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Abstract
Acute respiratory distress syndrome (ARDS) has a ~ 40% mortality rate with an increasing prevalence exacerbated by the 
COVID-19 pandemic. Mechanical ventilation is the primary means for life-saving support to buy time for lung healing in 
ARDS patients, however, it can also lead to ventilator-induced lung injury (VILI). Effective strategies to reduce or prevent 
VILI are necessary but are not currently delivered. Therefore, we aim at evaluating the current imaging technologies to 
visualize where pressure and volume being delivered to the lung during mechanical ventilation; and combining plasma bio-
markers to guide management of mechanical ventilation. We searched PubMed and Medline using keywords and analyzed 
the literature, including both animal models and human studies, to examine the independent use of computed tomography 
(CT) to evaluate lung mechanics, electrical impedance tomography (EIT) to guide ventilation, ultrasound to monitor lung 
injury, and plasma biomarkers to indicate status of lung pathophysiology. This investigation has led to our proposal of the 
combination of imaging and biomarkers to precisely deliver mechanical ventilation to improve patient outcomes in ARDS.

Keywords ARDS · Mechanical ventilation · Precision medicine · Computed tomography · Electrical impedance 
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Abbreviations
ARDS  Acute respiratory distress syndrome
CT  Computed tomography
EIT  Electrical impedance tomography
LUS  Lung ultrasound
MV  Mechanical ventilation
VILI  Ventilator-induced lung injury

PEEP  Positive end-expiratory pressure
V/Q mismatch  Ventilation perfusion mismatch
RAGE  Receptor for advanced glycation 

end-products
sRAGE  Soluble receptor for advanced glycation 

end-products
SP-D  Surfactant protein-D
Ang-2  Angiopoietin-2
IL-8  Interleukin-8

1 Introduction

1.1  Complications of Mechanical Ventilation 
in ARDS

Acute respiratory distress syndrome (ARDS) has a complex 
and uncontrolled inflammatory response caused by multiple 
insults such as pneumonia [25], COVID-19 [50], sepsis [25], 
acid aspiration [25], inhalation injuries [25] and trauma [25]. 
An influx of fluid and protein into the interstitial spaces and 
alveoli leads to heterogenous diffuse lung damage, resulting 
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in pulmonary edema and subsequent fibrosis [17]. The 
ARDS mortality rate is as high as 30–50% [43].

ARDS patients receive life-saving support with mechani-
cal ventilation (MV). MV is a significant confounder to 
improving patient outcomes, yet it remains the most valu-
able treatment [32]. A complication from MV is ventilator-
induced lung injury (VILI). VILI is acute lung injury that 
results from or is aggravated by MV treatment and has phys-
iological and biochemical mechanisms that lead to adverse 
patient outcomes [6, 32].

There are several mechanisms of injury: atelectrauma 
which results from the cyclic opening and closing of alveoli 
in collapsed lung areas; volutrauma from high tidal volumes 
putting excessive stress on the lungs; barotrauma due to high 
transpulmonary pressures that overinflate the lungs; and 
biotrauma that is a combination of atelectrauma and volu-
trauma, which increases the inflammatory response through 
the activation of neutrophils, macrophages and alveolar epi-
thelial cells, and releases biomarkers [6].

Clinical guidelines have been developed to try to reduce 
VILI: positive end-expiratory pressure (PEEP) to keep alve-
oli open to reduce atelectrauma; low-tidal volumes (4–8 mL/
kg of predicted body weight) to minimize volutrauma; and 
plateau pressure < 30  cmH2O to avoid barotrauma [20]. 
However, these strategies require precise individualization 
to protect patients’ heterogeneous lung injury and individual 
responses to MV. Therefore, the accuracy and effectiveness 
of the current delivery of MV for treatment are limited.

2  Approaches for the Evaluation of Lung 
Mechanics and Mechanical Ventilation

The Pressure–Volume (P–V) curve is used to diagnose 
and monitor ARDS. It shows the relationship between the 
stage and severity of acute lung injury, assesses the volume 
recruited by PEEP, and the slope represents the compliance 
of the respiratory system [7]. However, the information pro-
vided by the P–V curve is evaluated under static conditions 
and may not be representative of the dynamic changes dur-
ing MV [7].

The classic tool for diagnosis is the X-Ray, but it is very 
limited. The 2-D images do not account for gravity on the 
pleural pressure gradient and the ventro-dorsal distribu-
tion of lesions, and the consolidation of the dorsal lung can 
be hidden by the ventral aspect [62]. There is also a lack 
of assessment of dynamic lung aeration and function, and 
agreement between readers is low [62].

