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Abstract
Cases of vaccine breakthrough, especially in variants of concern (VOCs) infections, are emerging in coronavirus disease 
(COVID-19). Due to mutations of structural proteins (SPs) (e.g., Spike proteins), increased transmissibility and risk of 
escaping from vaccine-induced immunity have been reported amongst the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). Remdesivir was the first to be granted emergency use authorization but showed little impact on survival in 
patients with severe COVID-19. Remdesivir is a prodrug of the nucleoside analogue GS-441524 which is converted into the 
active nucleotide triphosphate to disrupt viral genome of the conserved non-structural proteins (NSPs) and thus block viral 
replication. GS-441524 exerts a number of pharmacological advantages over Remdesivir: (1) it needs fewer conversions for 
bioactivation to nucleotide triphosphate; (2) it requires only nucleoside kinase, while Remdesivir requires several hepato-
renal enzymes, for bioactivation; (3) it is a smaller molecule and has a potency for aerosol and oral administration; (4) it 
is less toxic allowing higher pulmonary concentrations; (5) it is easier to be synthesized. The current article will focus on 
the discussion of interactions between GS-441524 and NSPs of VOCs to suggest potential application of GS-441524 in 
breakthrough SARS-CoV-2 infections.
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1 Introduction

The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) has caused hundreds of millions of cases, 
and millions of deaths worldwide [1–3]. Recently there has 
been a surge in cases of COVID-19, largely due to SARS-
CoV-2 Variants of Concern (VOCs), including the Alpha 
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), 
and Omicron (B.1.1.529) variants (Fig. 1 and Supplementary 
Table  S1) [4–11]. The VOCs are potentially more 
contagious, causing increasingly severe infections, evading 
the host immune system, and/or inducing reinfections [12]. 
Notably, the Delta variant has shown a 108% increased risk 
for hospitalization, 235% increased risk for ICU admission, 
and 133% increased risk for death compared to the original 
virus [13]. The Omicron variant has more than double the 
mutations of the Delta variant and spreads twice as quickly as 
the Delta variant with higher infectivity and transmissibility 
[14–17]. Recent data also suggest that the emerging 
Omicron sub-lineages BA.1 and BA.2 are alarming, due to 
their increased prevalence worldwide and a higher risk of 
breakthrough infections than all other VOC lineages caused 
by substantially reduced vaccine protection and weakened 
neutralizing antibody responses [16–18]. Growing evidence 

suggests that reinfections and breakthrough infections may 
promote the spread of VOCs, especially Delta and Omicron 
variants [16, 19–23].

There are three different groups of proteins that are 
encoded in the SARS-CoV-2 genome, namely structural 
proteins (SPs), non-structural proteins (NSPs), and acces-
sory proteins (APs) [24]. Spike, Nucleocapsid, Envelope, 
and Membrane proteins are the major SPs (Fig. 1) [24]. 
With respect to SPs, mutations mainly take place on the 
receptor-binding domain (RBD) in Spike proteins resulting 
in changes of its binding affinity to the membrane receptor 
angiotensin-converting enzyme 2 (ACE2) on host cells [25, 
26]. NSPs and APs are more conserved than SPs, yet whose 
mutational changes may facilitate new pathways involving 
viral replication and release [24].

Currently available vaccines, including mRNA vaccines 
(e.g., Pfizer-BioNTech and Moderna) and viral vector-based 
vaccines (e.g., Janssen and AstraZeneca) can attenuate SARS-
CoV-2 and VOC entry into host cells by inducing antibodies 
targeting RBD of spike protein [27]. However, the VOCs can 
breakthrough by escaping the target site from vaccine, and 
may subsequently lead to further mutations [28, 29]. Thus, 
repurposing and developing antiviral drugs to target the most 
conserved NSPs of VOCs is an immediate priority [12].

