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Abstract
Protagonists allege that artificial intelligence (AI) is revolutionising contemporaneous mindscapes. Here, we authoritatively 
review the status quo of AI and machine learning application in irrigated agriculture, evaluating the potential of, and chal-
lenges associated with, a wide range of existential AI approaches. We contend that aspiring developers of AI irrigation sys-
tems may benefit from human-centred AI, a nascent algorithm that captures diverse end-user views, behaviours and actions, 
potentially facilitating refinement of proposed systems through iterative stakeholder feedback. AI-guided human–machine 
collaboration can streamline integration of user needs, allowing customisation towards situational farm management adapta-
tion. Presentation of big data in intuitive, legible and actionable forms for specialists and laypeople also urgently requires 
attention: here, AI-explainable interpretability may help harness human expertise, enabling end-users to contribute their 
experience within an AI pipeline for bespoke outputs. Transfer learning holds promise in contextualising place-based AI to 
agroecological regions, production systems or enterprise mixes, even with limited data inputs. We find that the rate of AI 
scientific and software development in recent times has outpaced the evolution of adequate legal and institutional regulations, 
and often social, moral and ethical license to operate, revealing consumer issues associated with data ownership, legitimacy 
and trust. We opine that AI has great potential to elicit sustainable outcomes in food security, social innovation and envi-
ronmental stewardship, albeit such potential is more likely to be realised through concurrent development of appropriate 
ethical, moral and legal dimensions.
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Abbreviation
AI  Artificial Intelligence
DSS  Decision Support System
SVM  Support Vector Machine
IoT  Internet of Things
ANN  Artificial neural networks

1 Introduction

Effective irrigation management facilitates increased crop and 
pasture yields, reduced water use, production efficiencies, and 
improved environmental stewardship [1–3]. The complemen-
tarity or use of artificial intelligence (AI) in irrigation man-
agement has garnered significant interest due to the potential 
of AI to streamline irrigation procedures within and across 
fields [4–6]. AI systems may help expedite and refine agri-
cultural decision-making, particularly in response to climate 
change, for example in predicting shifts in crop phenology 
associated with global warming [7, 8]. Scenario analysis for 
irrigation management can employ decision support systems 
(DSS) to assist farmers and researchers in making informed 
irrigation decisions [9] and system models to support research 
[10–12]. In recent times however, much agricultural research 
has shifted towards the development of technologies and algo-
rithms, with use-cases including climate crisis, greenhouse 
gas emissions, precision agriculture, decision trees, remote 
sensing, and predictive analytics [13–15].
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Farm-level processes associated with irrigation rate and 
timing are influenced by several factors, including the type 
of crop, the volume of water available and required, water 
resource management, crop or pasture yield, water cost, 
environmental impact, water allocation, farmer income, 
labour availability, infrastructure, nitrogen use, implications 
for soil organic matter, carbon and greenhouse gas emis-
sions, markets and many other factors [1, 16–21]. Owing 
to their capability to analyse enormous amounts of data, 
various machine learning techniques, such as support vector 
machines (SVM) and decision trees, have been employed 
in irrigation management applications, including prognos-
tics for weather conditions [22], soil moisture, crop water 
requirements, and irrigation scheduling. As a result, indus-
try and academia are increasingly adopting AI-based tools 
and methods. To promote sustainability, effective irrigation 
management must consider not only plausible factors for 
scenario analysis, but also end-user needs and skills [3, 23]. 
In addition to developer limitations, the human and social 
challenges of end-users, including a lack of knowledge or 
technical competency, difficulties investing in and leveraging 
Internet-of-things (IoT) or mobile-based applications, and 
data privacy and ownership concerns, have long impeded 
implementation of AI systems on small- scale farms [1]. 
Furthermore, the hype in, and reliability and trustworthiness 
of, AI systems will together impact future developments. 
These factors suggest that in many cases, the pace of tech-
nology evolution is outpacing not just legal regulations, but 
also social, moral and ethical license to operate.

To address these shortcomings, technology constructs 
such as industry 5.0, human-in-the-loop AI, and explain-
able artificial intelligence have been employed to enhance 
the accuracy, credibility, legitimacy, salience, transparency 
and interpretability of machine learning model simulations 
[24, 25] (Table 1).

These relatively nascent AI frameworks aim to provide 
credible, legitimate, and salient decision support. Based on 
intuitive processes and sensible feedback, end-users develop 

confidence in the decision recommendations and gain trust 
in utilising such technologies. Indeed, in some cases, end-
user confidence in and understanding of decision-support 
system outputs can reach such an extent that successful 
adoption is measured by the point with which end-users jetti-
son the DSS [1]. End-users are less likely to have confidence 
in DSS that are perceived as ‘black boxes’, have irrational 
outputs, or exceed the bounds of human rationality [10], 
hence the allure of explainable AI algorithms [27]. Tech-
nology developers who aspire to capitalise on AI can better 
understand the limitations of existing models and refine the 
interpretation of decision processes employed by AI systems 
in real-world situations through end-user input and feedback, 
thereby iteratively improving prototype designs. Comple-
menting traditional participatory action research and people-
centric designs paves the way forward in a new direction for 
AI applications to help dissect complex irrigation decision-
making across complex, sometimes competing, sustainabil-
ity indicators [13, 28]. The successful implementation of 
the information and communication technology-based 5.0 
industrial revolution in agriculture and its future benefits 
largely depends on the extent to which agricultural technol-
ogy solves a genuine problem and is adopted by users [27].

This paper aims to review the premises, problems and 
promises associated with AI in irrigation management, 
including an assessment of the prospects of future AI 
approaches, and the limitations of existing systems. The 
paper canvasses AI applications in irrigation management, 
from soil moisture monitoring to crop water requirement 
predictions, and contemplates solutions to problems asso-
ciated with implementing AI in irrigation management, 
including those based on foundational premises. The pri-
mary goal of this research is to articulate an authoritative 
view for how AI in irrigation management may been used 
to improve sustainability for public good. As part of this, we 
provide a multidimensional analysis of AI applications in 
irrigation management and examine the impact and potential 
of human and social aspects on AI development, contrasting 

Table 1  Types of AI and exemplar applications in industry

Concept Description Example Application Reference

Industry 5.0 Integration of human and machine collaboration in the 
production process, focusing on customisation and 
personalisation of products, and promoting sustainable 
and socially responsible practices

Customised manufacturing, waste reduction in 
production lines

[25]

Human-in-the- Loop AI Human users actively participate in AI decision-making 
process, refining, validating, and revising AI outputs, 
in the hope of leading to more reliable and accurate 
results

Medical diagnosis, content moderation [24]

Explainable AI AI models that are transparent and understandable, 
allowing humans to interpret their decision-making 
process, fostering trust and facilitating collaboration 
between humans and AI

Financial risk assessment, autonomous vehicles [26]
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with previous studies [29, 30] that solely focus on techni-
cal analysis and performance comparisons. Specifically, we:

• Synthesise status quo AI adoption in irrigation manage-
ment, highlighting various technologies, premises and 
methods employed

• Evaluate the promise of future AI approaches, and 
explore challenges and limitations that may be faced 
associated with developing such AI

• Elicit human, psychological and social aspects, such as 
end-user knowledge, capacity to learn, training, require-
ments, technology demand and adoption that have his-
torically shaped the development and implementation of 
AI systems in irrigation management.

