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Abstract
Background  Machine learning (ML) can be promising for stratifying patients into homogeneous groups and assessing mortal-
ity based on score combination. Using ML, we compared mortality prediction performance for clustered and non-clustered 
models and tried to develop a simple decision algorithm to predict the patient’s cluster membership with classification and 
regression trees (CART).
Methods  Retrospective study involving patients requiring ICU admission (1st January 2011–16th September 2022). Clusters 
were identified by combining Charlson Comorbidity Index (CCI) plus Simplified Acute Physiology Score II (SAPS II) or 
Sequential Organ Failure Assessment (SOFA). Intercluster and survival analyses were performed. We analyzed the relation-
ship with mortality with multivariate logistic regressions and receiver operating characteristic curves (ROC) for models with 
and without clusters. Nested models were compared with Likelihood Ratio Tests (LRT). Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) were compared for non-nested models. With the best model, we used CART to 
build a decision tree for patient’s membership.
Results  Our sample consisted of 2605 patients (mortality 59.7%). For both score combinations, we identified two clusters 
(A and B for CCI + SAPS II, α and β for CCI + SOFA). Belonging to cluster B/β was associated with shorter survival times 
(Peto-Peto p-values < 0.0001) and increased mortality (Odds-ratio 4.65 and 5.44, respectively). According to LRT and ROC 
analysis, clustered models performed better, and CCI + SOFA showed the lowest AIC and BIC values (AIC = 3021.21, 
BIC = 3132.65). Using CART (β cluster positive case) the accuracy of the decision tree was 94.8%.
Conclusion  Clustered models significantly improved mortality prediction. The CCI + SOFA clustered model showed the 
best balance between complexity and data fit and should be preferred. Developing a user-friendly decision-making algorithm 
for cluster membership with CART showed high accuracy. Further validation studies are needed to confirm these findings.

Keywords  Charlson Comorbidity Index · Simplified Acute Physiology Score II · Sequential Organ Failure Assessment · 
Cluster analysis · Classification and regression tree · Mortality

1  Introduction

The critical care landscape is continuously evolving, with 
intensive care unit (ICU) scores being pivotal in stratify-
ing mortality risks among heterogeneous patient popula-
tions. Although tools like the Charlson Comorbidity Index 
(CCI) [1], Simplified Acute Physiology Score II (SAPS II) 
[2], and Sequential Organ Failure Assessment (SOFA) [3] 
are routinely used, they are not without limitations. These 
scores, while informative, often fail to capture the multifac-
eted nature of an ICU patient’s condition due to their focus 
on isolated variables.
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From a clinical point of view, it would be more attractive 
to know which group of patients has a higher mortality risk 
than the individual patient’s risk. In this context, machine 
learning (ML), applying unsupervised/supervised algo-
rithms, can be promising in stratifying patients into homo-
geneous groups and accurately assessing mortality based on 
score combination [4].

Cluster analysis (CA), a group of multivariate mathemati-
cal algorithms, is an unsupervised ML algorithm that divides 
data into groups or clusters based on similar characteristics 
without a priori hypotheses [5]. CA quantifies the similarity 
between individuals within a population based on multiple 
specified variables. In the ICU, CA can be applied to identify 
subgroups of patients with similar demographic, clinical, 
and prognostic characteristics, providing a detailed overview 
and a more in-depth assessment of the cluster-related mor-
tality risk [6, 7]. However, the choice of variables represents 
the main source of variability and lack of repeatability of the 
results, limiting generalizability.

A second important aspect for the clinician is to know 
whether a patient, upon entry into the ICU, belongs to a 
specific cluster or not. The classification and regression tree 
(CART) algorithm, a supervised ML algorithm, is a predic-
tive modeling technique that creates a binary decision model 
predicting the value of a target variable by learning simple 
decision rules inferred from the data features [8].

In this monocentric retrospective study, we used ML to 
perform CA based on the alternative combination of CCI 
plus SAPS II and CCI plus SOFA. We compared mortality 
prediction performance for clustered and non-clustered mod-
els. Then, we tried to develop a simple decision algorithm to 
predict the patient’s membership to a cluster using CART.

2 � Materials and Methods

2.1 � Patients’ Enrollment

This retrospective study involved all patients admitted in 
regional hub hospital and requiring ICU admission from 1st 
January 2011 to 16th September 2022. During the COVID-
19 pandemic, we considered patients with negative SARS-
CoV-2 nasopharyngeal swabs.

Our ICU is part of the ProSafe project network, supported 
by the Italian Group for the Evaluation of Interventions in 
Intensive Care Medicine (GiViTI). The project’s purposes 
are the systematic collection of data and the continuous 
evaluation and performance comparison of departments.