Fig. 1  Genome of SARS-CoV-2 and signature mutations of the 
emerging variants [5, 6, 24]. A Genomes of wildtype SARS-CoV-2 
and VOCs (Alpha variant (i.e., B.1.1.7); Beta variant (i.e., B.1.351); 
Gamma variant (i.e., P.1); Delta variant (i.e., B.1.617); and Omicron 
variant (B.1.1.529)) with indication of the most characteristic 
mutations, including mutations in ORF1ab, Spike, and Nucleocapsid 

protein. B Global distribution of COVID-19 cases with the currently 
predominating Delta and Omicron variants. Nextstrain clade label: 
21 K indicates Omicron BA.1 lineage; 21L indicates Omicron BA.2 
lineage. C Frequencies of major Delta and Omicron sub-lineages 
from April 2021 to March 2022. B, C Generated using Nextstrain [4, 
5]
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Antiviral drugs can target different stages of viral 
replication cycles such as viral entry and fusion, uncoating, 
transcription, translation, and virion release [30]. In COVID-
19, antiviral therapies such as Remdesivir, neutralizing 
antiviral antibodies (i.e., Casirivimab/Imdevimab), and 
plasma therapy were granted emergency use by FDA 
[30–32]. Remdesivir is a nucleoside analogue that was 
clinically investigated for Ebola virus prior to COVID-
19 [30]. As a phosphoramidate, Remdesivir undergoes 
metabolic transitions to become the active nucleoside 
triphosphate (NTP; GS-443902) (Fig. 2) [33, 34]. In its 
metabolically active stage, NTP directly interrupts viral 
replication by inhibiting viral RNA-dependent RNA 
Polymerase (RdRp) [33, 35]. Although Remdesivir has 
exerted some efficacy in treating COVID-19 patients [36], it 
has shown no decrease in all-cause mortality in patients with 
severe COVID-19, with most trials demonstrating marginal 
antiviral benefit [36–39]. On the other hand, GS-441524 
is the parent C’-adenosine analogue of Remdesivir, and 
theoretically has several pharmacological advantages over 
Remdesivir in the treatment of SARS-CoV-2 infection [28, 
40]. In the present article, we focus our discussion on the 

potential efficacy of GS-441524 as a therapeutic agent in 
breakthrough SARS-CoV-2 VOC infections [19–21, 23, 41, 
42].

2  The Non‑phosphoramidate GS‑441524 
Could be Superior Over Remdesivir 
(Contains the Functional Group 
Phosphoramidate) Against SARS‑CoV‑2 
and VOCs

Although the catalytic NTP that interacts and interferes 
with RdRp can be derived from both GS-441524 and Rem-
desivir, the complicated bioactivation pathway, preferential 
expression of Remdesivir prodrug bioactivating enzymes 
in the liver, and short half-life of Remdesivir (~ 1 h) render 
GS-441524 (~ 3–5 h) a better therapeutic candidate [33, 34, 
43]. GS-441524 is bioactivated by nucleoside kinases, which 
are expressed more evenly across all tissues in the body [33]. 
Considering that it is quite common to observe comorbidities 
in patients with severe SARS-CoV-2 infections, GS-441524 
could be potentially more potent than Remdesivir and could be 

Fig. 2  Mechanism of action of GS-441524 and Remdesivir following 
SARS-CoV-2 infection. The diagram depicts the structures and 
potential disposition of GS-441524 in SARS-CoV-2 infected 
cytoplasm of a Type II pneumocyte. Remdesivir is converted into 
GS-441524 extracellularly and into NTP intracellularly, while the 
only major metabolic pathway of GS-441524 is its conversion into 
NTP in cells. The bioactivation of Remdesivir involves liver-specific 
enzymes Carboxylesterase 1 (CES1), Cathepsin A (CTSA), and 

Histidine Triad Nucleotide Binding Protein 1 (HINT1). NTP disrupts 
RdRp activities, inhibits viral replication, and prevents the translation 
and assembly of viral proteins (e.g., Spike protein, Envelope protein, 
Membrane protein) to ultimately minimize further damages of the 
human body from the amplifying SARS-CoV-2 virus. Recreated from 
“Remdesivir: Potential Repurposed Drug Candidate for COVID-19”, 
by BioRender.com (2021). Retrieved from https:// app. biore nder. com/ 
biore nder- templ ates

https://app.biorender.com/biorender-templates
https://app.biorender.com/biorender-templates
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an antiviral therapeutic option against SARS-CoV-2 variants 
with greater patient tolerability.