• Present a novel multidimensional framing for AI applica-
tions in irrigation management, which contrasts with pre-
vious studies that focused primarily on uni-disciplinary 
technical analysis and performance comparisons, and

• Promulgate conceivable solutions to overcome challenges 
associated with employing AI in irrigation management, 
paving the way forward for sustainable, resilient and 
inclusive agricultural development.

Section 2 explores premises of AI irrigation management 
technologies, from both domain and data science perspec-
tives, including a discussion of the objectives of using AI 
in irrigation management. Section 3 articulates evaluation 
metrics for assessing AI-empowered irrigation management 
systems, Section 3.2 outlines technical, human and social 
barriers to progression associated with implementing AI 
in irrigation management, Section 3.3 canvasses emerging 
trends in AI-empowered irrigation management, such as 
human-in-the-loop AI and explainable AI, while Section 3.4 
summarises key findings and highlights opportunities and 
challenges in employing AI for irrigation management, 
including prospects for research, development, extension 
and adoption.

2  Premises underpinning AI Adoption 
in Irrigation Management

2.1  Disciplinary Perspectives

2.1.1  Objectives of Using AI in Irrigation Management

For contemporary irrigation practitioners, several challenges 
persist, including inefficient water application and crop/pas-
ture use, labor-intensive monitoring, limited real-time data 
availability, suboptimal resource allocation, and high volatil-
ity in market prices. Additionally, the lack of advanced pre-
dictive capabilities and the complexity of decision-making 
further complicate efficient irrigation practices. These issues 
underscore the need for innovative solutions to enhance irri-
gation management, with a particular focus on leveraging 
AI and machine learning technologies to optimise resource 
utilisation, improve decision-making processes, and address 
environmental concerns in agriculture.

Applications pertaining to AI in irrigation management 
have been evolving rapidly (Fig. 1). AI has already engen-
dered digital transformation in the agricultural sector by 
providing insights and synthesis of real-time data ana- lytic 
to make informed decisions. With AI-based predictions, 
applications have been developed that purport to monitor 
crop health, detect disease prolifera- tion [31], and optimise 
resource utilisation [7]. Such data-driven approaches allow 
users to make more timely decisions on when to plant crops, 
and how to irrigate, fertilise, or apply pesticides, with the 
objectives of improving crop productivity and cost efficiency 
and reducing environmental impact [30, 32]. AI applica-
tions are particularly suited to big data applications and thus 
ideally complement real-time data capture devices, such as 
sensing or optical capture technologies.

Farm manager objectives of using AI in irrigation man-
agement may pertain to optimising water usage, irrigation 
scheduling, detecting malfunction or leaks, and precision 

Fig. 1  Evolution of AI algorithms and use cases in agriculture over time
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agricultural applications for increasing crop yields and reduc-
ing labour costs [1, 33]. For scientists, objectives often com-
prise developing algorithms, testing technologies, conducting 
data analysis such as meta-analysis and systematic literature 
reviews. For example, Talaviya et al. [34] suggest that AI has 
been used in removing weeds, chemical and fungicide appli-
cations, improving fertility and improving product quality. 
They further opine that AI has and will complement autono-
mous application devices, including robots and drones.

AI can be used to improve water use efficiency. Drip 
irrigation systems save water and allow optimal control of 
soil water content and plant growth [35], while AI systems 
that enumerate real time development of the crop canopy 
help assess water usage and more timely drip irrigation 
[36]. Irrigation analytics computed with artificial neural 
networks (ANN) can create moisture availability maps that 
enable variable supply and optimise spatial and daily use 
of water [37]. Jayaraman et al. [38] summarised machine 
learning algorithms for improving water quality, while 
Kumar et al. [39] predict temporal soil moisture avail-
ability and usage to plan irrigation. Parra et al. [40] used 
AI to predict the productive efficiency of an orchard based 
on irrigation. Using AI modelling, transpiration based on 
meteorological factors, crop growth status and soil param-
eters can be predicted, potentially improving water usage 
[41]. Biswas et al. [42] predicted required water using IoT-
collected data such as soil moisture, temperature, humid-
ity, and sunlight, which are processed through an Arduino 
microcontroller. This data was subsequently transferred 
to a centralised server, where it was utilised by a machine 
learning model to make informed predictions on future 
irrigation needs, thus streamlining and enhancing water 
management practices. A crucial aspect of agricultural 
planning involves accurately predicting evapotranspiration 
[43], as this impacts the scheduling of irrigation water to 
promote efficient water use. Other authors have presented 
an intelligent IoT precision irrigation method to improve 
the efficiency of water use in irrigation systems [44]. This 
method automatically irrigates the field by detecting soil 
moisture levels and responding to water needs accordingly.

Optimising irrigation scheduling and reducing labour 
costs are other purported benefits of using AI. Spatial mois-
ture maps generated using machine learning can reduce the 
cost of irrigation control systems [37]. This study presents a 
cost-effective irrigation system leveraging an artificial neu-
ral network and low-cost radio frequency moisture sensors 
for real-time soil moisture estimation. By enabling tailored 
irrigation control in response to varying conditions, this 
system curtails unnecessary irrigation, reducing daily water 
and energy consumption by up to 38%, and therefore lower-
ing the overall operational costs. Similarly, reducing labour 
required in the greenhouse sector by automating the control 
greenhouse microclimate may help increase profits [45].