After collecting written informed consent from conscious 
patients or from relatives of unconscious patients, demo-
graphic data, clinical characteristics on admission and in the 
first 24 h, the main complications that arose, therapies and 
procedures performed during the ICU stay, and the outcome 

at discharge (including from the hospital) were registered on 
the national clinical information ProSafe system.

Given the retrospective design of this study, local ethi-
cal committee approval was not required. Patient privacy 
has been rigorously protected in accordance with current 
national legislation (General Data Protection Regulation of 
the European Union n° 2016/679 and the Italian Legisla-
tive Decrees n° 196/2003 and 101/2018). The study was 
conducted following the International Conference on Har-
monisation Good Clinical Practice guidelines and the 2008 
Declaration of Helsinki provisions.

The present study was conducted according to Transpar-
ent Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis (TRIPOD) statement [9].

2.2 � Data Collection

According to the ProSafe project network, all these data 
were collected on ICU admission and in the first 24 h:

–	 Demographic: age, gender, body mass index (BMI), 
comorbidities, patient provenance (same or another hos-
pital), ward before ICU admission (emergency depart-
ment, surgical or medical ward, other ICU), the reason 
for ICU admission, and time from in-hospital presenta-
tion to ICU admission;

–	 Function/organ impairments at ICU admission, defined 
as respiratory, brain, renal, cardiovascular, coagulation, 
liver, and metabolic failure;

–	 Sepsis or septic shock on admission;
–	 Trauma;
–	 Surgical and non-surgical procedures before ICU admis-

sion;
–	 Development of in-ICU infection;
–	 Percutaneous tracheostomy and need for vasopressor/

inotropes administration in ICU;
–	 ICU length of stay (LOS) and outcome (death or alive).

Patients’ clinical conditions were stratified according to 
the CCI, the SAPS II, the SOFA, and the Glasgow Coma 
Scale (GCS) [10]. Supplementary File 1 provided details 
about data collection.

2.3 � Records Selection

Only local records were retired and anonymously stored on 
an electronic sheet (Microsoft Excel).

In the identification phase, we applied the following 
exclusion criteria:

–	 Age < 18 years-old;
–	 Patients with previous LOS > 15 days before ICU admis-

sion;
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–	 Transfer from other hospitals, ICU, sub-intensive and 
long-term care units;

–	 Admission to ICU for palliative care and post-operative 
monitoring;

–	 BMI > 60 kg/m2;
–	 Suffering from AIDS.

Then, in the screening phase, we evaluated missing data. 
We considered the missing data as missing completely at 
random, and the observations were deleted.

2.4 � Statistics

Supplementary File 1 reported details about statistics. A 
preliminary explorative examination of the records fulfill-
ing our criteria was performed. Descriptive statistics were 
computed. Categorical data were reported as absolute num-
bers and percentages. Continuous data were reported as 
mean ± standard deviation or median and first-third quar-
tiles [q1–q3], according to distribution (tested with the Sha-
piro–Wilk test).

For clustering, we used the alternative combination of 
CCI plus SAPS II and CCI plus SOFA. We chose these vari-
ables for two reasons: the first is that they are scores widely 
used in ICUs, and the second is that, as scoring systems, 
they allow the patient’s clinical conditions to be objectively 
defined. After the normalization of continuous variables 
[11], the optimal number of clusters (k) was estimated with 
the package NbClust (version 3.0.1) [12]. For partitioning, 
we used the Partitioning Around Medoids (PAM) algorithm 
[13].

Intercluster analysis was performed with proper tests and 
according to k number. The effect size between clusters and 
variables was analyzed by computing Pearson (r) or Spear-
man (ρ) coefficient for continuous variables or Cramer’s V 
coefficient for categorical variables [14]. According to the 
results, coefficients were interpreted as reported in Supple-
mentary File 1. Survival analysis was performed with the 
Kaplan–Meier method. Median survival time and 28-day 
survival probabilities with 95% confidence interval (CI95%) 
were computed. The differences in survival rates among 
clusters were tested with the Peto-Peto test [15].

We performed multivariate logistic regression analysis 
to find the relationship between cluster membership and 
ICU mortality. We selected these variables: cluster, gender, 
BMI, time from in-hospital presentation to ICU admission, 
ward, clinical condition on ICU admission, and surgical and 
radiological procedure before ICU admission. The odds ratio 
(OR) with CI95% were computed. Clustered models were 
compared with the no-clustered model (model 1). For nested 
models, the difference in deviance was tested with Likeli-
hood Ratio Tests (LRT). If the difference in deviance was 
not statistically significant, the simplest model was selected 

based on the parsimony principle. To evaluate the balance 
between complexity and data fit for non-nested models we 
used the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC). The Receiver Operating Char-
acteristic (ROC) curve was plotted to evaluate the model’s 
predictive performance. The Area Under Curve (AUC) and 
CI95% were computed with the DeLong method [16]. Sen-
sitivity (Se) and specificity (Sp) with CI95% were also com-
puted. The differences between AUCs were tested.

