automize industrial processes, previously
done by humans.

ML in image classification is a subset of artificial intel-
ligence algorithms, which aims to make decisions based on
a developed model [3]. An ML model is obtained through
studying, engineering, modelling, and training with data
according to the use case. An image classification model
can make predictions and help in various industrial settings,
for example, in digital quality control. Accordingly, the input
data quality and the ML model’s structure are crucial ele-
ments for image classification [2].

Due to the rising application of ML in image classification,
several challenges came up. One of these challenges is the
lack of transparency and interpretability of ML models and
their prediction outcomes. Most of the existing models are
“black boxes” that predict an outcome in a way, that humans
do not understand the internal mechanisms of predictions.
Understanding the behaviour of the ML model is important
to give trust in the results and the ML approach itself. There-
fore, explainable and interpretable ML models have become
progressively important [4]. Interpretable ML models provide
insights into how the model works and why it produces the

 * Vitaliy Mezhuyev
 vitaliy.mezhuyev@fh-joanneum.at

 Anja Stadlhofer
 anja.stadlhofer@edu.fh-joanneum.at

1 Institute of Industrial Management, FH Joanneum University
of Applied Sciences, 8605 Kapfenberg, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s44244-023-00009-z&domain=pdf

 Industrial Artificial Intelligence (2023) 1:10

1 3

 10 Page 2 of 15

results. There exist several methods concerning how to achieve
those interpretations and how to understand them [5]. One of
the most common is the Local Interpretable Model-agnostic
Explanations (LIME) [6] and Shapley Additive Explanations
(SHAP) [7] methods.

This research develops an approach to give interpretations of
the predictions for image classification models with LIME and
SHAP methods. The methodology includes both theoretical (lit-
erature analysis and multicriteria evaluation) and experimental
stages. The experimental setup consisted of three parts. The first
step was a collection of image data for training and validating
the model. The second step contained the design and training
of an ML model to get prediction results. This was performed
iteratively through alternating model parameters, adapting image
data, and reducing environmental influences. Then, the result
was validated and verified. The last part included interpreting
the final model predictions to explain why the model gave an
accurate prediction and to understand the mapping between the
model structure and a prediction result. Therefore, the following
research questions are addressed:

What are the current approaches to support interpret-
ability in ML models for image classification?

To answer this question, literature analysis and multicriteria
comparison of the existing methods are done:

What is the most effective interpretability method for a
specific use case?

To answer this question, developed ML models were
explored with selected interpretability methods. Their predic-
tions were examined to compare the methods.

This paper is structured as follows. Section 1 introduces
the topic and formulates the problem statement and research
questions.

Section 2 gives the machine learning fundamentals. It intro-
duces the principles of ML, focusing on convolutional neural
networks (CNNs) and image classification.

Section 3 provides a theoretical overview of interpretability
in ML models, focusing on the LIME and SHAP methods.

Section 4 describes the implementation part. The methodol-
ogy is discussed in detail, and the results are presented.

Section 5 is the comparison and evaluation section. The
interpretability methods are compared and evaluated based on
the literature research chosen metrics.

Section 6 provides a conclusion that summarizes the out-
come of the research and gives an outlook on future work.

2 Machine learning fundamentals

The ML approach consists in building a model based on
a given data set, to make predictions without an explicitly
programmed algorithm.

ML can help with a variety of different problems and has
a lot of practical applications [8].

Classification algorithms solve the task of assigning a
category to an item. Examples of that are classifying docu-
ments and assigning those to the categories, such as politics,
sports, weather, etc., or classifying images and assigning
those to the categories, such as a cat, a dog, or a bird. In
some cases, the approach goes outside of discrete classes to
predict real numbers with regression algorithms (e.g., stock
values) [8, 9].

2.1 Convolutional neural networks

CNNs are deep Artificial Neural Networks (ANNs) that are
trained with many layers [10]. The training process belongs
to the category of supervised ML methods. They are mostly
used for applications in computer vision, object recognition,
biological computation, and image classification [11, 12].
Explanation of CNN starts with an introduction to ANN,
proceeds with explaining different layers of a CNN, and fin-
ishes using CNNs for image classification.

2.1.1 Artificial neural networks

ANNs were inspired by the real-world biological neural net-
works in the brain [13]. The neuron has so-called dendrites
which act as the signal transmitters to the cell body. The cell
body processes these signals, and the axon is responsible for
sending these signals to other neurons. To make this pos-
sible, the axon terminals are connected to the dendrites of
another neuron. An NN is made up of one-to-many neurons
which are in communication with each other. What one neu-
ron puts out can be used as input by another neuron [14].

An ANN can be compared to a directed graph, where the
nodes are the neurons, and the edges are the links between
the neurons. The neuron gets a weighted sum of the out-
puts of neurons as input [15]. The perceptron is the simplest
ANN, because it consists of one single neuron. It takes an
input vector, resulting in a weighted sum, and applies a step
function to the sum for the output.

The algorithm of an ANN uses mini-batches to work
through the training data sets. Each time, it goes through a
batch, a so-called epoch is finished. The mini-batch starts at
the input layer, where it enters the network. After that, it is
passed to the first hidden layer, where the output of all neu-
rons is calculated. This output is then passed to the next layer
and this process continues until all layers are done and the
output layer is reached. The next step of the algorithm is to
recognize output errors, which are identified through a loss
function that compares the required and the actual output.
To further investigate the errors, every output connection is

Industrial Artificial Intelligence (2023) 1:10

1 3

Page 3 of 15 10

measured regarding how much it contributed to the made
error. Thus, for every epoch, the algorithm makes a predic-
tion and measures its error. After this, the algorithm goes
through all layers backwards to measure the contribution of
each connection to the made error. In addition, based on that,
it adapts the connection weights which helps the network to
produce fewer errors in the future [13].

2.1.2 CNN layers

The CNNs are structured in layers. The first layer is con-
volutional, which focuses on detecting features. Those fea-
tures can be lines, edges, colour, or other visual components.
The filters detect the features, and the more filters exist in
the layer; the more features can be determined. The filter is
specified by a hyper-parameter that controls its width and
height. Furthermore, there are weights, defined between the
convolutional layer and the previous layer. Those weights
can be used in another convolutional layer, which reduces
the processing time. The input 3D box has the same width
and height as the image itself and its depth is based on the
image’s colour depth. The input for the next layer is a 3D
box, characterized by the hyper-parameters of the previous
layer [2, 16].

The purpose of a pooling layer is to decrease the size of a
3D box. It transforms each input point, arranged in groups of
an image into a single value. Those groups can be compared
to the pixels in an image. Pooling layers do not have weights
and they do not influence the training of the network. There
exist different pooling layers, where max pooling and aver-
age pooling are the most used ones. When using max pool-
ing, each group of input points is transformed into a single
pixel with the greatest value of the group. Average pooling
works the same way but with the difference that the value
of the transformed pixel is the average of the group [2, 16].

Another layer type is the dense layer, which connects
every neuron with the neurons of the previous layer. In a
CNN, it means that every output 3D box is connected to
every neuron of the dense layer and passed through an acti-
vation function. Dense layers are often used at the end of
a neural network. The last dense layer usually makes the
classification task. Each classification class will then be one
output neuron with corresponding probabilities of the clas-
sification predictions [13, 16].