In India, use of AI-based information and communica-
tion technology solutions has decreased farmer reliance on 
farm labourers and has allowed them to maintain consistent 
levels of income and crop yield [46]. Tyagi et al. [47]. used 
AI to develop energy-efficient intelligent resource allocation 
for IoT-embedded agriculture systems. By avoiding depend-
ence solely on field experiments, Shen et al. [48]. proposed a 
method that enables execution of optimised irrigation sched-
ules and real-time adjustment of irrigation plans in arid and 
semi-arid regions. Compared with conventional systems, 
the proposed model combines a long short-term memory 
network and a dynamic irrigation lower limit to represents 
the adapting irrigation predictions in real-time. This model 
significantly improves on crop yield by 10.3% and 4.4% and 
net profit by 19.1% and 7.4% respectively during the winter 
wheat growth cycle over a three-year period [48]. AI pre-
dictions may help users optimise crop selection based on 
situational uniqueness, helping optimise planting or harvest 
times, or making other necessary actions. Industries, includ-
ing wholesalers, processors and retailers, are also using AI 
to forecast demand for crop products. In this way, market-
based industries are able to modify production from the 
demand side – allowing farmers to reduce or increase inputs 
accordingly, reducing wastage and environmental impacts 
and improving profits [30]. Babaee et al. [49]. used a hybrid 
approach that combined ANNs with genetic programming 
to estimate rice yield, which indicates irrigation is the most 
impacted factor. Widianto et al. [50]. reviewed current trends 
in AI for smart farming to enhance crop yields and found 
several key factors contributed, including weather, soil, irri-
gation, unmanned aerial vehicle technology, pest control, 
weed control, and disease control. A word cloud of literature 
in this paper is shown in Fig. 2.

2.1.2  End‑User Needs

Industry 4.0 has revolutionised the agricultural sector 
through the integration of IoT devices and machine learn-
ing algorithms [51]. Industry 4.0 can be defined as the cur-
rent trend of automation and data exchange in manufacturing 
technologies, involving cyber-physical systems, the Internet 
of Things, cloud computing, and cognitive computing. This 
has facilitated greater autonomy, machine processing and 
jettisoning of manual human labour. In many instances,  per-
formance gains achieved by machine learning algorithms 
with IoT surpasses that of humans, for example, considering 
the task of monitoring and detecting anomalies in a manu-
facturing process. Without IoT, human operators may rely 
on manual inspections or periodic sampling, which can be 
time-consuming and prone to human error. In contrast, with 
IoT-enabled sensors collecting real-time data from various 
points in the production line, machine learning algorithms 
can analyse the data continuously and detect anomalies 
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with higher accuracy and speed. The algorithms can iden-
tify subtle patterns and deviations that may go unnoticed by 
human operators, enabling early detection of faults or abnor-
malities. This results in improved operational efficiency, 
reduced downtime, and enhanced product quality compared 
to traditional human-centric monitoring methods. Despite 
these advancements, ethical and moral concerns regarding 
replacement of humanitarian labour with machines abound. 
By way of example, Bhatnagar, Poonia, and Sunda con-
ducted a case study on Indian farmers to explore the gap 
between academic research and the actual needs of farmers 
[52]. They found that there is a significant lack of awareness 
and adoption of modern technology in agriculture. Farmers 
expressed the desire for subsidies, reduced bureaucracy, and 
access to technology, indicating a need for educational initia-
tives to bridge the gap and ensure that even older farmers can 
benefit from the latest systems.

Industry 5.0 builds upon the foundations of Industry 4.0 
by emphasising the importance of human perception, sens-
ing, collaboration and decision-making in conjunction with 
AI-driven systems. In the context of smart irrigation sys-
tems, Industry 5.0 enables recognising and catering to the 
unique requirements of diverse end-users, including farm-
ers, scientists, institutions and policymakers [53]. Aspiring 
developers of smart irrigation systems may benefit from 
human-centred design, this heuristic capturing diversified 
viewpoints and needs of diverse stakeholders, potentially 
facilitating refinement of proposed systems in line with 
stakeholder feedback. By fostering human-machine collab-
oration, empathising with unique user needs, and allowing 
customisation and adaptability, a more personalised, situa-
tional and context-aware approach to irrigation management 
can be achieved. Streamlined improvement through feedback 
loops enables more efficient refinement and enhancement 
of the system over time. An example of AI-guided human-
machine growth in the water sector is the development and 

implementation of smart water management systems [54]. 
These systems utilise AI algorithms to analyse data from 
various sources, such as weather forecasts and sensor net-
works, enabling optimised water usage and improved sys-
tem efficiency. Real-time insights and recommendations 
provided by AI algorithms empower human operators to 
make informed decisions and take proactive measures. This 
collaborative approach enhances water management prac-
tices, ensuring reliability, sustainability, and minimal wast-
age. Assuming they were to be realised at some point in 
future, quantum computers - computers with hardware uti-
lising quantum mechanical phenomena - would enable a 
step-change in computing efficiency beyond that ever seen 
historically. Quantum computers hold potential in all aspects 
of agriculture, from production to consumption to regulation 
and innovation. We suggest that - with appropriate develop-
ment - quantum computing may help resolve many of the 
wicked problems facing humanity, including poverty, hun-
ger, climate and biodiversity crises, conflict, lack of access 
to clean water, sanitation and education, unsustainable 
resource use, inequality and more.

2.1.3  Farmers

Farmers often predominate the end-user typology of AI-
driven irrigation systems. Farmers – including managers, 
owners, employees and adjuncts - have unique needs and 
preferences that must be accounted for in the design and 
implementation of such systems. Their requirements can 
be categorised into usability, customisation, affordability, 
training and support, data privacy, ownership, security and 
ethical use.

• Usability A user-friendly interface is essential rapid 
adoption by practitioners, particularly those who lack a 
technology background. A system with a well-designed 

Fig. 2  Word cloud of litera-
ture presented in the pre-
sent paper (‘Irrigation with 
Artificial Intelligence: Prob-
lems, Premises and Promises’)
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interface can help farmers save time and effort in learn-
ing how to use the technology and in managing irrigation 
[55]. Intuitive graphical user interfaces are essential for 
farmers, as they often have limited time and resources 
to learn complex systems, which can lead to ineffective 
use of the technology, and thus lack of confidence when 
outputs are nonsense (ie. the “garbage in, garbage out” 
maxim).

• Customisation AI-driven irrigation systems should offer 
customisation to suit specific needs of individuals. Cus-
tomisation is particularly necessary as farms vary widely, 
for example due to factors such as crop types, local cli-
mate, soil properties, and water availability [56]. Contex-
tualisation in this way better allows AI-driven irrigation 
systems to optimise resource use (e.g. water, fertilisers) 
and increase resource-use efficiency [17, 20, 57].