With the best predictive model, we developed a simple 
decision algorithm to predict the patient’s cluster member-
ship with the CART algorithm [17] (Supplementary File 
1). Since our goal was to provide an easy-to-use algorithm, 
we chose a split number of 3 nodes in the pruning phase. 
The authors believe an excessive number of nodes, beyond 
the probable overfitting, can be interpreted as complex. 
The effectiveness of the decision model was evaluated with 
the confusion matrix. Accuracy, with CI95%, unweighted 
Cohen’s Kappa, Se, Sp, positive (PPV), and negative (NPV) 
predictive values were computed.

R-Studio (Posit Software© 2009–2023, version 2023.03.1) 
was used for the analysis. Two-tailed p-values < 0.05 were 
considered significant for all hypotheses, with α = 0.05. For 
multiple comparisons, the p-value was adjusted using the 
Bonferroni correction. Data are reported in tables and plots.

3 � Results

3.1 � Population Characteristics

From 1st January 2011 to 16th September 2022, 4723 
patients were admitted to ICU. Applying exclusion criteria 
and removing missing data (Fig. 1), the preliminary descrip-
tive analysis was performed on 2605 observations (Table 1).

Briefly, 1543 patients (59.2%) were male, with a median 
age of 70.0 years [57.0–80.0] and a BMI of 25.1 kg/m2 
[22.1–27.8]. The median time from in-hospital to ICU 
admission was 0.0 days [0.0–2.0]; 1078 patients (41.4%) 
came from the emergency department, 915 (35.1%) from 
surgical, and 612 (23.5%) from medical wards. The medians 
CCI, SAPS II, SOFA, and GCS were 4.0 [2.0–7.0], 67.0 
[51.0–85.0], 10.0 [7.0–13.0], and 5.0 [5.0–9.0], respectively.

The three most common comorbidities were hyperten-
sion (1456 patients, 55.9%), moderate/severe COPD (746 
patients, 28.6%), and congestive heart failure (727 patients, 
27.9%).

The three most common vital/organ function impairments 
at ICU admission were lung (2382 patients, 91.4%), brain 
(1582 patients, 60.7%), and cardiocirculatory (1518 patients, 
58.2%). Ninety-nine patients (3.8%) showed clinical features 
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suggesting sepsis, while 165 patients (6.3%) had septic 
shock. Patients with trauma were 437 (16.8%).

Before ICU admission, 995 patients (38.2%) had surgi-
cal procedures, while 220 patients (8.4%) had radiological.

Sepsis and septic shock during ICU LOS occurred in 334 
(12.8%) and 214 (8.2%) patients, respectively. Percutaneous 
tracheostomy was performed in 463 patients (17.8%), and 
1780 patients (68.3%) required vasopressor/inotrope drugs.

The median ICU LOS was 4.0 days [1.0–11.0], and 1556 
patients (59.7%) died during ICU stay.

3.2 � Clustering and Intercluster Analysis

NbClust found that the best k number was two for 
CCI + SAPS II (proposed by eight indexes) and CCI + SOFA 
(proposed by seven indexes). Figure 2 shows the cluster 
plots. Clusters were labeled as “A” (1081 observations) and 
“B” (1524 observations) for CCI + SAPS, and “α” (1276 
observations) and “β” (1329 observations) for CCI + SOFA.

Supplementary Table 1 shows the main intercluster differ-
ences with the computed statistics.

No significant differences were found for BMI, peptic ulcer, 
connective tissue disease, and lung and liver failure on admis-
sion for CA based on CCI + SAPS II, and for gender, BMI, 
dementia, peptic ulcer, connective tissue disease, and lung and 
liver failure on admission for CA based on CCI + SOFA.

According to ρ and V coefficients (Table 2), in CA based 
on CCI + SAPS, gender, liver disease, dementia, hemato-
logical malignancy, drug/alcohol addiction, and brain and 
coagulation failure on admission showed a very weak rela-
tionship. In contrast, CCI and SAPS II showed a strong rela-
tionship. Age, SOFA, congestive heart failure, chronic kid-
ney disease, and ICU administration of vasopressor/inotrope 
showed a moderate relationship. All other variables showed 
a weak relationship.

In CA based on CCI + SOFA, neurodegenerative disease, 
hematological malignancy, drug/alcohol addiction, and 
coagulation failure on admission showed a very weak rela-
tionship. SAPS II, SOFA, and ICU administration of vaso-
pressor/inotrope showed a strong relationship, while age, 
CCI, congestive heart failure, and chronic kidney disease 
showed a moderate relationship. All other variables showed 
a weak relationship.