Dropout layers are necessary for preventing a neural net-
work to be overfitted. It sets in the training phase the number
of input elements to zero, which can lead to higher learning
rates. During the test, validation, and production phases, the
dropout layer is not used. Dropout layers are used in big
networks, where model overfitting is likely [2].

A convolutional neural network is made by putting all
these layers together. How many layers of which type are
used and depends on the use case [17].

2.2 Image classification with CNN

Image classification is one of the applications for a CNN.
It takes an image as an input and generates an output that
classifies the image to a certain class. The output also gives
a probability of whether the image belongs to a certain class
[18].

The classification task starts with data collection. Then,
the data have to be split into a training data set, a test data set
and a validation data set. The next step is to build the CNN
according to the use case. Next, the model is trained with the
training data set. During the training, the model is evaluated
constantly with the validation data set [19, 20]. The model
performance and accuracy are verified with the test data set.

If the classification task is binary, a single output neuron
is enough. The neuron output shows the probability of the
classification. In the case of more than one label, more out-
put neurons are needed [13].

3 Interpretability of machine learning
models

ML algorithms are used as black boxes and it is often not
clear how they produce specific results. At the same time,
and especially in critical applications, there is a need to trust
the algorithm, so that it makes the correct output [21]. Inter-
pretability in ML is the concept of understanding the predic-
tion of a model [22].

There exist several interpretability methods for human-
friendly explanations of ML models, especially their pre-
diction outcomes [23]. Without interpretability methods,
models are often evaluated only with accuracy metrics.
Explaining the prediction outcome means providing textual
or visual tools to display the relationship between the pre-
diction of the model and the involved in training data. The
focus of this research lies in explaining the two methods
LIME and SHAP [24].

3.1 LIME

The LIME, which is short for Local Interpretable Model-
agnostic Explanation, is a model-agnostic method which can
be used to provide simple interpretations to model predic-
tions. LIME is generally used for interpretations of models,
which are not highly complex [22, 25]. The method works
with the surrogate model technique, which suggests using a
simpler model to generate a prediction in exchange for the
complex original model. For ANN, this means that the origi-
nal model is transferred to an interpretable model, which
tries to replicate the behaviour of the original one. This
interpretable simpler model then produces the explanations
for the original NN model [26].

 Industrial Artificial Intelligence (2023) 1:10

1 3

 10 Page 4 of 15

The overall idea behind LIME as an interpretability
method may be explained based on Fig. 1. The model, which
needs to be interpreted, is a black box model. With LIME,
the goal is to create a white-box model, which is simpler
and, therefore, easier to provide the local explanations for
the original complex model. First, the influencing factors in
the black-box model for a single point of interest need to be
understood. The single point of interest, which is going to be
explained, is marked as the black cross (Fig. 1). The nonlin-
ear background in two colours represents the decisions made
about whether an instance belongs to one of the two classes.
Around the point of interest, a new data set is generated to
create the linear white-box model (a surrogate model). This
new data set consists of sample points represented as the
dots in Fig. 1.

These sample points are weighted corresponding to their
distance to the point of interest. Weight is graphically dis-
played by their size. A local linear model which is displayed
as the dotted line is then trained and used for the approxima-
tion of the original model. Instead of linear models, decision
trees can also be used as a choice for the local surrogate
model. Therefore, a local interpretation can be achieved, but
is not globally correct [22, 27].

The LIME method is implemented as a library in Python
and R for creating explanations of individual predictions.
The input data format can be text, images, or tabular data.
LIME can be used for multi-class predictions [23]. The
method was proposed in 2016 by Ribeiro et al. [24]. LIME
generates explanations for single instances by mapping input
data to an interpretable representation. This could be pixels
when working with images or a set of words when working
with text data [26].

In more detail, LIME perturbs the input data samples
and observes the change in the predictions to understand
the model [22]. Here, perturbation is a method that is used to
explain feature relevance. This is done by measuring altera-
tions in the prediction outputs when features are modified.
To succeed in explaining feature contribution, perturbation
replacing, ignoring nonsignificant features, and learning

attribution masks. LIME requires a large number of ran-
domly perturbed samples to compute local explanations for
complex ANN models. To produce an actual explanation,
a prediction of the class of every sample has to be done,
which needs significant computational power in the case of
a large-size network [26].

3.1.1 LIME for images

Using LIME for image interpretation differs from tabular
or text data. Here, the target cannot be reached by perturb-
ing individual pixels, because a huge number of pixels is
involved in predicting the class. The approach here is to seg-
ment the image into so-called superpixels that may be turned
on or off. During this process, several image variations are
generated. The superpixels consist of a number of intercon-
nected pixels, having a similar colour. Superpixels can be
turned on or off, where turned-off pixels are coloured in a
specific colour, for example, grey [22].

The steps for creating an image interpretation with LIME
are as follows. First, a prediction of the correct image class
with the trained ML model is to be made. The class with
the highest probability to be correctly predicted is used for
the interpretation. To create an interpretation, LIME builds
a new data set of random perturbations. A local surrogate
model is fitted, where the computed superpixels for the input
image are used to create the random perturbations. Those
superpixels are computed with the quick shift algorithm.
The number of perturbations is user-specific. The trained
model predicts the class of each perturbed image. Before fit-
ting the surrogate model, weights of the images, close to the
original image, have to be applied to suggest the importance
of the perturbed images. This importance is calculated with
a distance metric that gives the gap of each perturbation
to the original image (when all superpixels are on). This
weighting is done for all perturbed images in the data set.
Then, the surrogate model is fitted with the perturbations,
predictions, and weights. As result, a factor for each super-
pixel is calculated, which states the effect of the superpixel
on the right class prediction. The sorted factors are used to
decide on the most important for the prediction superpixels.
In addition, a heatmap can be overlayed to see the contribu-
tion of superpixels.

This result is the LIME interpretation, where shown
superpixels have the strongest impact on the prediction. In
addition, the result allows users to understand that the model
makes the prediction based on significant parts of the image
according to the predicted class. To validate the model, sev-
eral sample images are to be interpreted, and the overall
result must be evaluated [22, 28].

Fig. 1 Idea behind the LIME method [27]

Industrial Artificial Intelligence (2023) 1:10

1 3

Page 5 of 15 10

3.1.2 Advantages and disadvantages

Because of the representation of interpretable data, LIME is
used frequently for image and text analysis. It is one of the
few interpretability methods that could work with tabular
data, text data and images. The inner algorithm of LIME is
based on the generation of a simpler model to approximate
the original model. It allows the use of the same local, inter-
pretable model to do the interpretation [27, 29].

For an end user, it is easy to find an explanation in the
interpreted parts of an image or text and to understand it.
LIME is a good option for not very experienced ML users,
because LIME produces human-friendly explanations.

At the same time, LIME might not be the best option to
use when detailed prediction explanations are required.

For tabular data, LIME may also not be the best option,
since there are issues in finding the correct interpretable
representation. At the same time, there have been attempts
to solve this problem with several different transformation
methods.