Advances in technology have led to tools that better 
assess lung mechanics and the effect of volume and pres-
sure on the lungs. Computed Tomography (CT) delivers 
X-Ray imaging in 3-D. It can quantitatively assess the 
gravitational influence of alveolar aeration compared to 

atelectasis and lung tissue weight [24, 62]. It can evaluate 
lung mechanics, show the recruitment of collapsed or con-
solidated areas, and provides the highest resolution avail-
able to visualize the lung parenchyma for injury assess-
ment [15, 62].

Electrical Impedance Tomography (EIT) shows real-
time MV and monitors individual lung dynamics [33]. 
Ventilation-perfusion mismatch (V/Q) occurs when non-
ventilated alveoli are perfused with pulmonary capillaries 
(shunt) or ventilated alveoli do not have sufficient blood 
flow to pulmonary capillaries (dead space), which can be 
assessed by EIT [3, 33]. Ventilation and perfusion maps 
show changes in quadrants to guide MV.

Lung ultrasound (LUS) can confirm and monitor the 
evolution of ARDS at the bedside by assessing changes in 
aeration, tissue density and PEEP-induced recruitment [2]. 
It can determine the efficacy of treatment and the ultra-
sound waves can also penetrate injured lung areas leading 
to targeted delivery of therapeutics [35, 46].

These tools each contribute to evaluating important 
components of the delivery of mechanical ventilation. 
Therefore, there are limitations in applying CT, EIT and 
LUS individually during MV. The gold standard for visu-
alizing lung injury is CT and thus it is the most accurate 
tool for this purpose. However, CT requires patient trans-
port and exposure to radiation, compared to LUS, which 
does not have as high spatial resolution, but can be easily 
applied at the bedside for monitoring injury progression. 
Detailed structural changes can be viewed on CT in con-
trast to EIT which has low spatial resolution, although 
EIT compensates for CT in its ability to visualize detailed 
functional changes and allows for the titration of ventila-
tion settings for personalization. EIT can be used at the 
bedside, but it is an expensive technology.

Overall, these new technologies allow physicians to vis-
ualize MV distribution, assess individual responses to MV, 
and monitor measurements that are currently not exam-
ined at the bedside. This review will evaluate the current 
application of CT, EIT, LUS and plasma biomarkers in the 
context of dynamic management of MV, aiming to provide 
future direction on the best use of these tools to improve 
clinical outcomes in ARDS with precise treatment.

An electronic database search of PubMed and Medline 
was conducted using keywords such as ARDS, VILI, LUS, 
CT, EIT, mechanical ventilation patient outcomes, ventila-
tion perfusion, COVID-19, plasma biomarkers, delivery of 
therapeutics, animal models and human studies (Fig. 1).
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3  CT for Diagnosis and Evaluation of Lung 
Mechanics in ARDS and EIT to Monitor 
Lung Mechanics and Guide Ventilation

3.1  Animal Models for CT

CT scans can quantitatively assess alveolar strain and lung 
tissue weight [41] as well as ventilation distribution in the 
lung [40]. Quantifying pulmonary fibrosis visualized on 
micro-CT using the Ashcroft scale (0–8) scored lung tis-
sue with mild fibrotic changes between 0 to 3, and fibrotic 
masses and collagen from 4 to 5 [45]. The fibrosis measured 
by micro-CT correlated with the Ashcroft score, percentage 

of collagen content and alveolar air  (r2 = 0.91, 0.77 and 0.94, 
respectively) [45]. The CT number categorized injury by a 
normal aerated range of − 1000 to − 500 or a poorly aerated 
range of − 500 to − 100 [54]. A shift in the CT number to 
− 300 correlated to the development of inflammation and 
fibrosis [31].

Mechanical power, defined as transpulmonary pressure, 
tidal volume and respiratory rate, was used to identify a 
VILI threshold. CT showed changes from isolated densities 
to whole-lung edema, indicating VILI above a threshold of 
12 J/min [16]. The ratio between tidal volume, functional 
residual capacity and transpulmonary pressure determined 
a strain threshold. CT scans showed increased lung weight, 
stipulating VILI at a point between 1.5 and 2 [42].

3.2  Human Studies for CT

The extent of the atelectatic lung on a CT scan classified 
patients with high and low recruitability with a sensitivity 
of 0.96, specificity of 0.76 and diagnostic accuracy of 0.86 
[11]. Opacification in the anterior lung in 37.5% of patients 
represented fibrosis due to VILI [48]. Cross-sectional imag-
ing identified opacification in 100% of ARDS patients, with 
consolidation in 75% of cases [48].