3.3 � Survival Analysis

For CCI + SAPS II clustering, the median ICU LOS was 
6.0 days [2.0–15.0] for cluster A and 2.0 days [0.0–8.0] 
for cluster B, with a statistically significant difference 
(p-value < 0.0001). The survival rates were 62.2% (603 
patients) and 24.7% (376 patients) for clusters A and 
B, respectively, with differences statistically significant 
(p-value < 0.0001). Kaplan–Meier analysis (Fig.  3A) 
showed that median survival times were 18.0 days (CI95% 
16.0–23.0 days) for cluster A and 4.0 days (CI95% 4.0–5.0 
days, p-value < 0.0001) for cluster B.

For CCI + SOFA clustering, the median ICU LOS was 
6.0 days [2.0–15.0] for the cluster α and 2.0 days [0.0–7.0] 
for the cluster β, with a statistically significant differ-
ence (p-value < 0.0001). The survival rates were 61.1% 
(780 patients) and 20.2% (269 patients) for cluster α and 
β, respectively, with differences statistically significant 
(p-value < 0.0001). Kaplan–Meier analysis (Fig. 3B) showed 
that median survival times were 17.0 days (CI95% 16.0–20.0 
days) for the cluster α and 3.0 days (CI95% 2.0–4.0 days, 
p-value < 0.0001) for the cluster β.

3.4 � Multivariate Logistic Regression and Predictive 
Performance

Table 3 shows the multivariate logistic regression results. 
For model 1, time from in-hospital to ICU admission, 

Fig. 1   Flow chart for records selection. From the 1st of January 2011 
to the 16th of September 2022, 4723 observations were retrieved. 
Once the exclusion criteria were applied, 2877 observations were 
screened for missing data. Missing data were considered as missing 
completely at random, and observations were removed. For the analy-
sis, 2605 records were included
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Table 1   The table shows the 
main population characteristics 
(2605 observations)

Variable Dataset (n = 2605)

Result Min–Max

Gender, male (%) 1543 (59.2%) -
Age (years) 70.0 [57.0–80.0] 18.0–99.0
BMI (kg/m2) 25.1 [22.1–27.8] 13.4–59.2
Time from in-hospital to ICU admission (days) 0.0 [0.0–2.0] 0.0–15.0
Ward (%) Emergency 1078 (41.4%) -

Surgical 915 (35.1%) -
Medical 612 (23.5%) -

CCI 4.0 [2.0–7.0] 0.0–15.0
SAPS II 67.0 [51.0–85.0] 7.0–122.0
SOFA 10.0 [7.0–13.0] 0.0–22.0
GCS 5.0 [5.0–9.0] 3.0–15.0
Comorbidities
Hypertension (%) 1456 (55.9%) –
Moderate/severe COPD (%) 746 (28.6%) –
Congestive Heart Failure (%) 727 (27.9%) –
Diabetes (%) No insulin 108 (4.1%) –

Insulin 422 (16.2%) –
Cerebral Vascular Disease (%) 379 (14.5%) –
Chronic Kidney disease (%) Moderate/severe 281 (10.8%) –

ESRD 81 (3.1%) –
Arrhythmia (%) 330 (12.7%) –
History of Myocardial infarction (%) 312 (12.0%) –
Solid tumor (%) Localised 181 (6.9%) –

Metastatic 91 (3.5%) –
Peripheral Vascular Disease (%) 270 (10.4%) –
Hemiplegia (%) 112 (4.3%) –
Liver disease (%) Mild 50 (1.9%) –

Moderate/Severe 48 (1.8%) –
Dementia (%) 91 (3.5%) –
Neurodegenerative disease (%) 63 (2.4%) –
Haematological malignancy (%) 56 (2.1%) –
Drug/alcohol addiction (%) 41 (1.6%) –
Peptic ulcer (%) 38 (1.4%) –
Connective tissue disease (%) 36 (1.4%) –
Clinical condition on admission
Lung failure (%) 2382 (91.4%) –
Brain failure (%) 1582 (60.7%) –
Cardiocirculatory failure (%) 1518 (58.2%) –
Kidney failure (%) 1514 (58.1%) –
Metabolic failure (%) 1207 (46.3%) –
Coagulation failure (%) 77 (2.9%) –
Liver failure (%) 13 (0.5%) –
Infection (%) Sepsis 99 (3.8%) –

Septic Shock 165 (6.3%) –
Trauma (%) 437 (16.8%) –
Procedure before ICU admission
Surgical (%) 995 (38.2%) –
Radiological procedure (%) 220 (8.4%) –
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previous admission in the medical ward, brain, cardiocir-
culatory and metabolic failure, and septic shock were risk 
factors for mortality. Contrarily, lung failure, sepsis, and 
trauma were factors related to the reduction in mortality 
risk.

For clustered models, belonging to cluster B or β repre-
sented an independent risk factor for the increase in mortal-
ity, with an OR of 4.65 (CI95% 3.87–5.60) and 5.44 (CI95% 
4.50–6.59), respectively.