What should also be considered when working with
LIME is that the needed data points are sparse and defining
a local neighbourhood is not a simple task. If the neighbour-
hood is changed, the explanation results are different, caus-
ing instability in the method. Due to the unstable outcomes
in the repeating sampling process, there is a need to check
for every iteration if interpretations make sense. As a result,
LIME is a promising method for high-dimensional data,
and its issues are to be overcome in its further development
phases [27, 29].

3.2 SHAP

SHAP is the abbreviation for Shapley Additive exPlanations.
It is an interpretability method with the idea to explain ML
models using a game theory approach [7]. This approach
considers a feature for a data instance as a player and the
prediction as a playout. The SHAP method works based on
Shapley values, which are used to rank the ML model’s fea-
tures. Overall, the SHAP approach considers all predictions,
which makes it more reliable and ensures stable results as
opposed to LIME. At the same time, this makes it more
computationally time-consuming. SHAP can be used both
for model-agnostic and model-specific techniques [23, 25]. It
is a post-hoc method used mainly in local interpretations, but
global ones are also possible. Before discussing, the SHAP
values are considered in more detail.

3.2.1 Shapley values

Shapley’s values came from the game theory. The relation-
ship between them can be seen as the players being included

in the model and the game reproduces the result of the ML
model [22]. For example, the Shapely values may be used to
predict the price of an apartment. For example, we are look-
ing for an apartment with the characteristics of being near a
park, having 50 m2 on the second floor with no cats allowed
and the price of €300,000. This prediction may be explained
by looking at each of these feature values individually and
explaining their contribution to the overall prediction. Say,
the amount of €310,000 is the average prediction the model
made for all apartments. The goal now is to compare the
average prediction to the prediction with emphasis on how
much each feature value contributed to that. For linear mod-
els, the effect is calculated through the weight of the feature
times the feature value.

SHAP estimates the effect through local models and
Shapley values, by assigning payouts to players, which
depends on their contribution to the total pay-out. The game
in this setting is the prediction task for a single element in
the data set. The earning is the made prediction minus the
average prediction for all elements. The players, as men-
tioned before, are the feature values of the element, which
help to get the earnings. In the apartment example, the pre-
diction of €300,000 was achieved through the feature val-
ues describing its characteristics. The goal of explaining the
difference was achieved by subtracting the €300,000 from
the average predicted €310,000 resulting in a difference of
− €10,000. The interpretation of the ML model could be,
for example, that the park contributed €30,000, the area
€10,000, the 2nd-floor €0 and the banned cat − €50,000
which results in the sum of − €10,000.

The Shapley value for one feature is calculated by the
average marginal contribution of this feature value above
all potential coalitions. A sample contribution of the banned
cat feature value appended to a coalition of a park is nearby
and the area can look like the following. A random apart-
ment from the data set is selected and its value for the floor
feature with a coalition of a park nearby, the banned cat and
the area feature. The previously 2nd-floor feature is now set
randomly as a 1st-floor feature. With this information, the
price of €310,000 is predicted. The next step is to elimi-
nate the banned cat feature and substitute it with a random
allowed or banned cat feature. Then, the price with the park
nearby and area coalition may be €320,000. The banned cat
feature contributed − €10,000 to the prediction, calculated as
€310,000 minus €320,000. These steps to create the interpre-
tation are based on the values for the floor and cat features
values from the randomly selected apartment. The estima-
tion will improve with every sampling step, whereby the
contributions are getting averaged. Such calculations need
to be done for all potential coalitions resulting in the Shapley
value, which is the average of all contributions to all poten-
tial coalitions [29].

 Industrial Artificial Intelligence (2023) 1:10

1 3

 10 Page 6 of 15

Shapley values are often used in the approximate solu-
tion, because their calculating takes up a lot of time due to
many possible coalitions. Furthermore, Shapley values tend
to be misinterpreted in a way that they are the difference
between the predicted value after deleting a certain feature
from the model. Instead, a Shapley value is the contribution
of a feature value to the difference that exists between the
mean and the actual prediction. This interpretability method
uses all features as opposed to LIME, where the option to
select is given. Shapley values deliver a full explanation,
provided through the full distribution among all included
feature values of the data instance. In addition, comparison
against a subset or a single data point is possible, not only
for average predictions as LIME does [26, 29].

3.2.2 SHAP method

SHAP is implemented as a python library. Due to the
assumption that the local surrogate model must not be linear,
SHAP is more time-consuming than LIME [30].

SHAP provides an interpretation, based on explaining
individual predictions. This is done by calculating the con-
tribution of every feature to the prediction with the Shapley
values. The feature values of an example data instance can
be seen as a player in a coalition according to the game
theory approach. A player can be a cluster of feature values
or a single feature value. As an example, the single feature
value can be distributed on superpixels for images. SHAP
has three required properties. The first one is local accuracy
to make the method efficient. The second one is missingness,
which helps with keeping the local accuracy in place and
is mostly relevant for constant features. The third property
is consistency. It ensures that if the model changes by its
contribution of a feature value, then the Shapley value also
changes accordingly [29].

There exist several approximation methods for calculat-
ing Shapley values, where KernelSHAP and TreeSHAP
[26] are most used once. KernelSHAP is a kernel-based
approximation approach and TreeSHAP is efficient for
tree-based models [29]. KernelSHAP is a combination of
linear LIME, and Shapley values and is a model-agnostic
implementation of SHAP. It is an algorithm that makes
the Shapley value approximation locally referred to a data
instance, by creating samples of possible coalitions. The
kernel in this case has the function of weighting the coali-
tions [26, 31]. To be more specific, the first step to cal-
culate the contribution of a feature to the prediction is to
define sample coalitions, and then to get a prediction for
each one of them. Afterwards, the SHAP kernel applies
weights, and the weighted linear model is fitted to return
the Shapley values to be further processed. The differ-
ence to LIME is that SHAP applies weights to the sample

instance based on the weight of the coalition and LIME
applies weights based on the original instance. The idea
here is to learn about features when they are isolated. For
example, when the coalition has only one feature, then the
effect this feature has on the prediction can be derived. The
same principle applies when the coalition consists of many
features. TreeSHAP uses the model-specific approach and
is faster than KernelSHAP. The principle of TreeSHAP is
to generate computations down the tree at the same time.
TreeSHAP may have the issue that a feature, which does
not influence the prediction, can be assigned other than
the zero value. This is the case, when a feature correlates
with another feature, significantly influencing the predic-
tion [22].

3.2.3 SHAP for images

SHAP for images is used mostly for image classification.
The idea here is to determine for every pixel in the predicted
image the level of pixel contribution to a certain class. To
make the interpretation, an NN model for image classifica-
tion is to be trained and next used for a prediction on a test
set image for every class. Finally, the SHAP values with the
help of the SHAP library are generated and visualized. The
interpretation of visualization of the images shows high-
lighted parts in shades of red and blue. The image labels
show the predicted classes in descending order of probabil-
ity. The red pixels indicate SHAP values that contributed in
a positive way to the classification of the labelled class. The
blue pixels indicate the opposite meaning, i.e., they contrib-
ute negatively to the prediction [32].