The percentage of alveolar fibrocytes was an independent 
predictor of mortality, associated with prolonged ventila-
tion, and an indicator of poor prognosis in the early stages 
of ARDS [8]. Scoring pathology on a scale of 1 to 6, with 
a greater score indicating worse lung injury, showed that a 
CT score < 230 enabled survival prediction with a sensitiv-
ity of 73% and specificity of 75% [29]. Survivors had an 
overall smaller CT score (p = 0.002), a lower incidence of 
barotrauma (p = 0.013), and a greater number of ventilation-
free days (p = 0.018) [29].

3.3  Animal Models for EIT

There was an excellent correlation  (r2 = 0.98) between the 
tidal volume and air delivered from the ventilator with < 6% 
mean error [30]. As PEEP was increased from 5 to 20 
 cmH2O, targeted re-aeration reached a lung volume of 87.1% 
of its normal value [30]. Air distribution was viewed with 
the estimated center of ventilation and anterior to posterior 
ventilation ratio. As PEEP was accurately titrated, the center 
of ventilation increased to 48.3%, almost reaching its nor-
mal value of 50%, anterior to posterior ratio was restored to 
91% of its normal value, and the global inhomogeneity index 
decreased to its normal value [30].

EIT-tracked lung volumes maintained oxygenation, alveo-
lar architecture, and lung mechanics better than low-tidal 
volume ventilation, while also decreasing histological evi-
dence of VILI through a significant decrease in the pres-
ence of airway fibrin and hyaline membrane [49, 58]. PEEP 

Fig. 1  Identification of literature
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determined by the global inhomogeneity index and hyperd-
istention indices led to the use of different  FiO2 and PEEP 
combinations than the ones suggested by the ARDS network 
[28]. Identification of the onset of collapse and regional lung 
recruitment before changes in global pulmonary mechanics, 
occurred during PEEP titration [36].

3.4  Human Studies for EIT

Individualization of PEEP and tidal volumes improved oxy-
genation (p = 0.0002) while reducing alveolar cycling with-
out causing global overdistension (p = 0.0007, p = 0.015, 
stress and strain, respectively) [4]. Evaluation of early indi-
vidualized PEEP in ARDS led to a 6% absolute reduction in 
mortality [27]. Guided PEEP titration was associated with 
higher weaning success, improved oxygenation and compli-
ance, and an 18.3% increase in hospital survival in severe 
ARDS patients [61].

COVID-19 patients had a median value of 34% pixels 
with V/Q mismatch, with 6/7 patients having values > 30% 
[34]. The percentage of unmatched units in ARDS patients 
(% only ventilated units + % only perfused units) was sig-
nificantly higher in non-survivors (p < 0.001) and an inde-
pendent predictor of mortality (p = 0.004) with a sensitivity, 
specificity and negative predictive value of 77%, 87% and 
91%, respectively [50].

4  Assessment of Agreement between CT 
and EIT

4.1  Animal Models

There were significant correlations (r = 0.98–0.99) between 
EIT and CT in assessing end-expiratory gas volumes, with 
a slightly lower correlation (r = 0.88) in tidal volumes [36]. 
Tidal recruitment on CT was strongly correlated to regional-
ventilation-delay on EIT (r = 0.90–0.99, p < 0.05) [37]. 
Lung density measured by CT and EIT regional ventilation 
at increasing tidal volumes during PEEP titration had the 
strongest correlation in the dependent lung  (r2 = 0.86) [22].

4.2  Human Studies

In people with ARDS, when global CT-derived strain 
 (StrainCT) was compared with simultaneous changes in elec-
trical impedance (ΔZ) measured using EIT at end-inspira-
tion and end-expiration, it revealed that ΔZ provides a real-
time assessment of global cyclic strain at bedside, where 
the optimum PEEP with smallest lung strain is the PEEP 
where ΔZ is minimized, making EIT a potential surrogate 
for cyclic lung strain measured by CT  (StrainCT) [12]. EIT 
regional ventilation changes in impedance showed a strong 

correlation  (r2 = 0.92) to changes in lung density assessed 
by air content on CT [53]. Recruitable collapse estimated by 
EIT and CT showed good agreement at all levels of PEEP, 
with hyperinflation measured by CT and hyperdistention by 
EIT having good correlations  (r2 = 0.85 and 0.95 in patients 
1 and 2, respectively) [13]. A simulated EIT image with 
corrected lung areas based on CT, enhanced the global inho-
mogeneity index calculation, and increased sensitivity to 
alveolar collapse and overdistension [60]. EIT image recon-
struction with CT showed that the ventilation distribution 
on EIT could be correlated to the underlying morphological 
information on CT [47].