In the CCI + SAPS II clustered model, previous admis-
sion in the medical ward, brain and cardiocirculatory fail-
ure, and septic shock were factors related to an increase in 
mortality, while kidney failure was associated with a reduc-
tion in mortality. In the CCI + SOFA clustered model, brain 
and cardiocirculatory failure, and septic shock were factors 
related to an increase in mortality, while kidney failure was 
associated with a reduction in mortality.

Deviance differences between model 1 (deviance 3315.2) 
and models based on CCI + SAPS II (deviance 3032.6) and 
CCI + SOFA (deviance 2983.2) clustering were statistically 
significant (p-value < 0.0001). According to the AIC and 
BIC values, the best non-nested model was the CCI + SOFA 
clustered model (AIC = 3021.21, BIC = 3132.65).

Figure  4 shows the ROC curves for the three mod-
els. Se and Sp were 66.06% (CI95% 59.20–79.89%) and 
58.03% (CI95% 42.99–64.27%) for model 1, 63.39% 
(CI95% 59.58–68.06%) and 77.44% (CI95% 72.75–80.33%) 
for CCI + SAPS II clustered model, and 73.02% (CI95% 
67.02–79.93%) and 70.76% (CI95% 66.71–75.51%) for 
CCI + SOFA clustered model. The AUCs were 0.6528 (CI95% 
0.6317–0.6738, poor accuracy) for model 1, 0.7398 (CI95% 
0.7201–0.7594, moderate accuracy) for CCI + SAPS II clus-
tered model, and 0.7511 (CI95% 0.7320–0.7702, moderate 
accuracy) for CCI + SOFA clustered model. According to the 
ROC curves analysis, both clustered models showed higher 
AUC compared to model 1 (adjusted p-value < 0.0001). 
However, no difference was noted between clustered models 
AUCs (adjusted p-value 0.2213).

3.5 � Prediction and Decision Tree

Supplementary Fig. 1 shows the decision tree obtained 
with the CART algorithm (cp = 0.001, node split = 15). As 
described in the methods, the tree was pruned with a 3-node 
split (complexity parameter = 0.034). Figure 5 shows the 
pruned decision tree. Considering the β cluster as the posi-
tive case, the accuracy of the pruned decision tree was 94.8% 
(CI95% 93.9–95.6%), with Kappa 0.896, indicating that the 
model’s predictions are highly reliable. The Se and Sp were 
95.3% (CI95% 94.0–96.3%) and 93.4% (CI95% 93.0–95.5%), 
respectively, with high PPV (94.6%, CI95% 93.3–95.6%) and 
NPV (95.0%, CI95% 93.7–96.0%).

4 � Discussion

To the best of our knowledge, CCI, SAPS II, and SOFA 
scores were individually evaluated as prognostic tools within 
the population requiring ICU admission, and studies have 
been conducted to establish the best predictive value about 
complications onset and mortality [18, 19].

However, single scores were validated in defined clinical 
settings according to different outcomes and observational 
periods. The CCI (0–33 scale points) was initially devel-
oped to predict 1-year mortality in a mixed population of 
internal medicine patients using comorbidity derived from 
chart review and consists of 19 selected conditions [1]. The 
SAPS II (0–163 scale points) is a severity score and has 
become one of the European ICU’s most widely used scor-
ing systems. It is based on the worst values measured on 17 
variables during the initial 24 h of ICU stay, with a higher 
score indicating a more severe illness [2]. SOFA (0–24 scale 
points) focuses on six organ systems (respiratory, cardiovas-
cular, hepatic, coagulation, renal, and neurological). Each 
system is scored from 0 to 4 based on the degree of dysfunc-
tion or failure, with higher scores indicating more severe 
organ impairment. This tool is widely used in the ICU to 

Table 1   (continued) Variable Dataset (n = 2605)

Result Min–Max

In ICU infection
Sepsis (%) 334 (12.8%) –
Septic Shock (%) 214 (8.2%) –
In ICU treatment
Percutaneous tracheostomy (%) 463 (17.8%) –
Vasopressor/inotrope administration (%) 1780 (68.3%) –
ICU LOS (days) 4.0 [1.0–11.0] 0.0–172.0
ICU deaths (%) 1556 (59.7%) –

Categorical data are expressed as absolute numbers and percentages. Continuous data are reported as 
median and interquartile range [IQR], with minimum and maximum values
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predict patient outcomes, guide therapeutic decisions, and 
evaluate the effectiveness of interventions, especially in the 
context of sepsis [3].

ML based on CA and CART provides useful clinical 
information, overcoming the limits of a classic approach 
based on a single score. The primary study’s finding was that 

a combination of CCI + SAPS II and CCI + SOFA allowed 
the identification of patient clusters characterized by differ-
ent mortality risks. In detail, belonging to cluster B/β repre-
sented an independent risk factor for mortality and shorter 
survival times when compared to cluster A/α. Moreover, 
clustered models improved the mortality prediction ability, 
such as suggested by moderate accuracy AUC, when com-
pared to the no-clustered model (poor accuracy).