3.2.4 Conclusion

The SHAP interpretability method has a sound theoreti-
cal foundation. The method uses the distributed feature to
generate the Shapley values. SHAP relates to LIME, taking
the interpretable ML area a step further to be unified in an
overall approach. The possibility of providing global and
local explanations is also an advantage of SHAP. The Tree-
SHAP allows a user to create fast interpretations. The slower
KernelSHAP may be applied for the models, where TreeS-
HAP is not feasible. KernelSHAP can be time-consuming
for the computation of Shapley values if a lot of instances
are involved. In addition, creating misleading interpretations
is possible, for example, to hide biases [27, 29]. The final
comparison and evaluation of the LIME and SHAP methods
will be done in Sect. 5. The metrics will be derived from the
literature research.

Industrial Artificial Intelligence (2023) 1:10

1 3

Page 7 of 15 10

4 Implementation

For the implementation, a use case in the Smart Production
Lab of the FH JOANNEUM University of applied sciences,
Austria, was developed. The focus was on creating an ML
model for image classification for quality control and on
providing interpretability options for the developed model.
The product of the selected use case was a watch, manufac-
tured in the Smart Production Lab. One part of the product,
namely, the watch stand, was chosen for quality control.
The developed ML model classified two types of images.
The image taken of the watch stand could be considered
as “good”, which means that the product has the desired
quality, so that it can be further processed to be assembled
into the whole product. The other type of image classifies
the products with defects, with the consequence that these
products cannot be further processed. Therefore, the devel-
oped model distinguished between these two types, which
resulted in a binary classification problem. To analyse, why
the developed ML model made a certain prediction, the
methods LIME and SHAP were implemented. The results
were compared to provide a selection approach, helping the
industry in choosing a proper method based on the use case.

4.1 Machine learning model implementation

Figure 2 shows the methodology flowchart for the imple-
mentation stage of the ML model for image classification.
It is segmented into four major phases, namely, collection,
preprocessing, learning, evaluation, and prediction.

The starting point was to collect data by taking product
pictures, changing the lighting conditions, and adjusting
angles and perspectives. This process was done with prod-
ucts of the class “good” and “defect”. The second phase

started with splitting the image data into a train and test
set and labelling the images according to their class. The
last step was data augmentation to prepare for building the
CNN model. Layers and parameters were adjusted before the
training starts and the trained model could be validated. If
the results were not acceptable, then the adjusting repeated
again. After this, the model was verified by classifying a test
image data set to determine whether the model made the
correct prediction. The individual steps and milestones are
described next in more detail.

4.1.1 Experimental setup

The development of the ML model was done with a virtual
machine on a High-Performance Cluster (HPC) provided
by the FH Joanneum. The HPC is a network of servers that
works in parallel to increase computing power and, there-
fore, makes model training faster. To upload the image data
on the HPC, the open-source server- and client-software
FileZilla was used. Furthermore, Anaconda was applied
as the environment management system for installing, run-
ning and updating packages and their dependencies. Conda
was used in combination with the programming language
Python. As a development environment, the Jupyter-Note-
book was applied, which is an open-source, browser-based
tool that enables users to create documents with live-code,
text and visualizations. For the CNN implementation, the
open-source platform TensorFlow was used. TensorFlow
incorporates a lot of tools and libraries for ML applications.
In detail, the module Keras, which runs on top of Tensor-
Flow, was used. It is a deep learning Application Program-
ming Interface, written in Python for simple, flexible and
powerful use to solve ML tasks. Keras has a lot of libraries,
which can be used for the implementation of the ML model,
especially for image classification.

4.1.2 Data collection and preprocessing

For this use case, the images of the watch stands were made
with the camera of a smartphone. The camera of the brand
Sony has 64 megapixels, which was enough for the distinc-
tion between the classes. Furthermore, the images were
downsized to accelerate the computations. A possible series
of “good” products are shown in Fig. 3. Examples of defec-
tive parts are shown in Fig. 4.

These images were organized in a directory structure
for the model training and its further steps. The main data
directory had two subdirectories, called “train” and “test”. In
addition, these two directories both had two subdirectories
called “defect” and “good”. This structure is due to using
Keras, because it recognizes the classes according to the
directory names. 80% of acquired data were used for model
training and 20% for testing purposes. The number of images Fig. 2 Methodology flowchart of the model implementation

 Industrial Artificial Intelligence (2023) 1:10

1 3

 10 Page 8 of 15

taken for one class was 6007. This number was split into
the “test” and “train” directories, resulting in 4806 pictures
(both “defect” and “good”) in the “train” directory and 1201
images in the “test” directory (“defect” and “good”). In total,
12,014 images were taken to generate the data to create an
image classification ML model. To speed up the process,
image retrieval was performed by making a video of the
product parts in different angles and positions with different
lighting conditions. Then, the video frames were cut out to
be used as the images.

4.1.3 Model description

The implementation of the ML model was based on Keras
libraries. The model consists of the core data structure of
Keras, namely, layers. The simple sequential model was
used, which is a linear stack of several layers. The model
consisted of three major convolutional layers, three Max-
Pooling layers, one flattens layer and one dense layer. This
structure had been chosen by an experimental approach. This
means, during the development phase, different design struc-
tures were created and evaluated. Once the desired result
with the intended accuracy was achieved, this model struc-
ture was selected to work with.

The next step was compiling the model to initiate the
learning process. Then, the actual training could start.
This was done by iterating over the training data with the
fit() function. The training was done for 10 epochs, which
means that the entire training data set was passed through

the developed CNN ten times. For every epoch, the weights
were changed to create higher accuracy outputs. To opti-
mize passing the entire data set through the network, data
were divided into batches with the size 50 (the number of
images used at once to pass the CNN). Iterations of batches
were used until all images from the data set were through
to complete one epoch. For this configuration, the training
process took up around 2 min and 20 s to complete. The
entire process, from loading the images to training the model
to verify the results, took up 6 min and 30 s.

The overall model accuracy at the end of the training
with 10 epochs was about 99%. The corresponding confu-
sion matrix for the model validation can be seen in Table 1.
The model made the prediction for every 1201 «good» and
1201 «defect» images. The model predicted 1197 images,
that were labelled as good, to actually be good, and only four
of these good images got predicted as defective ones. The
second line in the confusion matrix says that 1199 images
that are labelled as «defect» were classified correctly and
only two of those were classified as «good» ones.

4.2 LIME interpretation methodology

The methodology of creating the interpretation with LIME
included several steps (Fig. 5). The first step is to choose
an image from the test data set. After this, the data were
randomly perturbed by turning superpixels on and off and
those newly generated samples were weighted. The weight-
ing of the samples was done by the means of their proxim-
ity to the region of interest. Based on the new samples, a
prediction was made with the original model. Thereafter, a
new weighted model with the newly generated data set was
trained and referred to as the interpretable or the local sur-
rogate model. After the feature selection, the local surrogate
model was interpreted with the prediction on the test image
and its result was displayed.