• Affordability Affordability and cost-effectiveness are 
vital for farmers, especially small-scale farmers and 
those in developing countries. High investment costs 
and ongoing maintenance expenses can be prohibitive, 
disincentivising uptake and limiting subsequent benefits 
[58]. AI-driven irrigation systems should be designed 
with economic considerations in mind including duration 
of design process, as this can influence final product cost.

• Training and Support To help farmers effectively use 
and maintain smart irrigation systems, training materials 
and real-time support should be made available. These 
sentiments apply to all end-users. Providing on-demand 
assistance – for software, use and technical questions – 
helps ensure that users can address issues as they arise.

• Data Privacy, Security and Ownership Robust data 
privacy and security measures should be implemented 
to protect information and ensure trust in the technol-
ogy. Users have rightly become increasingly concerned 
about misuse of their data, part of which pertains to loss 
of competitive advantage. Such concerns have height-
ened in recent times with hacking and data theft from 
large corporate institutions demonstrating increasing 
efforts needed for cyber defence [59]. Ensuring secure 
data storage, encryption, and adherence to relevant data 
protection regulations may help alleviate these concerns 
[60]. Even so, concerns over ethical and moral use of 
such data persist and perpetuate, including ownership, 
commercialisation and use of personal information. We 
suggest that AI has a very important role to play in ensur-
ing public good in data privacy, security and ownership.

2.1.4  Scientists

Scientists, including domain experts and academics, have 
differing requirements for AI-driven irrigation systems, such 
as advanced analytical tools, integration with other research 
tools, extensibility, and interoperability.

• Advanced Analytical Tools Scientists may need access 
to advanced analytics and data visualisation tools to 
study water usage and monitor system performance. 
These tools are crucial for scientists because they enable 
a deeper understanding of the underlying factors affecting 
irrigation efficiency and help identify potential areas for 
improvement. By providing comprehensive insights into 
various aspects of AI-driven irrigation systems, these 
tools facilitate data-driven decision-making. Indeed, 
we premise that a great advantage of AI compared with 
traditional analyses is the ability to harness and synthe-
sise big datasets. In contrast, AI can break down when 
datasets are small, suggesting that other methods may be 
appropriate in such cases.

• Integration and Extensibility Scientists may require 
AI-driven irrigation systems to integrate seamlessly with 
other research tools, platforms, or databases. Integration 
allows for streamlined data sharing and collaboration 
between foreign devices and operating systems, enhanc-
ing the research process and enabling scientists to lever-
age multiple sources of information. By connecting with 
other research tools, scientists can more effectively study 
the impacts and benefits of AI-driven irrigation systems 
in various contexts. Scientists may need open and exten-
sible systems that can accommodate new algorithms, 
models, or sensors as technology evolves or research 
needs change. This flexibility ensures that AI-driven irri-
gation systems can adapt to advancements in the field and 
remain relevant for ongoing research efforts. Openness 
and extensibility are crucial for scientists, because they 
enable continuous improvement and adaptation of tech-
nology to the changing needs of the agricultural sector.

2.1.5  Policymakers

Policymakers, such as those in governments or non-govern-
mental organisations, have requirements when considering 
AI-driven irrigation systems. These include compliance with 
regulations and standards, scalability and interoperability, 
and environmental and social considerations, such as the 
potential for social innovation.

• Compliance with Regulations and Standards Systems 
should be designed to comply with relevant regulations, 
standards, or policies, including those related to water 
usage, environmental impact, cost and data privacy. Com-
pliance ensures that AI-driven irrigation systems meet 
fiduciary standards and follow industry best practices. This 
requirement is essential for policymakers to ensure that 
nascent technology adheres to the necessary guidelines.

• Environmental and Social Considerations for Public 
Good Policy-makers may prioritise systems that promote 
water conservation, energy efficiency, and minimise neg-
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ative impacts on local communities and ecosystems. This 
requirement arises from the need to balance the benefits 
of AI-driven irrigation systems with potential environ-
mental and social consequences. By considering these 
factors, policymakers can ensure that AI-driven irrigation 
systems contribute to sustainable agriculture and respon-
sible resource management.

• Scalability and Interoperability Policymakers may 
require systems that enable scaling to accommodate larger 
or more complex agricultural operations or that can inter-
operate with other agricultural systems, such as precision 
farming or supply chain management platforms. Scalabil-
ity and interoperability enable technology to be contextual-
ised but also contribute to the broader goals of sustainable 
agriculture and efficient resource management.

The following table compares the requirements of farm-
ers, scientists, and policymakers in relation to AI-driven 
irrigation systems.

As shown in Table 2, there are both common and distinct 
requirements among end-users. Each end-user cohort has 
unique requirements. By understanding and addressing these 
requirements, it is possible to design and implement more 
effective solutions that save time, money, and resources for 
farmers while contributing to the broader goals of sustain-
able agriculture, responsible resource management and pub-
lic good. By analysing and addressing the unique require-
ments of each user group via Industry 5.0, human- centric 
AI-driven irrigation systems may better cater for the diverse 
needs of stakeholders [61].

2.2  Data Science Perspectives

2.2.1  Data Requirements for AI in Irrigation Management

Enabling optimisation of irrigation using AI is becoming 
increasingly popular. Like all disciplines, various factors 
influence model performance and effectiveness.

A key factor to success is the type and source of data 
required for AI models to function in line with that intended 
when first developed. Data ingested collected should be 
relevant, accurate and of sufficient quantity and quality to 

train the model effectively. Data commonly used in irrigation 
management includes local weather and long-term climate, 
soil moisture, soil salinity, temperature and crop variables 
(biomass, phenology, reflectance, leaf area), all of which 
are empirical data that often are highly variable [62]. Such 
data is often collected using within-field sensors, satellite 
imagery [63, 64], aerial photography, scientific experiments 
under controlled or field conditions [16, 65], web crawler 
techniques [66], simulator software [48], and integrated 
methods [23]. Table 3 shows examples of data required for 
AI-driven irrigation systems.