5  LUS for Diagnostics and Therapeutics

Management of patients on MV with LUS identified alveolar 
consolidation with a sensitivity, specificity and diagnostic 
accuracy of 100%, 78%, and 95%, respectively [59]. Clas-
sification of lung morphology (focal vs. non-focal) in ARDS 
during MV, using the Amsterdam method, had a specificity 
of 100% and sensitivity of 77% [39]. In patients receiving 
MV, the ventral LUS score was the most predictive of non-
focal ARDS, with 100% specificity and 94% sensitivity [14]. 
The LUS total and ventral scores had an area under the ROC 
curve of 0.89 and 0.958, respectively [14]. Daily assessment 
of LUS scores indicated that a progressive reduction in the 
score was due to lung re-aeration and recovery, with a per-
sistently high score corresponding to mortality [38].

Compared to normally aerated lung tissue that scatters 
LUS waves, injured lung areas can be penetrated by ultra-
sound due to the loss of aeration and fluid in the alveoli [46]. 
This allows for targeted delivery of therapeutics to injured 
lung areas [46]. Once LUS identifies the site of injury, thera-
peutics can be directly delivered to these areas, improving 
uptake, and reducing systemic effects [46].

6  The Application of Plasma Biomarkers 
to MV

There are two lung epithelial biomarkers: Receptor for 
Advanced Glycation End-products and its soluble form 
(RAGE/sRAGE) and Surfactant Protein D (SP-D), which 
have been used for diagnosis and mortality in ARDS [55, 
57]. Patients with high levels of RAGE benefitted from low-
tidal volumes (p = 0.02), increases in SP-D indicated injuri-
ous ventilation and may be a marker of VILI (p = 0.02), with 
low tidal volumes attenuating these levels (0.0006) [10, 18, 
19].

Angiopoietin-2 (Ang-2), a lung endothelial marker 
aided in the determination of ARDS severity and mortality, 
improved the ability of the Lung Injury Prediction score 



199Intensive Care Research (2023) 3:195–203 

1 3

(area under-ROC = 0.84, p = 0.05) and augmented clinical 
scores by identifying patients who were developing or at 
high risk of lung injury during treatment [1, 21]. Interleu-
kin-8 (IL-8) is a chemoattract immune cell and augmented 
diagnosis and morality in ARDS [9, 56]. IL-8 decreased 
during lung-protective ventilation (p < 0.05) [43].

A two-biomarker panel using Ang-2 and RAGE per-
formed well across multiple patient cohorts of ARDS, with 
IL-8 and SP-D being the most frequently used biomarkers 
and having a higher predictive value in combination with 
clinical variables [55, 56]. Overall, these biomarkers indicate 
different aspects of the injurious and inflammatory mecha-
nisms, and their combination improved clinical predictors 
[21, 23].

7  Prospective

Using CT to visualize individual lung injury is important 
because understanding individual patient lung mechanics 
is linked to choosing ventilation strategies and patient out-
comes. Most patients admitted to the Intensive Care Unit 
already have a CT scan, thus it is a feasible tool for this 
purpose. EIT is valuable for monitoring lung volumes and 
titrating ventilation settings to reach precisely determined 
values, but can also measure V/Q mismatch, which is not 
routinely assessed at the bedside. The current application of 
MV is not precise due to PEEP guidelines from the ARDS 
network not being adequate for all patients and with lung 
protective ventilation strategies being underused in ~ 30% of 
patients [5]. Therefore, there is a need for EIT to precisely 
guide ventilation according to validated indices, which 
would improve the current challenges of MV to potentially 
enhance patient outcomes.

CT and EIT are valuable tools independently, but also 
strongly correlate and have been validated against each 
other, with the structural capabilities of CT augmenting the 
functional aspects of EIT. Therefore, we propose their com-
bination to precisely deliver MV by evaluating the lungs’ 
response to ventilation on EIT based on lung injury that can 
be visualized with CT. This approach considers the hetero-
geneous and individual lung responses in real-time, and the 
complexity of ARDS, but also provides clinicians with strat-
egies that can accurately and effectively tailor MV compared 
to the current delivery. Although the studies used to inform 
this conclusion have not combined CT and EIT simultane-
ously, the analysis of their individual power and correlation 
between their measures shows their strong potential.