Fig. 3 Series of product images of the class “good”

Fig. 4 Series of product images of the class “defect”

Table 1 Confusion matrix

Predicted good Predicted
defective

Actually good 1197 4
Actually defected 2 1199

Fig. 5 Methodology chart of the LIME method

Industrial Artificial Intelligence (2023) 1:10

1 3

Page 9 of 15 10

The idea behind the process is that LIME uses deci-
sion boundaries for the two classes. The prediction of an
instance, also called a data point, gets then the explanation.
This explanation is generated by creating a new data set of
around the data point’s located perturbations. Every per-
turbation gets predicted from the ML model and classified
into the class “good” or “defect”. Every perturbation has a
level of importance. Perturbations are more important when
the distance to the original data point is small. Next, these
distances are used to calculate the weights. These prepara-
tions are used to create the local surrogate model. The key
components to make the interpretation, therefore, are the
newly generated data set, the predictions on the new samples
and their weights.

4.2.1 Software implementation

For implementation, the LIME libraries of version 0.2.0.1
were used. The LimeImageExplainer was used to create the
LIME explainer instance. The parameters were the image,
on which the interpretation should be done and the model to
be used for the prediction. The top_labels parameter induces
to have a look at the top two predictions for the test image,
since in this use case there were only two classes. The hide_
color parameter represents the colour for a superpixel that
is turned off (i.e., it is not relevant for the prediction made).
In addition, the num_samples parameter sets the number of
the generated artificial data points.

Applying the LIME explainer results in the explanation
of the prediction in the form of the LIME interpretation. The
first image in Fig. 6 shows the top five superpixels that are
the most important towards the correctly classified class.
The rest of the image is hidden. The second image in Fig. 6
shows the same interpretation but in a different representa-
tion style.

The red highlighted parts equal the hidden parts of the
first image and indicate that these parts contribute negatively
or have no impact on the correctly made prediction. Whereas
the green highlighted parts contribute positively to the made
prediction and played a significant role in it. The coloured

parts show the increase or decrease in the probability of the
image to be classified to the first or the second class.

Another explanation method of LIME interpretation is
to use a heatmap, which plots the explanation weights (see
Fig. 7). The colorbar on the right displays the values of the
weights in the image. To create this heatmap, every expla-
nation weight was mapped to its corresponding superpixel
and then plotted using different colours. With that, a more
detailed insight into the interpretation can be given, showing
how the superpixels are contributed. For example, the light
pink part in the middle is an important one, belonging to the
positively contributed part.

4.2.2 Result interpretation

Figures 8 and 9 allow us to get a better understanding of the
LIME interpretations on different sample images. In these
images, the green highlighted parts represent the positively
contributed superpixels to the correct prediction and the red
highlighted parts are the negatively or not contributed super-
pixels. For all presented in Figs. 8 and 9 sample images, the
ML model made the correct prediction. It classified all the
images in Fig. 8 as “good” products and all images in Fig. 9
as “defect” ones. With this graphically displayed interpreta-
tion, it gets clear that the edges and screws on the images of
the class “good” were important for the made predictions.
For the “defect “class, LIME interpretations focused on the

Fig. 6 LIME interpretation image

Fig. 7 Heatmap of the LIME interpretation image

Fig. 8 Example of LIME interpretations of the class “good”

 Industrial Artificial Intelligence (2023) 1:10

1 3

 10 Page 10 of 15

edges and the screws of the product; and also, the holes
played a significant role. It coincides with the way a human
would classify the images, which makes the model more
comprehensible and promotes confidence towards its real-
life application in the industry.

To describe the interpretation in more detail, the first
image of Fig. 8 may be used. In this image, the bottom screw
is the most important for the correct prediction. The parts of
the image towards the upper screw increased the probability
the image was classified into the correct class “good”. In
the first image of Fig. 9, it appeared that nearly part of it
contributed positively to the correct prediction. However,
one corner with an exactly framed screw is highlighted red.
This means that the model considered this screw as a part
of a “good” product, but because of the other three screws,
the model classified it to the class “defect”. In this way, a
close look at interpreted images is needed to understand the
LIME interpretation and to encourage the model’s decisions.
Another result can be that the model makes its prediction
based on irrelevant parts of the image and thus it should not
be trusted.

4.3 SHAP implementation

Figure 10 summarizes the most important steps of a SHAP
interpretation. SHAP is also a post-hoc method, meaning the
interpretation is done on a single image from the test data set
after the model training. The original ML model makes the
prediction on the chosen test image. Then, the contribution
of each feature is calculated. The obtained information is
used to compute the Shapley values to make the interpreta-
tion. The last step is to display the interpretation by plotting

the test image with the visualized SHAP interpretation over
it.

SHAP interpretation process aims at explanation of the
prediction of a single instance in the test image. This is
achieved by calculating the contribution of each feature to
a certain prediction class. Shapley values are computed to
provide information on distribution of the prediction among
the features. For image classification, the pixels in an image
are grouped into superpixels and the prediction is allocated
to them.

4.4 Software implementation

Programming of the SHAP interpretation method starts with
importing and initializing the shap Python package. In the
implementation, SHAP of the version 0.40.0 was used. The
two class labels “good” and “defect” were defined. After
this, an image from the test data set was chosen and loaded
into the Jupyter-Notebook. To create the visual explana-
tion of the test image, a mask to be defined for blurring
the interpretation of the original image. The shape of the
image needed to be defined to place the correct fitting mask
over the original image. The next step is to use the SHAP
library to generate the SHAP values. The primary explainer
of SHAP was used to create the interpretation of the predic-
tion of the image. This explainer using every combination
of the model and the masker to return a subclass object. This
is achieved with the explainer constructor with parameters:
the trained CNN model, the previously described masker
and the class labels in the form of a list. The parameters of
the object include the image on which the interpretation is
to be made and the number of sample images that should
be taken from the test data set. Furthermore, the number of
evaluations of the ML to estimate the SHAP values were
defined. This number defines the duration of the explanation,
and correspondingly, the quality of the approximation. In
this use case, the size of the batch of the evaluation was set
to 50. The output includes two interpreted images and the
original image. The last step is then to plot the SHAP values
to see the interpretation visually.

Applying the SHAP values and plotting the result can
be seen in Fig. 11. The first image is the original image
from the test data set. The second image shows the SHAP
interpretation and provides the information of the predic-
tion result. Here, the test image was classified as “good”.
The third image is assigned to the class with the second
highest probability. Note, it is possible to show more than
two classes for multiclass classification problems. Whether
the prediction was done correctly or not can be seen in the
plotted SHAP result. The image highlights the SHAP inter-
pretation in the shades of red and blue (in the background
the original product can be seen).

Fig. 9 Example of LIME interpretations of the class “defect”

Fig. 10 Methodology process chart of the SHAP method

Industrial Artificial Intelligence (2023) 1:10

1 3

Page 11 of 15 10

The highlighted by red parts mean that they contributed
positively to the made prediction. In addition, the blue high-
lighted parts contributed negatively to the prediction. Work-
ing with superpixels makes it easier to recognize the parts in
the image that are important for the prediction. The darker
the shade of red or blue is the higher is the contribution
to the classification of the particular class. This means the
parts, which were shaded darker are more important vs the
pale colors. It can also be seen by the colorbar at the bot-
tom, which represents the SHAP values corresponding to
the color shade.