CA can represent a tool to identify patients with peculiar 
care needs, allowing the redesign of ICU organization based 
on care processes rather than admission diagnosis [20]. The 
last aspect is fascinating since the CA, identifying individu-
als with specific needs, could ensure a better allocation of 
economic and human resources, reducing waste and improv-
ing outcomes. Beyond the organizational aspects, identify-
ing homogenous clusters allows clinicians to adopt the right 
therapy for the right patients at the right time.

CA has been proposed to personalize treatment in sev-
eral clinical settings, such as acute respiratory distress syn-
drome [21], sepsis [22], and out-of-hospital cardiac arrest 
[23]. However, while most studies focus on categories of 
patients, our study focuses on a general population, affected 
by different acute pathologies.

A second aspect that emerges is that clusters do not exist 
but are the result of complex statistical processing based 
on the choice of specific variables and justified only by a 
statistically significant association with a clinical outcome. 
Identifying a cluster does not necessarily coincide with iden-
tifying a patient “prototype”, such as demonstrated by stud-
ies showing that the cluster membership is very unstable 
across different cohorts [24, 25]. In our analysis, this aspect 
emerges from the different allocation of the observations 
in a cluster depending on the variables considered for CA 
and the different degrees of association, as evidenced by the 
magnitude of the ρ and V coefficients between the clusters 
and the considered variables.

We found a strong association between the use of vaso-
pressors/inotropes in the ICU when clustering was per-
formed with the combination of CCI + SOFA. This result 
is due to the different items used in SAPS II and SOFA to 
calculate the final score. While the SAPS II only records 
the worst systolic pressure value, the SOFA also reports 
the administration of vasopressor/inotropic drugs. This 
aspect may also be responsible for the best balance between 
model complexity and data fit for clustered model based on 
CCI + SOFA rather than CCI + SAPS II.

Recent literature emphasized the importance of consid-
ering vasopressor dosage in the early phase of septic shock 
and how it correlates with mortality outcomes. Roberts et al. 
[26] evaluated the association between vasopressor dosing 
intensity and 30-day in-hospital mortality in patients with 
septic shock. It was observed that increasing vasopressor 
dosing intensity during the first 24 h after septic shock was 

Fig. 2   Cluster plots for CCI + SAPS II (A) and CCI + SOFA (B). 
A Clusters were labeled as “A” (1081 observations) and “B” (1524 
observations). The medoids coordinate [XCCI, YSAPS II] for clusters 
were [0.13, 0.36] and [0.40, 0.63]. B Clusters were labeled as “α” 
(1276 observations) and “β” (1329 observations). The medoids coor-
dinate [XCCI, YSOFA] for clusters were [0.20, 0.32] and [0.40, 0.59]
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Table 2   The table shows the 
effect size between variables 
and different clustering Variable

Strenght of relationship
CCI+SAPS II clusters CCI+SOFA clusters

VW W M S VS VW W M S VS

Gender -

Age

BMI - -

Time from in hospital to ICU admission

Ward

CCI

SAPS II

SOFA

GCS

Hypertension

Moderate/Severe COPD

Congestive Heart Failure

Diabetes

Cerebral Vascular Disease

Chronic Kidney disease

Arrhythmia

History of Myocardial infarction

Solid tumor

Peripheral Vascular Disease

Hemiplegia

Liver disease

Dementia -

Neurodegenerative disease

Haematological malignancy

Drug/alcohol addiction

Peptic ulcer - -

Connective tissue disease - -

On admission, Lung failure - -

On admission, Brain failure

On admission, Cardiocirculatory failure

On admission, Kidney failure

On admission, Metabolic failure

On admission, Coagulation failure

On admission, Liver failure - -

On admission, Infection

On admission, Trauma

Before ICU admission, Surgery

Before ICU admission, Radiological procedure

In ICU Sepsis or Septic Shock

In ICU treatment, Percutaneous Tracheostomy

In ICU treatment, Vasopressor/inotrope use
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associated with increased mortality. Vallabhajosyula et al. 
[27] reported that vasopressor burden during early critical 
illness appears to be a marker for unfavorable outcomes. The 
elaborated score, incorporating the cumulative vasoactive 
medication usage within the first 24 h, performed better than 
SOFA for 28-day mortality prediction.

Although further studies are necessary to evaluate the 
generalizability of this evidence in different settings, accord-
ing to our results, a score that evaluates the administration 
of vasopressor/inotropic drugs among the items may be pre-
ferred in CA to predict mortality.