Regular monitoring of injury with LUS can be easily 
applied at the bedside to identify lung morphology in ARDS 
during MV. The loss of aeration in injured lungs also has uti-
lization for therapeutics during MV. Advancements in using 
LUS at the bedside during MV are recent and the increase 

in patients during the COVID-19 pandemic led to its’ use to 
complement CT and monitor ARDS patients [52]. Treatment 
of MV includes using LUS to identify injury, followed by 
the precise delivery of therapeutics to the injured lung area. 
Therapeutics are currently not precisely distributed, leading 
to low treatment efficacy, which cannot be adequately evalu-
ated due to a lack of routine injury assessment. Therefore, 
applying LUS to visualize injury and its’ progression, and 
for targeted delivery of therapeutics is another necessary 
component to precisely deliver treatment during MV.

Plasma biomarkers have prognostic value in ARDS and 
represent the underlying pathophysiology in the lung. They 
also augment clinical scores and MV strategies with statisti-
cal significance [1, 21, 55, 56]. We recommend the appli-
cation of plasma biomarkers to elucidate the biochemical 
pathways in the lung that contribute to injury and patient 
outcomes during MV. Biomarkers could guide MV by indi-
cating alterations in the lungs before they can be visualized. 
The biochemical contributors to VILI and ARDS are not 
currently assessed in the Intensive Care Unit, however, they 
are valuable because they could provide clinicians with a 
biological understanding of the efficacy of MV, which could 
lead to early changes in treatment.

8  Conclusions

Our evaluation of the literature assessing the utility of imag-
ing and biochemical markers individually during MV has 
led to the proposal of their combination to provide precise 
management for ARDS patients (Fig. 2). Each imaging 
tool explored in this review provides vital information to 
guide and inform treatment with MV. Together, they have 
the potential to ameliorate the disadvantages of the cur-
rent delivery of MV through precision medicine. A holis-
tic understanding of the contributors to ARDS, VILI, and 
treatment during MV is imperative. Therefore, we have sug-
gested the potential application of imaging and biomarkers 
to improve the delivery of MV, assess the progression of 
injury and to understand the pathophysiology in the lung. 
A summary of the value of each tool for key parameters are 
outlined (Table 1).

An evaluation of the individual components of our pro-
posed approach has been and continues to be tested to 
better understand the capability of each element. Further 
studies should be completed to test the simultaneous use 
of CT and EIT in animal models and then human studies, 
followed by the inclusion of plasma biomarkers to aug-
ment treatment decisions. LUS has strong evidence for 
identifying lung injury, but more research on its’ potential 
for delivering therapeutics in animals and then humans is 
necessary. Finally, these treatments should be combined 
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and compared to the current delivery of MV to under-
stand their full potential in improving patient outcomes 
in ARDS.
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Fig. 2  Proposed approach to 
manage mechanical ventilation 
(MV) in ARDS with precision 
medicine. The current MV 
approach is blinded regarding 
where pressure and volume 
is delivered into the lung by a 
ventilator. Systemic biomark-
ers maybe used as a result for 
evaluation of appropriate venti-
latory strategies. The proposed 
approach is to use real-time 
bioimaging techniques, such 
as CT scan, electric impedance 
tomography (EIT) and lung 
ultrasound (LUS) to visual-
ize and guide the pressure and 
volume delivered during MV 
in addition to biomarkers. EIT 
images are adopted [12], CT 
images [40] and LUC images 
(Galderisi 25)

Table 1  Summary of key parameters assessed by CT, EIT and lung ultrasound

Technology Parameters Application to mechanical ventilation

Computed tomography Lung injury Tissue density, fibrosis, edema and 
atelectasis

Lung mechanics Recruitability, alveolar strain and 
aeration

1. Measures lung characteristics to target injured areas 
during MV

2. Evaluate changes in lung tissue as evidence of VILI
3. Assist with prognosis classification

Electrical impedance tomography Ventilation distribution Center of ventilation ratio, 
anterior/posterior ratio, global inhomogeneity 
index and ventilation-perfusion match

Patient variation Individualization of tidal volume 
and PEEP titration, visualization of lung recruit-
ment and optimization of collapse vs. hyperdisten-
tion

1. Adjustments of ventilation settings to meet 
individual requirements for oxygenation, alveolar 
architecture and lung mechanics

2. Ability to decrease VILI through visualizing the 
distribution of ventilation

3. Optimal and personalized settings lead to improved 
survival and higher weaning success on MV

Lung ultrasound Lung injury Alveolar consolidation and ARDS 
tissue patterns (focal vs. non-focal) with high 
sensitivity and specificity

Delivery of therapeutics Non-aerated lung tissue can 
be penetrated by LUS for targeted delivery

1. Fast and reliable measures of the progression of 
lung injury during MV

2. Evidence to support shifts in MV settings based on 
changes in lung injury

3. Allows for targeted delivery of therapeutics to 
reduce systemic effects and improve uptake
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