In general, data harnessing technologies that improve the 
quality of data required for AI algorithms typically are also 
conductive to improvement in modelled outputs. The fre-
quency of data collection should be sufficient to ensure that 
the model receives data on a regular basis, particularly when 
trends differ from those historically, for example, increas-
ingly frequent extreme events against a background of grad-
ual climate change [18, 67, 68]. Continuous data collection 
allows real-time AI parameterisation that conceivably refine 
predictions of future conditions. The adoption of methods 
related to IoT using sensors for real-time monitoring has 
become commonplace [69]. For example, Culman et al. [70] 
used a data fusion approach, an inference method for han-
dlying ambiguous data of agrometeorological information 
with varying degrees of specificity collected from different 
sensor. Similarly, to estimate daily evapotranspiration in the 
arid region of Northwest China, where input data is limited, 
a new hybrid particle swarm optimisation -extreme learning 
machine model has been proposed [71]. The study found 

Table 2  User requirements for 
AI-driven irrigation systems

Requirement Farmers Scientists Policymakers

Ease of use and access to on demand support Yes  Yes Yes
Affordability Yes
Visualisation Yes Yes  Yes
Customisation & Scalability Yes  Yes
Data Privacy & Security Yes  Yes  Yes
Integration & Interoperability  Yes Yes
Considerations of multiple sustainability indicators  Yes Yes

Table 3  Sample type and source of data required for AI-driven irriga-
tion systems

Data Type Data collected Sources Reference

Soil water Remote sensing [64]
Meteorological data Government database [48]
Water in plant Wireless implanted sensor [62]
Evapotranspiration Remote sensing [63]
Irrigation relevant informa-

tion
Web crawler [66]
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that the model performed acceptable accuracy better than t 
he empirical control approach when given only three input 
temperature data. Besides, Mahmoudi et al. [72] developed 
a neuro-fuzzy inference system by using the firefly algo-
rithm to estimate spatial soil moisture using easily accessible 
inputs, even in the absence of knowledge about soil physical 
parameters. This model demonstrated exceptional accuracy 
and minimal estimation error when prediction soil moisture 
content in both humid and arid weather conditions.

In addition to data collection, sufficient pre-processing 
and analysis of massive data are required to ensure the effec-
tiveness of AI models. Pre-processing converts raw data into 
a format suitable for AI. For example, Cloud-based AI ser-
vices such as IBM Watson Visual Recognition are often used 
for agricultural analytics due to their ease of pre-processing, 
minimal training data requirements and ability to outsource 
computation [73]. This process can include normalisation, 
scaling, and converting numeric data into categorical data. 
The analysis phase involves the use of different techniques to 
identify patterns, relationships, and correlations in the data, 
helping to build accurate models that provide reliable water 
demand forecasts or crop yield predictions. In addition to 
AI applications to domain-based problems, AI applications 
could be usefully developed in data screening and processing 
(for subsequent use in other AI algorithms).

2.2.2  AI Algorithms: Status, Application and Efficacy

In the realm of modern agriculture, the integration of 
advanced technologies has revolutionised traditional farming 
practices. One such transformative force is the application 
of artificial intelligence (AI) and machine learning methods 
in precision agriculture. Here we briefly review the status, 
application and efficacy of several forms of AI in irrigation 
management. We highlight benefits and drawbacks associ-
ated with each technique.

2.2.3  Machine Learning Methods

Machine learning has been a dominant driver of precision 
agriculture, facilitating data collected by IoT-enabled sen-
sors, including weather conditions, soil moisture levels 
and crop growth rates, to make predictions about when to 
plant, fertilise, irrigation, spray and harvest crops. These 
predictions are intended to improve crop growth and yield, 
reduce waste, and minimise the use of synthetic and natu-
ral capital resources [74]. Machine learning algorithms 
can be used for weather and rainfall predictions based on 
data from sensors, climatic records, and satellite images 
[75]. Shanrma et al. [76] discussed how machine learning 
can be used in sustainable agriculture supply chain (ASC) 
performance. They presented a framework that combines 
machine learning and ASC to help researchers and practi-
tioners understand the importance of digital technologies 
in agriculture. Table 4 demonstrates five machine learning 
techniques’ advantages and disadvantages discussed in the 
following sections.

AI modelling can help overcome challenges associated 
with conventional methods which has been proved in irriga-
tion water quality evaluation [77]. AI models address this 
issue by leveraging predictive and analytical capabilities to 
assess irrigation water quality more efficiently and economi-
cally. Machine learning algorithms such as adaptive boost-
ing, random forest, artificial neural network, and support 
vector regression, can help decision-makers in developing 
countries to manage irrigation water strategies more effec-
tively, promising low-cost real-time forecasting of ground-
water quality [77].

Seyedzadeh et al. [78] used five AI models included arti-
ficial neural networks, neuro-fuzzy sub-clustering, neuro-
fuzzy c-Means clustering, and least square support vector 
machine to estimate discharge from drip irrigation based 
on temperature and pressure. The Global performance 

Table 4  Advantages and disadvantages associated with common machine learning algorithms

Machine learning Technique Description Advantages Disadvantages

Transfer Learning Leveraging knowledge from one 
task to improve another related 
task

Reduces data requirement, 
accelerates deployment

Limited transferability in some 
cases

Federated Learning Decentralised training on multi-
ple devices without central-
izing data

Preserves data privacy, benefits 
from diverse data

Communication overhead, 
potential for slow convergence

Deep Learning Uses neural networks with hid-
den layers for complex data 
relationships

Handles highdimensional data 
(e.g., images, sensor data)

Requires significant data and 
computational resources

Reinforcement Learning Agent learns through interac-
tions to optimise rewards

Adaptive strategies, maximises 
desired outcomes

Complex to implement, high 
computation

Natural Language Processing Understanding and generating 
human language to analyse 
textual data

Providing valuable insights from 
textual data

Requires significant computa-
tional resources and human 
validation
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indicator was adopted to examines the five models whereas 
least square support vector machine model performed better 
than the other models, followed by ANN, while all five mod-
els showed acceptable results. However, different statistical 
indices may not provide a reliable assessment of the model’s 
performance as each index assesses the model’s performance 
at a distinct level.

Sensor-based irrigation uses sensors to collect data on 
soil moisture, temperature, and other factors that can affect 
crop growth, which are then analysed by AI algorithms to 
determine the optimal amount of water needed for irrigation. 
Al-Qammaz et al. [22] measured soil moisture and pipeline 
pressure by wind driven optimisation using least square sup-
port vector machine algorithm. They found that the proposed 
algorithm driven smart irrigation system provides a network 
architecture using the long-distance and low power com-
munication protocol that extremely helpful in remote and 
large open farms.

Additionally, a moisture map of an orchard has been esti-
mated by training the data coming from 15 moisture sensors 
located in an area using the ANN method in a solar powered 
irrigation system [37]. Through the prevention of unnecessary 
irrigation, both immediate water demand and cost of freshwater 
were reduced by 38% of daily water and energy consumption.