The identification of clusters characterized by a high mor-
tality risk represents important but incomplete information. 
From a clinical point of view, it would be much more inter-
esting to identify whether a patient with specific features 
belongs to a cluster at the time of ICU admission. The appli-
cation of the CART algorithm in this study highlights its 
potential in the nuanced field of ICU patient data analysis, 
where rapid and accurate decision-making is crucial. Our 
findings demonstrate that CART effectively identifies critical 
thresholds of CCI and SOFA that are simple to compute and 
evaluate, offering a clear, interpretable model for predict-
ing cluster membership with high accuracy. These aspects 
should facilitate its application in daily clinical practice, 
providing targeted interventions for high-risk ICU patients.

The CART algorithm has shown significant potential in 
the context of ICU. Alghatani et al. [28], in a study on pre-
dicting ICU LOS and mortality using patient vital signs, 
developed decision tree-based methods like CART, demon-
strating the importance of advanced data analysis in forecast-
ing critical ICU outcomes. This reflects a broader trend in 
healthcare, where ML and CART are increasingly employed 
for clinical decision support in ICUs [4]. Liu et al. [29] dem-
onstrated the application of CART in predicting successful 
extubation in ICU patients, underscoring the algorithm’s 
ability to support critical clinical decisions based on patient 
data. Ramos et al. [30] developed an algorithm to aid in ICU 
admission triage decisions and showcased the practicality 
and reliability of such methods in managing ICU admis-
sions and patient prioritization effectively. These examples 
highlight the growing relevance of the CART algorithm in 
ICU settings, where its ability to process complex data and 
provide interpretable results is invaluable for patient care 
and resource management.

4.1 � Limitations

Our study showed several limitations. First, its retrospective, 
single-center design may affect the generalizability of our 
findings. In particular, the choice to exclude patients with a 

We use a color code to describe the relationship: red for very weak (VW), yellow for weak (W), orange for 
moderate (M), green for strong (S), and blue for very strong (VS)

Table 2   (continued)

Fig. 3   The figure shows the 28-day survival curves for CCI + SAPS 
II (A) and CCI + SOFA (B) clustering with the risk tables. A The 
predicted 28-day survival probabilities for clusters A and B were 
43.7% (CI95% 39.7–48.1%) and 11.1% (CI95% 9.2–13.4%). Peto-Peto 

χ2 = 448 on 1 degrees of freedom, p-value < 0.0001. B The predicted 
28-day survival probabilities for cluster α and β were 42.2% (CI95% 
38.5–46.3%) and 8.6% (CI95% 6.9–10.8%). Peto-Peto χ2 = 589 on 1 
degrees of freedom, p-value < 0.0001
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hospital LOS longer than 15 days before ICU admission may 
have excluded patients with a higher risk of death. Moreover, 
the decision-making algorithm needs further validation. To 
ensure the robustness and applicability of the algorithm in 
diverse clinical settings, it must undergo rigorous valida-
tion using external datasets. This step is crucial to ascertain 
the algorithm’s efficacy and reliability across different ICU 
environments and patient populations. Hence, while promis-
ing, our results should be interpreted cautiously, as they may 
not accurately reflect the realities of different ICU settings 
or patient groups.

Second, despite the large sample size, the data selec-
tion process and handling of missing data could also have 
impacted the results, as missing observations were excluded 
under the missing completely at random assumption.

Third, SAPS II and SOFA scores were recorded at admis-
sion. This reliance potentially restricts our understanding 
of the patient’s progression in the ICU, as these values do 
not account for changes in evolving patient conditions. 

The dynamic nature of patients’ health in the ICU setting 
suggests that reliance on admission scores alone may not 
comprehensively represent their clinical trajectory, thus 
impacting our findings’ predictive accuracy and applicabil-
ity. Furthermore, the use of different scores could lead to 
different conclusions. Studies are needed to clarify the best 
combination of scores for clustering.

Fourth, while the use of CART for predicting cluster 
membership was insightful, the potential overfitting of the 
model could pose challenges for practical clinical applica-
tion, especially when referred to other populations.

4.2 � Strengths

Our study’s strengths include the comprehensive utilization 
of ML based on CA and CART algorithms. Our approach 
offers a novel perspective on patient categorization and 
outcome prediction, enhancing the understanding of ICU 
patient profiles.