4.4.1 Result interpretation

The SHAP method was executed on different sample images
from the test data set. A collection of the class “good” is
shown in Fig. 12 and of the class “defect” in Fig. 13. Both

collections contain eight randomly chosen images from the
test data set that got interpreted with the SHAP method.
On these images, the red highlighted parts represent the
positively contributed superpixels to the correct prediction
and the image parts with the blue highlighted superpixels
contributed negatively to the prediction. All these 16 exam-
ple images were classified correctly to their classes by ML
model. Unlike the visual interpretation of LIME, the edges
of the products in case of the SHAP do not play an important
role in the explanation of the prediction. At the same time,
important become the screws, which are placed correctly in
the “good” images, misplaced besides the product and also
holes without screws in the “defect” images.

To describe the interpretation of SHAP in more detail,
let us consider the first plotted result in Fig. 12. It shows
the product of the class “good” with two correctly placed
screws. The visualized interpretation presented besides the
actual image highlighted superpixels in shades of red and
blue according to the computed SHAP values. The dark-
est highlighted parts are shown in the places of the screws.
This makes it easy to understand why the model classified
this image as “good”. There are also red highlighted parts
but with a lighter shade. For this and for other images, the
black shadow of the screw is sometimes considered as a
hole, which is a significant feature for a “defect” product.
These are then highlighted blue, because the ML model
would classify a product with a hole as “defect”, even though
the product is “good”. Thus, these pixels contributed nega-
tively to the result. However, the image is still classified
as “good”, because the other features are superior. It can
be seen for the second classification with the label “defect”

Fig. 11 SHAP interpretation image

Fig. 12 Example collection of SHAP interpretations of the class
“good”

Fig. 13 Example collection of SHAP interpretations of the class
“defect”

 Industrial Artificial Intelligence (2023) 1:10

1 3

 10 Page 12 of 15

that the highlighted pixels have exactly the opposite colour
on the same place. This shows that if the image had been
classified as “defect”, then the parts of the image that are
actually considered “good” in that case contribute negatively
to the prediction.

Let us also consider the first image of the class “defect”
in Fig. 13. This example has nearly the same amount of
highlighted red and blue parts, which means that it was not
completely sure for the ML model to which class the image
belongs. The two holes in the product contributed positively
to the correctly made prediction, since they were highlighted
in a darker-shaded red. However, the two additional screws
were highlighted blue, which means that they contributed
in a negative way. This behaviour can be explained by the
fact that “good” products have exactly two screws in the
same position. These are the features that contributed to the
“good” classification. Another aspect here is the shadow
of the product, which showed these parts of the image as
important for the prediction. Looking at sample images
which were interpreted with SHAP, it gets clear based on
which features the ML model makes its classification predic-
tion. Having this knowledge, the ML model can be improved
further, for example, by eliminating shadows that interfere
with the significant parts of the image.

5 Comparison and evaluation

This section compares LIME and SHAP methods through
functionality metrics, derived from the literature.

5.1 Computational time to explain the prediction

The computational times, needed to derive the explanation
of the prediction, were retrieved during the execution of the
Python code for each method in the same controlled condi-
tions. There were two types of times measured. The first one
was the CPU time (execution time). It measures how much
time has elapsed until the CPU has executed the core pro-
gram (without initializing variables and plotting the result).
The second one was the wall time (running time), which
measures the total time to execute the program. Since the
execution of the program was done on a high-performance
cluster, the wall time was smaller than the CPU time to
compute the interpretation. For LIME, the CPU time for the
same ML model was 12.2 s, and for SHAP, it was 11.8 s. The
wall time for LIME was 4.8 s and for SHAP 2.29 s. Thus, for
this specific use case, program implementation of the SHAP
method is slightly faster than LIME. In addition, based on
the literature, LIME is generally faster when not used for
image data, but for text or tabular data.

5.2 Presentation of the interpretation

Both methods present their results visually in a simple,
and easy-to-understand form. The representation of the
explained prediction in both cases is an overlay to the origi-
nal image from a test data set. Indicating the positive or
negative contributed parts is made by the colour palette, both
for LIME and SHAP. However, LIME uses only two colours,
which highlights either a strictly positive or negative con-
tribution. Whereas SHAP uses different shades of the two
colours, which makes the interpretation more expressive.
Thus, SHAP provides more information, and a conclusion
can be drawn, which positively contributed parts are more
important than others. A similar option provides the LIME
heatmap, by segmenting the superpixels according to their
weights, but this is only to be seen as additional information.
To conclude on the explanatory power, SHAP appears to
have a more informative way of expressing and representing
the interpretation of the ML model prediction.

5.3 Interpretability

LIME and SHAP are primarily local interpretability meth-
ods, meaning that they are unaware of the inner structure
of the model. The option that SHAP provides for global
interpretability is to sum all individual predictions of the
SHAP values. Although both methods are primarily local,
they use different approaches. LIME builds local surrogate
linear models for each prediction that gets explained. This
creates a white-box model from the initial black-box model.
However, this approach is limited to the local neighbourhood
of the model. SHAP uses the Shapley values to determine
the average marginal contribution of all feature values for
all possible coalitions. This means that SHAP investigates
all possible predictions of the image or non-image data. This
approach ensures that the interpretations of SHAP are accu-
rate and consistent. In some literature sources, it is suggested
that LIME is a subset of SHAP with a lack of consistency
or accuracy.

5.4 Applicability

LIME and SHAP are the most common methods in ML
interpretability. Therefore, they are applicable to differ-
ent use cases and different data types in industrial set-
tings. Both methods have Python implementation, which
is currently the most used programming language in ML
applications. We need to note that the selection of the
method may depend on a specific ML algorithm. In this
use case, both methods were applied for CNN. At the same
time, for a model built with the k-nearest neighbour algo-
rithm, computing the SHAP values will take a long time,
in comparison with LIME. Furthermore, using LIME and

Industrial Artificial Intelligence (2023) 1:10

1 3

Page 13 of 15 10

SHAP on Keras machine learning models works out of
the box. However, LIME, for example, cannot be used on
an XGBoost machine learning model without creating a
workaround. In conclusion, LIME and SHAP are generally
well-applicable in industrial settings in contrast to similar
methods, for example, Anchors.

5.5 Replicability and reliability

Recomputing the SHAP values on similar images will
always result in a similar explanation output. Thus, SHAP
is a stable interpretability method, where the explanation
output can be replicated. On the other hand, for the LIME,
explanation outputs for similar images can be different. This
problem arises because of the rather weak approximated
local surrogate model in relation to the original black-box
model. This is the case because of the perturbation step of
LIME, which can differ when repeated. For our use case,
LIME results differ slightly in the form of smaller bound-
ary shifts from the positively or negatively contributed side.
Superpixels, which were at the tipping point between the
positive or negative contribution, changed in the repeated
sampling process. However, the differences in the results for
LIME interpretations were minimal.

5.6 Implementability effort

Both methods are easy to implement with a correspond-
ing python library. The programming effort depends on
the industrial use case, available data and the selected ML
model. After the data preparation step, the right design is to
be found for the ML model. In conclusion, the implementa-
bility effort of LIME or SHAP methods for a programmer
is quite similar.