Transfer Learning leverages knowledge from one task to 
improve the performance of another, related task. In the con-
text of smart irrigation systems, transfer learning can be used 
to apply models trained on data from one region or crop type 
to another, reducing the amount of training data required for 
the new context and accelerating the deployment of AI algo-
rithms in new settings. This approach can help overcome 
challenges related to data scarcity and improve the generalis-
ability of AI models for irrigation management [79].

Federated Learning is a distributed machine learning 
approach that enables AI models to be trained on data from 
multiple devices or sensors without the need to centralise 
the data [80]. In smart irrigation systems, federated learn-
ing can be used to protect the privacy of farmer data while 
still benefiting from the collective intelligence of multiple 
sources. This approach can lead to more accurate and robust 
AI models for irrigation management while maintaining data 
privacy and security.

Deep learning invokes ANN with hidden layers to model 
complex data relationships [81]. Deep learning techniques, 
such as convolutional neural networks and recurrent neural 
networks, have been employed in smart irrigation systems to 
process high-dimensional data, such as satellite images and 
sensor data. These algorithms can be used for tasks like crop 
health monitoring, disease detection, and yield prediction, 
leading to better-informed irrigation management decisions 
considering complex relationships in the data.

Reinforcement learning is where an agent learns to make 
decisions by interacting with its environment and receiving 

feedback in the form of rewards or penalties, similar to 
agent-based modelling [23]. Reinforcement learning can 
be applied to develop adaptive irrigation strategies that 
maximise crop yield and minimise water usage, for exam-
ple determination of optimal timing and amount of water 
to apply, taking into account factors such as soil moisture 
levels, weather forecasts, and crop growth stages.

Natural language processing focuses on understanding 
and generating human language. Natural language process-
ing can be employed to analyse textual data, such as farmer 
feedback, expert reports and research articles, to extract 
valuable insights about irrigation management practices [82, 
83]. These insights can be used to enhance decision-making, 
identify trends and provide personalised recommendations 
to decision-makers.

2.2.4  Expert Systems

Expert systems are aimed at mimicking decision-making of 
human experts in a specific domain. Expert systems can pro-
vide recommendations on irrigation management practices 
based on the data collected from sensors and other sources. 
For example, a fuzzy expert system can provide recommen-
dations on the revolving speed of the central pivot to address 
uncertainties of the irrigation system, deceasing rotating 
speed to 50% of the original control [84]. Yaseen et al. 
[85] suggested an intelligent expert system based on a new 
hybrid algorithm, itself the integral of hybrid bat and par-
ticle swarm optimisation algorithms wherein weaker parts 
of each algorithm where substituted with better stronger 
components from other algorithms to elicit intricate solu-
tions for reservoir systems with multiple purposes, thereby 
enhancing operation guidelines for similar reservoir systems 
across the globe.

2.2.5  Image Processing and Remote Sensing

Remote sensing often draws upon satellite or drone imagery 
[86] to enumerate crop health, canopy green or leaf area, 
ground cover, soil moisture, and other environmental factors, 
which can then be analysed by AI [87–89]. It is proposed 
to gauge crop nitrogen status using multi-spectral imaging 
obtained from aerial robots aircraft, and satellites to deter-
mine current nitrogen status and potential fertilisation needs 
[24, 86]. From other perspectives, centre pivot irrigation sys-
tems can be mapped by using optical remote sensed imagery 
and automated deep learning approaches and convolutional 
neural networks for mapping centre pivot irrigation systems 
[35, 90, 91].

In addition, use of remote sensing is less expensive and 
requires less manual labour than ground-based surveys, 
and thus is more suitable for large scale experimentation at 
the farm, region or continental levels [92]. By employing 
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machine learning algorithms to ingest and synthesis 
remotely sensed data, a real-time farm-specific management 
system can be developed to enhance decision-making in a 
timely fashion [93]. For example, Image processing tech- 
niques was used to monitor crops in a real-time manner, 
which facilitated the prompt identification of plant diseases 
and pests, leading to timely and efficient actions to reduce 
their harm to crop yields [94]. Furthermore, it supported 
the effective handling of water resources, fertiliser applica-
tion, and addressing plant health concerns, ultimately aid-
ing in optimising agricultural practices in areas grappling 
with environmental issues such as water scarcity and erratic 
rainfall.

Another study adopted a message queuing telemetry 
transport protocol, enabling hundreds of irrigation intelli-
gent IoT devices to report crop charac- teristics and water 
requirements to a master agent, which then sent cumulative 
water demand signals to various pump stations. This sys-
tem creates maps of irrigation underpinned by georeferenced 
data and water resource partitioning among agents once data 
supplied [95].

2.2.6  Hybrid Approaches

Hybrid approaches combine AI techniques to tackle complex 
irrigation management problems. By integrating techniques, 
such as machine learning, expert systems, and remote sens-
ing, these approaches can exploit the strengths of each 
method and – ideally - achieve better results than using a 
single tech- nique per se. For instance, a hybrid approach 
that combines fuzzy logic and genetic algorithms has been 
proposed as new data-intelligence models for optimising soil 
moisture content prediction, demonstrating improved perfor-
mance over standalone methods in better accuracy and lower 
estimation error in two tested climates [72].

2.2.7  Decision Support Systems

A DSS for irrigation management can incorporate various 
data sources, such as weather forecasts, soil moisture sen-
sors and satellite imagery, to provide real-time information 
on crop water requirements and soil moisture levels. This 
information can be used to optimise irrigation schedul-
ing and reduce water waste. As the name suggests, DSS 
are designed for supporting rather than making decisions. 
Thus, ideally designed DSS output a range of scenarios, 
and allow the user to compare and potentially action the 
range of outcomes. As heuristics from DSS can often be 
learnt from intuition and repetition, the jettisoning of DSS 
by end-users can signal successful adoption and impact, as 
the DSS per se is no longer required [1, 11, 93]. DSS may 
also incorporate biophysical models that simulate movement 
of water through soils and thus the evolution of water stress 

or superfluity, as well as the implications of such stress on 
crop development on growth and yield [17, 96, 97]. Pro-
cess-based models are often tools for scientists rather than 
farmers, but outputs from such models can be encapsulated 
into DSS to simplify interrogation of results. For example, 
the climate-smart decision-support system is designed to 
model water requirements of rice irrigation interventions, 
accounting for the changing climate [98]. A nitrogen ferti-
gation management system is proposed as an autonomous 
software decision support system in order to create a binary 
action recommendation and accompanying prescription for 
an impending fertiliser application via a centre pivot irriga-
tion system [86]. By guiding decisions on water allocation, 
DSS can help better prioritise use of scarce water reserves 
while maintaining environmental flow requirements [99]. 
In a study on comparison between DSS and human desi-
cions, two models (as part of a proposed DSS) were used to 
simulate irrigation to compare with outcomes of humans, 
with the model showing lower volumes and higher irrigation 
frequency to optimise water use [100]. This is often because 
human intelligence is bounded by rationality, which restricts 
comparison of scenarios in making a decision. In contrast, 
the capacity of computing infrastructure is more extensive to 
the extent that more scenarios can been evaluated (see also 
quantum computing information discussed in section 2.1.2 
above). However, computers are often limited by factors 
not provided as part of the optimisation, such as feasibility, 
practicality, or skills and barriers to implementation [101].