2.1  Nucleoside Kinase is the Only Enzyme Required 
for GS‑441524 Conversion to Active NTP

The molecular basis of bioactivation demonstrates 
differences in enzymatic requirement between GS-441524 
and Remdesivir. GS-441524 requires only nucleoside kinase 
for bioactivation [33]. In contrast, Remdesivir requires 
carboxylesterase 1 (CES1), cathepsin A (CTSA), and histidine 
triad nucleotide-binding protein 1 (HINT1) that are expressed 
in kidney and liver tissues to be metabolised involving esterase 
and phosphoramidase pathways for bioactivation [33, 44, 45]. 
In severe COVID-19 patients with underlying comorbidities, 
the liver and kidney are likely to malfunction for the conversion 
of Remdesivir to bioactive NTP against SARS-CoV-2 (Fig. 2).

2.2  Orally Bioavailable Prodrug of GS‑441524

In in  vitro studies, GS-621763, an orally bioavailable 
prodrug of GS-441524, has been shown to have low 
cytotoxicity and a similar  EC50 to GS-441524 [46, 47]. 
Recent studies suggested that administration of GS-621763 
is efficacious against SARS-CoV-2 in ferrets and mice [45, 
48]. A pharmacokinetic study revealed higher and more 
consistent plasma concentrations of GS-441524 in ferrets 
receiving oral GS-621763 compared to those receiving 
intravenous administration of Remdesivir or GS-441524 
[48]. GS-621763 supports the exploration of GS-441524 
oral prodrug in the management of breakthrough COVID-19.

2.3  Safety of GS‑441524 Over Remdesivir

Data in both cell culture and in animal models indicate 
that GS-441524 is much less cytotoxic in cells and better 
tolerated in animals compared to Remdesivir [33, 43, 
49, 50]. The latter has shown to induce adverse effects in 
rhesus macaques (e.g., renal tubular atrophy) and patients 
(e.g., liver and kidney inflammation) [33, 44]. The non-
phosphoramidate GS-441524 may minimise liver and 
kidney adverse events, enables the drug to be administered 
in higher doses. The first human study of orally administered 
GS-441524 for COVID-19 (Trial ID: NCT04859244) 
in a healthy woman has also shown sustained plasma 
concentrations and excellent safety profile [51, 52].

2.4  Socio‑economic Benefits of GS‑4414524 Over 
Remdesivir

The structural complexity of Remdesivir makes drug 
production costly and difficult. The minimum production 
cost of Remdesivir is USD$9.30 for a 10-day treatment 

course (100 mg two times on Day 1 and 100 mg one time 
on Days 2–9), which is much more expensive than many 
other repurposed antiviral drugs for COVID-19 such as 
fluvoxamine [53–55]. In contrast, GS-441524, with its 
simpler structure (3 functional groups less than Remdesivir) 
and as the prodrug of Remdesivir during the production 
procedure and in tissue metabolism, would be significantly 
less expensive than Remdesivir to produce [33].

3  Combination Therapy of GS‑441524

As SARS-CoV-2 variants continue to emerge, there have 
been increasing interests in developing combination 
therapies (both virus- and host-targeted) through repurposed 
drugs, with the goal of better inhibiting viral infections by 
targeting different mechanistic pathways [56, 57]. As each 
drug has different yet specific mechanism of action, one 
advantage of utilizing combination therapies is the potential 
of achieving drug synergy, offering a treatment that performs 
better than when administering the individual drugs alone. 
This also raises the possibility of using lower effective 
concentrations of each drug in a combination therapy to 
minimize drug toxicity, side effects, and costs.

3.1  Combination Therapy with Functional Inhibitors 
of Acid Sphingomyelinase (FIASMA)

FIASMA (e.g., fluoxetine, amiodarone, and imipramine) 
is a group of psychotropic medications that inhibits the 
lysosomal enzyme acid sphingomyelinase and regulates the 
homeostasis of the endolysosomal host–pathogen interface 
[58, 59]. In in vitro models, FIASMA has been found to 
efficiently inhibit SARS-CoV-2 entry and propagation via 
mechanisms such as impairing endolysosomal acidification 
and inducing cholesterol accumulation within the 
endosomes [59, 60]. The antiviral potency of FIASMA 
is further supported by recent clinical studies [55, 58, 61, 
62]. For example, in patients with psychiatric disorders 
hospitalized for severe COVID-19, those receiving FIASMA 
medications at baseline had significantly reduced risk of 
intubation or death as compared to those receiving non-
FIASMA antidepressants (p < 0.01) [58]. Together, these 
data suggest the potential antiviral potency of FIASMA in 
treating SARS-CoV-2 infections.