Table 3   The table reports the results of multivariate regression analysis for the three models: model 1 (without clustering), model CCI + SAPS II 
clustering, and model CCI + SOFA clustering

Belonging to cluster B or β is an independent risk factor for mortality compared to cluster A or α (see table). Both clustering-based models 
showed statistically significant differences in deviance compared to model 1 (deviance 3315.2). CCI + SAPS II: deviance 3032.6, difference 
− 282.6, LRT p-value < 0.0001. CCI + SOFA: deviance 2983.2, difference − 332.0, LRT p-value < 0.0001

Variable Model 1 Clustering CCI + SAPS II Clustering CCI + SOFA
OR (CI95%) OR (CI95%) OR (CI95%)

Cluster, B/β – 4.65 (3.87–5.60) 5.44 (4.50–6.59)
Gender, Male 0.98 (0.82–1.16) 1.06 (0.88–1.26) 1.03 (0.86–1.23)
BMI 1.00 (0.99–1.02) 1.01 (0.99–1.02) 1.01 (0.99–1.02)
Time from in-hospital to ICU admission 1.04 (1.01–1.07) 1.03 (1.00–1.07) 1.03 (1.00–1.06)
Ward Emergency Ref Ref Ref

Surgical 1.06 (0.82–1.35) 0.94 (0.72–1.23) 1.03 (0.79–1.34)
Medical 1.40 (1.12–1.83) 1.31 (1.01–1.69) 1.19 (0.91–1.54)

Lung failure 0.66 (0.48–0.90) 0.82 (0.59–1.15) 0.87 (0.62–1.22)
Brain failure 1.64 (1.35–1.97) 1.49 (1.23–1.80) 1.50 (1.24–1.81)
Cardiocirculatory failure 1.55 (1.27–1.90) 1.51 (1.22–1.88) 1.30 (1.05–1.62)
Kidney failure 0.94 (0.76–1.16) 0.74 (0.59–0.92) 0.75 (0.60–0.94)
Metabolic failure 1.28 (1.03–1.60) 1.16 (0.91–1.46) 1.11 (0.87–1.40)
Coagulation failure 1.35 (0.81–2.33) 1.17 (0.68–2.06) 1.30 (0.75–2.32)
Liver failure 1.57 (0.46–7.18) 1.65 (0.44–8.20) 1.45 (0.28–7.28)
Infection No Ref Ref Ref

Sepsis 0.49 (0.32–0.74) 0.65 (0.42–1.02) 0.64 (0.41–1.01)
Septic Shock 3.22 (2.10–5.14) 3.18 (2.03–5.16) 2.19 (1.39–3.57)

Trauma 0.70 (0.56–0.88) 0.94 (0.74–1.19) 0.91 (0.72–1.16)
Surgical procedure 0.89 (0.71–1.11) 1.07 (0.84–1.37) 1.00 (0.78–1.27)
Radiological procedure 0.92 (0.69–1.23) 1.30 (0.96–1.78) 1.17 (0.86–1.60)
AIC 3351.22 3070.58 3021.21
BIC 3456.79 3182.02 3132.65
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A notable strength of our study is the development of a 
simple, yet effective decision-making algorithm designed for 
easy implementation in clinical settings. This simplicity is 

a considerable advantage, as it allows for seamless integra-
tion into the existing workflows of ICU environments. The 
algorithm’s user-friendly nature potentially enables a wide 
range of healthcare professionals to utilize it effectively, 
enhancing patient care and decision-making efficiency in 
critical care settings.

These aspects underline the study’s potential to influ-
ence future research and clinical practices in intensive care 
settings.

5 � Conclusions

Clustered models significantly improve mortality prediction 
compared to the no-clustered model and may be more use-
ful in clinical practice for the early identification of high-
risk patients. Despite clustered models showing no differ-
ence in mortality predictive performance, clustering based 
on CCI + SOFA showed the best balance between model 
complexity and data fit and should be preferred to the 
CCI + SAPS II model. Developing a straightforward, user-
friendly decision-making algorithm is a key contribution, 
offering a practical tool for enhancing ICU performance.

While acknowledging the limitations inherent in our 
monocentric, retrospective approach, the study opens new 
avenues for future research and underscores the vital role of 
ML in improving patient outcomes in critical care. Further 
multicentric studies are needed to ensure the findings are 
robust and applicable to a broader patient population.

Fig. 4   The figure shows the ROC curves for the considered models. 
The AUCs (CI95%) were: 0.6528 (CI95% 0.6317–0.6738, poor accu-
racy) for model 1, 0.7398 (CI95% 0.7201–0.7594, moderate accuracy) 
for CCI + SAPS II clustered model, and 0.7511 (CI95%0.7320–0.7702, 
moderate accuracy) for CCI + SOFA clustered model. The adjusted 
p-values were: < 0.001 for Model 1 vs. CCI + SAPS II, < 0.001 
for Model 1 vs. CCI + SOFA, and 0.2213 for CCI + SAPS II vs. 
CCI + SOFA

Fig. 5   The figure shows the 
pruned decision tree (3 split 
nodes) for cluster membership. 
Each node represents a deci-
sion point with branches to the 
outcomes “Alpha” and “Beta.” 
The leaves represent the final 
classification with the absolute 
numbers of each cluster within 
that leaf. Under the leaf is 
reported the splitting criterion. 
The color of the leaf indicates 
the most represented cluster: 
green for “Alpha” and orange 
for “Beta.”
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