2.2.8  Crowdsourcing Multi‑Agent System

Crowdsourcing – soliciting data or ideas from a diverse and 
dispersed group by multi-agent systems can be enabled via 
several autonomous agents that communicate with each 
other and with a central server. These agents are responsible 
for gathering data from sensors, analysis, and making deci-
sions about water allocation to each section of the field. For 
example, a multi-agent system integrates plant disease and 
pest recognition and provides the crop to be treated using 
the irrigation pivot [94].

Crowdsourcing can be incorporated into this system by 
allowing farmers to input data about their crops and soil 
conditions. This data can be used to supplement the sensor 
data and provide a more accurate picture of the field’s needs. 
Farmers can also provide feedback on the system’s perfor-
mance, which can be used to improve its accuracy and effi-
ciency over time. Literature provides some case study on this 
issue. For example, Jimenez et al. [102] proposed the design 
of an irrigation scheduling system based on rational agents, 
interacting with the agricultural environment by collecting 
data on soil moisture, soil temperature, luminosity, air tem-
perature, and rain. By employing membership functions and a 
Mamdani inference methodology, the agents make irrigation 
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scheduling decisions, utilising data on luminosity and ambi-
ent temperature to identify periods with high evapotranspira-
tion rates and soil moisture sensors to assess volumetric water 
content. This multi-agent approach enables more informative 
solutions than a single data input by considering various envi-
ronmental factors and optimising soil moisture to maintain it 
at levels conducive to crop growth. In addition, Villarrubia 
et al. [103] presented the methodology that involves creating 
virtual organizations of agents that communicate with each 
other to monitor crops efficiently. A low-cost sensor system 
is employed to enable farmers to optimise resource alloca-
tion for crop growth. This system collects diverse data from 
sensors measuring factors like temperature, solar radiation, 
humidity, pH, moisture, and wind. The key advantage of this 
approach is its ability to merge various sensor data types and 
generate context-specific responses, enabling more precise 
and adaptive crop management.

Figure  3 summary of technologies discussed in the 
present paper. Interconnections between these technolo-
gies enable data-driven decision-making and automation 
in irrigation management. For example, IoT devices can 
be equipped with sensors for remote sensing applications, 
collecting imagery and data, which can be processed using 
image processing techniques. Machine learning algorithms 
then analyse processed data to derive insights and detect 
patterns (pattern recognition).

3  Evaluation Metrics of AI‑Empowered 
Irrigation Management

3.1  Performance

The performance of an AI system may be quantified 
using accuracy, speed, and scalability. The accuracy of an 

AI-based irrigation system can be measured by compar-
ing its predictions to actual outcomes. This can be done by 
calculating metrics such as precision, recall, F1 score, and 
accuracy. These metrics evaluate systemic ability to reli-
ably classify types of soil moisture and predict irrigation 
requirements. For example, common evaluation metrics 
include normalised root mean square error, mean absolute 
error, scatter index and correlation coefficient [104–107].

The speed of an AI-based irrigation system can be meas-
ured by the time it takes for the system to process and ana-
lyse data, make decisions, and control irrigation systems. 
This can be measured in terms of response time, latency, 
and throughput. It is important for the system to be fast 
enough to provide timely and accurate recommendations to 
end-users.

The scalability of an AI-based irrigation system can be 
measured by its ability to handle increasing amounts of data 
or complexity. This can be measured by evaluating perfor-
mance under different workloads, such as increasing data 
volumes or more complex soil types. The system should be 
able to cope with larger data quanta and complexity without 
sacrificing accuracy or speed. Saggi et al. [43] introduced 
a framework for training, validating, testing and enhancing 
classification performance through machine learning. For 
example, Deep Convolutional Neural Networks have dem-
onstrated a remarkable 98.5% accuracy in predicting experi-
mental results, with Mean Squared Error of 99.25% [39].

3.2  Reliability

Reliability refers to the ability of the AI system to perform 
consistently and accurately over time. It considers factors 
such as robustness, stability and error rate, quantifying sys-
temic ability to operate effectively across contexts.

Fig. 3  Associations between 
techniques applicable to irriga-
tion management
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In evaluating the reliability of AI models for irrigation 
systems, it is essential to examine various aspects that con-
tribute to consistent and accurate performance over time. 
Robustness is a crucial factor, as models must effectively 
handle diverse data sources, formats, resolutions, and tem-
poral scales, as well as cope with missing, inconsistent, or 
noisy data. Ensuring the stability of AI models is equally 
important, as they should maintain their performance and 
accuracy while adapting to new data and changing con-
ditions. Assessing error rates, such as false positives and 
negatives, can provide insights into a model’s accuracy and 
potential weaknesses.

The adaptability of AI models to various farm sizes, irri-
gation systems, and regional conditions is another critical 
consideration. Rigorous validation and testing, using vary-
ing datasets and realistic scenarios, can gauge the reliability 
of AI models and identify potential areas for improvement. 
Cross- validation, holdout testing, or other evaluation tech-
niques can be employed to measure their performance. Scal-
ability of a proposed AI model is vital, ensuring capacity to 
handle increasing data volume and accommodate growth in 
the irrigation system or farm expansion.

3.3  Interpretability

Interpretability involves understanding the decision-making 
processes and the internal workings of the AI system. Fac-
tors such as transparency, explainability of decisions, and 
potential for bias or error must be taken into account. While 
many existing machine learning techniques have demon-
strated good performance in irrigation management systems, 
their limited interpretability could hinder their adoption and 
usability by end users.