Recently, many papers revealed the synergistic antiviral 
potential of therapies that combine remdesivir and/or 
GS-441524 with FIASMA for treating SARS-CoV-2 
variants [56, 57, 59]. For example, in in vitro models of 
SARS-CoV-2, combined therapy of GS-441524 with 
fluoxetine showed a more superior viral titer reduction 
(over 99% reduction) than using fluoxetine (60–70% 
reduction) or GS-441524 treatment alone (90% reduction) 
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[57]. More importantly, the synergistic antiviral effects 
are not only observed in the SARS-CoV-2 parental strain, 
but also in the Alpha and Beta variants, providing support 
for the applicability of such combination treatments for 
the currently prevailing Omicron variant infections [57]. 
Omicron variants have also been found to rely heavily on the 
endocytic pathways for viral entry, which further supports 
the use of host endolysosome-directed FIASMA with viral 
replication-directed remdesivir/GS-441524 for treating 
SARS-CoV-2 infections [63].

3.2  Combination Therapy with Other Drugs

Additionally, combining remdesivir with many non-
FIASMA drugs, including itraconazole, baricitinib, and 
MEK1/2 Inhibitor ATR-002 (Zapnometinib) have also 
shown synergistic antiviral effects against SARS-CoV-2 [56, 
64, 65]. In polarized Calu‐3 cell culture model, itraconazole-
remdesivir combination inhibits the production of infectious 
SARS‐CoV‐2 particles by over 90% and shows synergistic 
effects [56]. In a double-blind, randomized, placebo-
controlled trial, baricitinib-remdesivir treatment reduces 
recovery time of patients with COVID-19 and accelerates 
their improvement in clinical status as compared to using 
remdesivir alone [64]. Treatment combinations of ATR-002 
with remdesivir have also been found to display synergistic 
antiviral effects [65]. The above drugs are promising targets 
to be used in conjunction with the direct-acting antiviral 
remdesivir against SARS-CoV-2 and in vivo and clinical 
studies are critical in further validating their potency.

3.3  Limitations of Combination Therapy

Patients with severe SARS-CoV-2 infections often hold 
other comorbidities that may be exacerbated when giving 
additional repurposed drugs or combination therapies [66]. 
While both GS-441524 and FIASMA have been reported 
with little adverse effects on organs, careful evaluations need 
to be taken about the suitability and safety of GS-441524-
FIASMA treatments before making a treatment decision [57, 
66, 67].

4  Interactions Between GS‑441524 
and VOCs

4.1  Inhibition of RdRp (NSP12, 7, 8) Polymerization

RdRp is a multi-unit transcription complex consisting 
of NSP12, NSP7, and NSP8, which is essential for the 
replication of the SARS-CoV-2 genome (Table  1) [35, 
68]. NTP is a high-affinity substrate for RdRp through 
interaction with NSP12 [35, 69] and inhibits viral replication 

through incorporation by RdRp into nascent viral RNA, 
predominately resulting in chain termination at the i + 3 
position with a steric clash of the NTP 1′-CN group with 
residue R858 of RdRp [70]. The efficient incorporation of 
NTP into the newly synthesized viral RNA chain is due to 
the superior selectivity of NTP compared to ATP and other 
nucleoside analogues [71, 72]. The effective inhibition of 
RdRp is dependent on the complementarity between NTP 
and RdRp. When mutations in amino acid residues that 
interact with NTP are present, the binding properties may 
be altered to reconstruct the interactions between NTP and 
RdRp [73].

To evaluate the mutations in amino acid residues of 
major GS-441524-interacting SARS-CoV-2 NSPs (RdRp, 
NSP3, NSP5, and NSP14), the online database Nextstrain 
(https:// nexts train. org/ ncov/ global) was used (up to March 
20th, 2022) [4, 5]. As of March 20th, 2022, no mutation 
in amino acids of RdRp that interact with GS-441524 had 
been found in VOCs (Table 2) (https:// nexts train. org/ ncov/ 
global) [4, 5]. The more critical RdRp amino acids V557 and 
D618 that directly affect the affinity of RdRp-NTP binding 
and stringency of base pairing are also well-preserved 
[35, 40, 71]. The lack of mutations in the NTP-interacting 
sites in RdRp suggests the plausible inhibition of RdRp 
by GS-441524 in VOCs (Alpha, Beta, Gamma, Delta, and 
Omicron variants) [74].