5.7 Limitations

Implementation of the method should be always examined,
and the results should not be blindly trusted. Due to sample
variations, LIME lacks a guarantee of producing stable and
consistent results for similar images. Furthermore, LIME
limits itself to producing local surrogate models with dif-
ferent quality levels, since the fit of the data to the model
cannot be controlled. There are no clear instructions on how
many features to select for the local surrogate LIME model,
which may result in either too complex or too simple inter-
pretation. In addition, SHAP is generally known to be slower
than LIME when many instances need to be computed. This
can be a significant criterion for the selection of the corre-
sponding method in the industrial context.

6 Conclusion and future work

The development in artificial intelligence and especially
ML methods is fast-moving and makes enormous progress
every year [33–37]. While in some industrial areas, ML
concepts are used productively, in others implementation
is lagging. Industries, which want to stay competitive must
deal with the introduction of ML in their corporate pro-
cesses, for example, in automated quality control. At the
same time, ML is often used without proper interpreta-
tion of the models. The question of why the model makes
a certain prediction cannot be answered. Therefore, the
use of explainability and especially, interpretability meth-
ods, becomes an increasingly important approach, which
should be established in every company that uses machine
learning applications.

This work introduces the ML interpretability methods
for image classification in industrial use. Specifically, it
implements and examines LIME and SHAP methods. To
limit the area of application, the focus was given to apply-
ing the methods for a binary image classification, which
was performed using a CNN algorithm. Due to a limited
scope, the research insights and recommendations are
valid for the developed use case. At the same time, the
proposed recommendations and evaluation scheme can be
used in similar use cases in the industry.

Application of the interpretability methods to the pre-
dictions of an ML model provides a better understanding
of the model work. In our use case, based on the interpret-
ability methods, the ML model for image classification
was redesigned and reached an accuracy score of 99%.

Another result is giving users insights to understand
the incorrect image classification, for example, that the
ML model may consider a shadow of a screw as a hole
(which is a criterion for a “defect” product). In general,
any shadows of the product played a significant role in ML
prediction. From that, it can be concluded that the experi-
mental setup should be improved by adding light sources
to minimize the shadows.

The literature research provides the answer to the first
research question and selects the approaches (the LIME
and the SHAP methods). The results of the comparison
of the methods showed that they produce similar results
based on different approaches. The SHAP method is, in
some aspects, superior to the LIME method. SHAP has a
more elaborated theoretical foundation behind the com-
putation of the interpretation values and produces more
stable and consistent results. In addition, in the SHAP
method, the visual interpretation is more detailed and rea-
sonable, which leads to the possibility to draw rich conclu-
sions. While LIME was described in the literature sources
as the faster alternative for SHAP, for the selected use

 Industrial Artificial Intelligence (2023) 1:10

1 3

 10 Page 14 of 15

case, SHAP was faster than LIME. Both methods operate
at a local level, which means they interpret not the whole
model, but only the final predictions. Based on these
results, the second research question is answered with the
selection of the method SHAP. It can be recommended as
the most effective option when providing interpretability
for an ML model for image classification in the industrial
context.

Future work would be to evaluate the selected methods
on different use cases and ML models Further research
must be done, since the existing interpretability methods
are only at the beginning of their development and need to
be evaluated in their industrial applications towards gain-
ing an understanding of ML results.

Author contributions We acknowledge that the authors have con-
tributed significantly and are in agreement with the content of the
manuscript.

Funding Not applicable.

Availability of data and materials Data are available upon request to
the authors.

Declarations

Competing interests We acknowledge that authors have no competing
interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Oks SJ, Frietzsche A, Lehmann C (2016) The digitalization of
industry from a strategic perspective. In: Presented at the R&D
management conference from science to society: innovation and
value creation, Cambridge, United Kingdom

 2. Bonaccorso G (2017) A gentle introduction to machine learning.
In: Machine learning algorithms—a reference guide to popular
algorithms for data science and machine learning, Birmingham,
United Kingdom, pp 6–9

 3. Zhang X (2020) Machine learning. A matrix algebra approach to
artificial intelligence, 1st edn. Springer, Singapore, pp 223–224

 4. Dosilovic FK, Brcic M, Hlupic N (2018) Explainable artificial
intelligence: a survey. In: Presented at the 41st international
convention on MIPRO, Opatija, Croatia, pp 210–215

 5. Bhatt U et al (2019) Explainable machine learning in deployment.
In: Presented at proceedings of the 2020 conference on fairness,
accountability and transparency, Cambridge, United Kingdom

 6. Ribeiro MTC (2021) Lime. https:// github. com/ marco tcr/ lime.
Accessed 2 Jan 2022

 7. Lundberg S (2018) Shap documentation. https:// shap. readt hedocs.
io/ en/ latest/ index. html. Accessed 14 May 2022

 8. Mohri M, Rostamizadeh A, Talwalkar A (2018) Introduction.
Foundations of machine learning, 2nd edn. MIT Press, Cam-
bridge, pp 2–3

 9. Flach P (2012) The ingredients of machine learning. Machine
learning—the art and science of algorithms that make sense of
data, 1st edn. Cambridge University Press, Cambridge, p 14

 10. Lindsay GW (2020) Convolutional neural networks as a model
of the visual system: past, present, and future. J Cogn Neurosci
33:1–15

 11. Abiyev RH, Ma’aitah MKS (2018) Deep convolutional neural
networks for chest diseases detection. J Healthc Eng. https:// doi.
org/ 10. 1155/ 2018/ 41685 38

 12. Zou L et al (2019) A technical review of convolutional neural
network-based mammographic breast cancer diagnosis. Comput
Math Methods Med 2019:1–16

 13. Géron A (2019) Introduction to artificial neural networks with
Keras. Hands-on machine learning with scikit-learn, Keras, and
TensorFlow, 2nd edn. Sebastopol, O’Reilly, pp 277–291

 14. Neapolitan RE, Jiang X (2018) Neural networks and deep learn-
ing. Artificial intelligence—with an introduction to machine
learning, 2nd edn. CRC Press, Boca Raton, pp 373–379

 15. Shai S-S, Shai B-D (2014) Neural networks. Understanding
machine learning—from theory to algorithms. Cambridge Uni-
versity Press, New York, pp 228–230

 16. Heaton J (2015) Convolutional neural networks. Artificial intel-
ligence for humans volume 3: deep learning and neural networks.
Heaton Research Inc., Chesterfield, pp 186–194

 17. Raschka S, Vahid M (2017) Implementing a deep convolutional
neural network using TensorFlow. Python machine learning, 2nd
edn. Birmingham, Packt, pp 514–515

 18. Bonner A (2019) The complete beginner’s guide to deep learning:
convolutional neural networks and image classification. https://
towar dsdat ascie nce. com/ wtf- is- image- class ifica tion- 8e78a 8235a
cb. Accessed 30 May 2022

 19. Hossain A, Sajib SA (2019) Classification of image using convo-
lutional neural network (CNN). Glob J Comp Sci Technol 19:1–7

 20. Lee S (2020) How to train neural networks for image classifica-
tion—Part 1. https:// sandy- lee. medium. com/ how- to- train- neural-
netwo rks- for- image- class ifica tion- part-1- 21327 fe1cc1. Accessed
30 May 2022

 21. Rebala G, Ravi A, Churiwala S (2019) Machine learning defini-
tion and basics. An introduction to machine learning. Springer
Press, Cham, pp 1–2