4.2  Complementary Binding to NSP3 
for Inactivation

NSP3 is one of the two major proteases in SARS-CoV-2 
that facilitates the cleavage of the polyprotein into NSP1, 2, 
and 3 (Table 1) [4, 5]. The NSP3 macrodomain is conserved 
across coronaviruses and generally binds adenosine-5-
diphosphoribose (ADP-ribose) [75, 76]. The similar sizes 
of ADP-ribose (substrate of NSP3) and NTP suggest that 
NTP may have the potential to interact with NSP3 [75, 
76]. Indeed, there is in silico evidence demonstrating the 
interaction of GS-441524 with the macrodomain of NSP3 
through hydrogen bonding and hydrophobic interaction [76, 
77]. The binding mode of GS-441524 to the macrodomain 
is also highly similar to that of the ADP-ribose adenosine 
moiety [75, 76]. Moreover, GS-441524 is more structurally 
complementary to the ADP-ribose binding pocket in NSP3 
than the adenosine substrate [51]. This suggests a secondary 
mechanism of inhibition by GS-441524 in addition to 
bioconversion to the NTP analogue.

Mutations in NSP3 may influence the interactions 
between GS-441524 and NSP3. As of March 20th, 2022, 
two different mutations (lineage significance cut-off at 
10% global prevalence) in two samples of Omicron variant 
lineages (A154T: BA.1 and A154N: BA.1.1) were identified 
in an single amino acid residue of NSP3 that interacts with 

https://nextstrain.org/ncov/global
https://nextstrain.org/ncov/global
https://nextstrain.org/ncov/global
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Table 1  Biological functions and GS-441524 interacting residues of NSP12-7–8, NSP5, NSP3, and NSP14

* , †, ‡, §, ‖: Amino acid residues that have mutations in VOCs reported on Nextstrain as of March 20th, 2022. Each symbol is indicative of one 
specific mutation. Amino acid residue marked with † had multiple patient samples/isolates reflecting the same mutation. Amino acid residue 
marked with § had multiple mutations. All the mutations can be referred to source information in Supplementary Table S2

Non-structural protein Biological functions GS-441524 interacting residues in NSPs

RdRp (NSP12-7–8) [24, 40, 69, 71, 82] (1) NSP7 and NSP8 are cofactors of NSP12 
(RNA-dependent RNA Polymerase, RdRp), 
which together form the replication and 
transcription complex (RTC)

F480, K545, Y546, A547, S549, K551, R553, 
R555, T556, V557, A558, D618, K621, 
C622, D623, S682, D761, K798, E811, R836, 
R858

(2) NSP12-NSP7-NSP8 complex shows RNA 
polymerization activity

(3) NSP7 mediates single-stranded RNA 
binding

(4) NSP8 is a primase
NSP3 (i.e., PLpro, papain-like protease) [77, 

79, 87]
(1) Key component for coronavirus replication Hydrogen bonding: I23, N40, F156

(2) Processes polyprotein (NSP1, 2, 3) via the 
PLpro domain

Salt-bridges: D22, D157

(3) Contains a transmembrane domain that is 
associated with modified host’s endoplasmic 
reticulum (ER) membranes and is essential 
for RTC formation

π–π interaction: F156

(4) Inhibits ubiquitination vdW interaction: H45, G46*, G47, G48, V49†, 
L126, S128, G130, I131‡, F132, L153, 
A154§, V155

NSP5 (i.e., 3CLpro, 3-chymotrypsin like 
protease; or Mpro, main protease) [81]

(1) Mediates processing of NSPs at 11 
distinct cleavage sites, including its own 
autoproteolysis

Hydrogen bonding: P39, C145, H163, M165
π–π interaction: H164

(2) Essential for viral replication and RTC 
formation

vdW interaction: T25, T26, L27, N28, G29, 
L30, Y37, C38, P39, H41, M49, C117, Y118, 
N119, G120, F140, L141, N142, G143, S144, 
C145, G146, S147, M162, H163, H164, 
M165, E166

NSP14 [40, 68, 83] (1) Contains exoribonuclease for proofreading 
activities

D90, E92, H95‖, N104, F190, E191, D273

(2) Contains guanine-N7-methyltransferase 
(N7-MTase) domain to facilitate 5′-cap 
formation

Table 2  VOC lineages with mutated GS-441524 interacting residues

* Appears in more than 75% of identified sequences of the same lineage
† Prevalence is calculated according to 9,236,360 accumulated sequences from GISAID (Last update: GMT March 23rd, 2022 [78, 88])
All the mutations can be referred to source information in Supplementary Table S2

NSP Mutation VOC code Lineage Characteristic 
mutation?*

Worldwide 
identified 
sequences

Worldwide 
accumulated 
 prevalence†

First identified Latest update

RdRp None – – – – – – –
NSP3 G46E Delta AY.25 N 132,769 1% 21 July 2020 26 February 2022

V49I Delta AY.121 N 37,231  < 0.5% 24 January 2021 3 March 2022
V49I Delta AY.20 N 35,647  < 0.5% 14 January 2021 7 February 2022
I131V Delta B.1.617.2 N 160,901 2% 27 March 2020 7 March 2022
A154N Omicron BA.1.1 N 900,337 10% 29 October 2020 21 March 2022
A154T Omicron BA.1 N 1,045,934 12% 23 October 2020 17 March 2022

NSP5 None – – – – – – –
NSP14 H95Y Omicron BA.1 N 1,045,934 12% 23 October 2020 17 March 2022
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NTP (Table 2) (https:// nexts train. org/ ncov/ global) [4, 5]. 
The A154 residue is not one of the major amino acids 
highlighted in the in silico studies, and neither A154N nor 
A154T is a characteristic mutation of the BA.1 or BA.1.1 
lineage [75, 76]. We also found several other mutations in 
GS-441524-NSP3 interacting sites of Delta and Omicron 
variant cases on Nextstrain; however, all these mutations 
occurred in patchy cases and with low prevalence (< 0.5–2%) 
(Table 2 and Supplementary Table S2). Although all the 
mutated residues exert relatively weak Van der Waals forces 
to enhance GS-441524-NSP3 interaction, two of them are 
in sub-lineages with over 10% global prevalence [76, 78]. 
Moreover, the overall number of samples with mutations in 
GS-441524-NSP3 interacting residues is significantly higher 
than in NSP5, RdRp, and NSP14. Therefore, the interactions 
between GS-441524 and NSP5 of VOCs would likely be 
affected.

4.3  Inhibition of NSP5

NSP5 mediates the processing of NSPs at 11 cleavage sites 
(NSP4-11, NSP12-15) (Table 1) [24, 79]. In conjunction 
with NSP3, the two proteases cleave SARS-CoV-2 encode 
precursor polyproteins pp1a and pp1b into 16 NSPs to 
assemble the viral replicase complex [24]. Among crucial 
NSP5 residues, C145 and H164 exhibit strong hydrogen 
bonding with Remdesivir [80, 81]. Current data suggest 
H164 as an essential active site for NSP5 function, which 
when disrupted, may potentially halt its proteolytic activity 
[80]. As the structure of the interaction site in Remdesivir 
is conserved in GS-441524, such interactions between 
GS-441524 and the NSP5 active site are highly probable 
[81]. Thus, it is important to investigate whether mutations 
in the active site are observed that could potentially disrupt 
GS-441524-NSP5 interactions.

Similar to RdRp, since no mutation of NTP-interacting 
residues in NSP5 had been found as of March 20th, 2022, 
the interactions between GS-441524 and NSP5 of VOCs 
(Alpha, Beta, Gamma, Delta, and Omicron variants) would 
appear similar to that between GS-441524 and Wuhan wild-
type NSP5 (Table 2) (https:// nexts train. org/ ncov/ global) [4, 
5].

4.4  Blockage of the Active Site in NSP14

As a 3′-to-5′ exoribonuclease and a guanine-N7-
methyltransferase, NSP14 is a crucial component securing 
the replication of SARS-CoV-2 (Table 1) [82, 83]. The 
exoribonuclease domain of NSP14 is critical for viral 
replication given that mutant exoribonuclease knockout 
SARS-CoV-2 results in interruption of viral replication 
[84]. NSP10, the replicative cofactor of NSP14, stabilizes 
and stimulates enzymatic activities through interaction 

with exoribonuclease [85]. Furthermore, NSP10 has been 
proposed to interact with NSP12 to undergo RNA repair 
processes that may arise during RNA synthesis, indicating 
the possibility of interactions between NSP10, NSP12, and 
NSP14 [83]. Studies provided evidence suggesting that 
NSP14 interacts with NTP, where the cyano group at the 
1′-ribose position of NTP fit complementarily with the 
active site of NSP14 exoribonuclease [40, 83]. The distorted 
base of NTP is predicted to prevent the proper distances 
for efficient two-metal ion catalysis, thus disrupting the 
function of exoribonuclease [40]. Due to the importance of 
complementarity in ensuring the effect of NTP on NSP14 
activities, it is worth investigating the NSP14 mutations in 
VOCs to assess their influences on the potency of NTP.