 22. Nandi A, Pal AK (2022) Interpreting machine learning models.
Apress, Bangalore, pp 141–278

 23. Agarwal N, Das S (2020) Interpretable machine learning tools:
a survey. In: Presented at the IEEE SSCI, pp 1528–1534. https://
doi. org/ 10. 1109/ SSCI4 7803. 2020. 93082 60

 24. Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you?
Explaining the predictions of any classifier. arXiv preprint, pp
1–10

 25. Das S et al (2020) Taxonomy and survey of interpretable machine
learning method. In: Presented at the IEEE SSCI, pp 670–677

 26. Kamath U, Liu J (2021) Explainable artificial intelligence: an
introduction to interpretable machine learning. Springer Press,
Cham, pp 192–224

 27. Biecek P, Burzykowski T (2021) Explanatory model analysis—
explore, explain and examine predictive models. CRC Press, Boca
Raton, pp 95–115

http://creativecommons.org/licenses/by/4.0/
https://github.com/marcotcr/lime
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://doi.org/10.1155/2018/4168538
https://doi.org/10.1155/2018/4168538
https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb
https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb
https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb
https://sandy-lee.medium.com/how-to-train-neural-networks-for-image-classification-part-1-21327fe1cc1
https://sandy-lee.medium.com/how-to-train-neural-networks-for-image-classification-part-1-21327fe1cc1
https://doi.org/10.1109/SSCI47803.2020.9308260
https://doi.org/10.1109/SSCI47803.2020.9308260

Industrial Artificial Intelligence (2023) 1:10

1 3

Page 15 of 15 10

 28. Cian D, Gemert JV, Lengyel A (2020) Evaluating the performance
of the LIME and Grad-CAM explanation methods on a LEGO
multi-label image classification task. arXiv preprint

 29. Molnar C (2021) Model-agnostic methods. Interpretable machine
learning—a guide for making black box models explainable, 2nd
edn. Munich, Christoph Molnar, pp 140–178

 30. Nayak A (2019) Idea behind LIME and SHAP. https:// towar
dsdat ascie nce. com/ idea- behind- lime- and- shap- b603d 35d34 eb.
Accessed 29 July 29 2022

 31. Lundberg S, Lee S-I (2017) A unified approach to interpreting
model predictions. In: Proc. ICNIP, Long Beach, CA, USA, pp
4768–4777

 32. Zhang T (2021) Deep learning model interpretation using SHAP.
https:// towar dsdat ascie nce. com/ deep- learn ing- model- inter preta
tion- using- shap- a2178 6e91d 16, Accessed 29 July 2022

 33. Hartner R, Mezhuyev V (2022) Time series-based forecasting
methods in production systems: a systematic literature review.
Int J Ind Eng Manag 13(2):119–134. https:// doi. org/ 10. 24867/
IJIEM- 2022-2- 306

 34. Hartner R, Komar J, Mezhuyev V (2022) An approach for increas-
ing the throughput of CNN-based quality inspections systems in
constrained environments. In: 11th international conference on
software and computer applications (ICSCA 2022), February
24–26, 2022, Melaka, Malaysia, pp 179–184. https:// doi. org/ 10.
1145/ 35243 04. 35243 30

 35. Mezhuyev V, Gunchenko YO, Shvorov SA, Chyrchenko DV
(2020) A method for planning the routes of harvesting equip-
ment. Autosoft. Advanced ICT and IoT technologies for the fourth
industrial revolution, vol 25

 36. Hartner R, Mezhuyev V, Tschandl M, Bischof C. Data-driven digi-
tal shop floor management: a practical framework for implementa-
tion. In: ACM proceedings of the International conference ICSCA
2020, February 18–21, 2020, Langkawi, Malaysia, pp 41–45

 37. Mueller C, Mezhuyev V (2022) AI models and methods in
automotive manufacturing: a systematic literature review. In:
Al-Emran M, Shaalan K (eds) Recent innovations in artificial
intelligence and smart applications, vol 1061. Studies in com-
putational intelligence. Springer, Cham. https:// doi. org/ 10. 1007/
978-3- 031- 14748-7_1

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Anja Stadlhofer received a bach-
elor’s degree in information
management from FH Joan-
neum, Graz, Austria, and is cur-
rently studying in the master’s
program of international indus-
trial management at FH Joan-
neum, Kapfenberg, Austria,
where she focuses on the
research field of machine learn-
ing. She is presently working as
an IT project manager.

Vitaliy Mezhuyev Ph.D. (Educa-
tional Technology), Kyiv
National Pedagogical University,
Ukraine; 2002; ScD (Informa-
t ion Technology) , Odesa
National Technical University,
Ukraine, 2012. Professor of
informatics in Berdyansk State
Pedagogical University, Ukraine,
2004–14. Professor of informat-
ics in University Malaysia
Pahang, 2014–19. From 2019
with the Institute of Industrial
Management in FH Joanneum,
Kapfenberg, Austria. Visiting
professor at six international uni-

versities. Participated in multiple international scientific and industrial
projects, devoted to the design, development, and formal verification
of computer systems. Published over 140 scientific papers in peer-
review journals, including highly reputed venues such as Complexity,
Computers & Education, Cybernetics and Systems, IEEE Access,
Information Management, Intelligent automation and soft computing,
Technology in Society among many others.

https://towardsdatascience.com/idea-behind-lime-and-shap-b603d35d34eb
https://towardsdatascience.com/idea-behind-lime-and-shap-b603d35d34eb
https://towardsdatascience.com/deep-learning-model-interpretation-using-shap-a21786e91d16
https://towardsdatascience.com/deep-learning-model-interpretation-using-shap-a21786e91d16
https://doi.org/10.24867/IJIEM-2022-2-306
https://doi.org/10.24867/IJIEM-2022-2-306
https://doi.org/10.1145/3524304.3524330
https://doi.org/10.1145/3524304.3524330
https://doi.org/10.1007/978-3-031-14748-7_1
https://doi.org/10.1007/978-3-031-14748-7_1

	Approach to provide interpretability in machine learning models for image classification
	Abstract
	1 Introduction
	2 Machine learning fundamentals
	2.1 Convolutional neural networks
	2.1.1 Artificial neural networks
	2.1.2 CNN layers

	2.2 Image classification with CNN

	3 Interpretability of machine learning models
	3.1 LIME
	3.1.1 LIME for images
	3.1.2 Advantages and disadvantages

	3.2 SHAP
	3.2.1 Shapley values
	3.2.2 SHAP method
	3.2.3 SHAP for images
	3.2.4 Conclusion

	4 Implementation
	4.1 Machine learning model implementation
	4.1.1 Experimental setup
	4.1.2 Data collection and preprocessing
	4.1.3 Model description

	4.2 LIME interpretation methodology
	4.2.1 Software implementation
	4.2.2 Result interpretation

	4.3 SHAP implementation
	4.4 Software implementation
	4.4.1 Result interpretation

	5 Comparison and evaluation
	5.1 Computational time to explain the prediction
	5.2 Presentation of the interpretation
	5.3 Interpretability
	5.4 Applicability
	5.5 Replicability and reliability
	5.6 Implementability effort
	5.7 Limitations

	6 Conclusion and future work
	References