As of March 20th, 2022, one mutated NSP14 residue 
that interacts with GS-441524 is observed on Nextstrain in 
a sample of the Omicron variant sub-lineage BA.1 (https:// 
nexts train. org/ ncov/ global) [4, 5]. The H95Y mutation is not 
characteristic for the BA.1 lineage, implying that it would 
not be present in all samples of the sub-lineage (Table 2). 
However, it is attention-worthy due to the high global 
prevalence (12%) of the BA.1 sub-lineage (Supplementary 
Table S2). Therefore, a more conservative conclusion is 
that the interactions of GS-441524 with NSP14 would be 
changed in the Omicron variant but would remain relatively 
conserved across the other VOCs.

5  Preclinical and Clinical Studies Using 
GS‑441524 in SARS‑CoV‑2 Infection

GS-441524 has shown potency in lowering SARS-CoV-2 
replication in in vitro human lung Calu-3 cell infection 
[34], in mice with an increased viral clearance 2 days post-
infection and reduced weight loss [43], and has demonstrated 
exceptional safety, tolerability, and pharmacokinetics in 
one human (case report; Cmax: 12·01 μM, surpassing the 
concentration required to eradicate SARS-CoV-2 in vitro 
[51, 52]) and several preclinical species [50]. A human 
study of orally administered GS-441524 for COVID-19 
is underway [51, 52]. Taken together, clinical studies of 
GS-441524 on VOCs are of great interest, given its antiviral 
potentials.

6  Limitations

The data for the NSP amino acid residues that interact 
with GS-441524 are based largely on in silico studies, 
and continual vigorous analysis are needed for further 
verification [40, 71, 77, 86]. The effect of mutations on 
the binding affinity of NSPs to GS-441524 remains to be 
monitored in emerging VOCs. The potential discrepancy 
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may exist between the microscopic effect of the mutated 
amino acids and their macroscopic influence on NSP 
structure and protein–protein interactions. Nevertheless, 
our analysis provides a foundation for future clinical trial 
testing of GS-441524 in breakthrough VOCs. The promising 
results of combination therapies in recent literature also 
suggest that combining virus-directed and host-directed 
drugs may partially help to counteract the possible reduction 
in potency of antiviral drugs against the emerging SARS-
CoV-2 variants.

7  Conclusion

Given the recent rise of breakthrough SARS-CoV-2 cases 
and the emerging Alpha, Beta, Gamma, Delta, and Omicron 
variants that have shown spike protein mutations, there is 
an urgent need to examine antiviral candidates that could 
contain these VOCs from escaping vaccines. The major 
amino acid sites of NSPs (NSP3, 5, 12, and 14) that interact 
with the parental nucleotide GS-441524 are not altered in 
the emerging VOCs. As such, we believe that the ready-to-
use GS-441524 is a potential antiviral approach against the 
breakthrough VOCs (Fig. 3).

Supplementary Information The online version contains 
supplementary material available at https:// doi. org/ 10. 1007/ 
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Fig. 3  Graphical Summary of 
the Advantages of GS-441524 
over Remdesivir against 
VOCs. SPs (E, M, N, S) and 
APs (ORF3a-10), especially S 
protein (Spike), are more active 
in forming mutations than 
NSPs. All COVID-19 vaccines 
target the most mutated parts 
of S protein and eventually 
lead to breakthrough infections 
in vaccinated individuals. 
GS-441524 and Remdesivir are 
both validified to target RdRp, 
yet GS-441524 can potentially 
interact with NSP3, 5, and 
14, which are less mutated 
among VOCs. Compared to 
Remdesivir, GS-441524 takes 
fewer steps to be converted 
into the active metabolite NTP. 
GS-441524, as a precursor 
in the chemical synthesis of 
Remdesivir and with a longer 
half-life, is considerably 
more economical with less 
production procedures involved. 
NSPs, non-structural proteins; 
SPs, structural proteins; Aps, 
accessory proteins; VOCs, 
variants of concern
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