To assess the interpretability of AI models currently 
used in irrigation systems, it is vital to examine how well 
they represent patterns and knowledge in an anthropogenic 
conceptualisation. For instance, use of fuzzy expert systems 
and evolutionary algorithms can be evaluated to determine 
how effectively they interpret acquired knowledge and pro-
vide explanations that are accessible to non-experts. Such 
assessment can help identify potential gaps between the per-
formance and interpretability of AI models, informing the 
development of more user-friendly and valuable models for 
stakeholders involved in irrigation management.

3.4  Ethical and Moral Considerations

Considerations of ethical and moral implications of using 
AI for irrigation include evaluating the downside risks and 
benefits of using AI in irrigation management, considering 
who is a stakeholder and then potential stakeholder impact. 
First, AI-based irrigation systems rely on data collected 
from various sources such as sensors, weather forecasts, 

and satellite imagery [35, 86, 90, 91]. This data can include 
personal information about farmers, such as their location, 
crop types, and water usage. It is essential to ensure that the 
data collected is used only for its intended purpose and is 
not shared or sold to third parties without the consent of the 
farmers. Second, AI algorithms can be biased based on the 
data they are trained on. If the data used to train the irriga-
tion system contains biases or is not representative of the 
entire population of farmers, the system may not be fair to 
all users. Ensuring that the system is designed and trained in 
a way that does not discriminate against any particular group 
of users is essential. As well, the use of AI in irrigation may 
reduce the autonomy and decision-making power of end-
users (see commentary above relating to DSS). It is essential 
to ensure that the system is designed in a way that empowers 
farmers and provides them with the information they need to 
make informed decisions about agricultural systems.

Inclusivity and fairness, too, are considerations that when 
would correctly implemented ensure that AI-empowered 
irrigation management are distributed fairly across inter-
sectionalities (age, gender, race, religion and location) 
and that the system does not discriminate against certain 
individuals or communities. One potential concern is that 
AI-empowered irrigation management systems could dis-
proportionately benefit wealthy farmers or large agricul-
tural corporations or developed countries, while leaving 
small-scale farmers or marginalised communities or devel-
oping countries behind. Although multispectral imagery is 
commercially available, few methods transform data into 
actionable recommendations and prescriptions [86]. To 
address this, developers should consider how systems can 
be made equitable via accessibility to a wide range of users, 
including those who may have limited access to technology 
or resources. Accountability considerations include ensuring 
that proposed system designs are transparent, with stake-
holders being informed about how the system works and 
how decisions are made, and that there is a clear process for 
resolving disputes or addressing complaints. Additionally, 
it is important to consider the potential unintended conse-
quences of using AI in irrigation management, such as the 
impact on biodiversity or the unintended consequences of 
decisions made by the system.

3.5  Social and Societal Impact

Social and societal impact assessments quantify potentially 
positive and negative effects of AI applications on society, 
the economy, and the environment. These also quantify 
impacts on jobs, income distribution, consumer behaviour, 
privacy, security and environmental sustainability. By con-
sidering these factors, social impact assessment aims to iden-
tify and mitigate any unintended negative consequences of 
AI while maximising its potential benefits. AI can automate 
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many tasks that are currently performed by humans, lead-
ing to job displacement in some industries. However, AI 
can also create new jobs and opportunities for workers to 
develop new skills. Social impact assessment evaluates the 
net effect of AI on employment and income distribution and 
identifies potential strategies to support affected workers. 
AI can change the structure of markets by introducing new 
products and services or changing the way existing markets 
are produced and delivered. AI can help reduce the carbon 
footprint of some industries, such as energy and transporta-
tion, by optimising processes, improving carbon in soils and 
reducing waste [26, 108]. For instance, Coronavirus disease 
2019 (COVID-19) made farms temporarily less accessible, 
increasing autonomous and remote-control requirements 
[45, 109].

3.6  Cost‑Effectiveness

Cost-effectiveness evaluates economic feasibility of using 
AI, including potential costs and benefits of implementa-
tion. Cost-effectiveness considers factors such as the cost of 
development and deployment, the potential return on invest-
ment, and the overall sustainability of the system [110]. The 
goal is to determine financial implications for stakeholders, 
particularly farmers, and to ensure that the benefits derived 
from AI-driven irrigation management systems outweigh 
the associated costs. Firstly, evaluating the initial invest-
ment costs for implementing AI-based irrigation systems is 
crucial. This includes the expenses for acquiring necessary 
hardware, such as sensors, controllers, and communication 
devices, as well as software development and licensing fees. 
Analysing the cost of integrating AI technologies with exist-
ing irrigation infrastructure and practices can provide valu-
able insights into the economic feasibility of adopting these 
systems [37]. For instance, designing a low-cost data collec-
tion for the smart irrigation system was dedicated [111]. An 
irrigation system that employs the ATtiny microcontroller 
was designed with a highly efficient and cost-effective com-
ponent [58]. To further enhance affordability and accessibil-
ity, the system incorporates a mobile app as the monitoring 
interface, eliminating need for additional external hardware 
displays, which can be expensive and complex to install and 
maintain. A multi-step process based on AI was provided 
that approach maximises the value of a low-cost soil mois-
ture sensor to allow common farmer to increase the adoption 
of precision agriculture, especially in emerging geographies, 
by making technology-driven intelligent solutions more 
affordable [112, 113].

Assessment of the ongoing operational and mainte-
nance costs is essential. These include expenses related 
to data storage and processing, system updates, and peri-
odic maintenance of hardware and software components. 
A thorough evaluation should also consider the costs 

associated with training farmers and agricultural profes-
sionals on the proper use and maintenance of AI-driven 
irrigation systems, as well as the provision of technical 
support. The potential financial benefits of AI-based irri-
gation systems should also be taken into account. This 
includes improvements in water use efficiency, leading 
to reduced water consumption and costs and potential 
for reduced labour costs due to automation of certain 
irrigation management tasks. Evaluating these benefits 
in relation to the associated costs can provide a clearer 
understanding of the overall economic value of AI-driven 
irrigation systems. Cost challenges are a key aspect of 
inclusivity across various socioeconomic backgrounds.

4  Problems Associated with AI 
in Agriculture

4.1  Data Perspective

Data quality and availability are crucial for AI to enable 
reliable prognostics [50]. AI algorithms, especially data 
driven approaches, such as machine learning and deep 
learning, require large volumes of data for model train-
ing. An increase in data volume can enhance the accu-
racy of crop yield and water usage predictions. For exam-
ple, assuming data is of sufficient quality and adequately 
screened prior to model training. However, inadequate 
data pre-processing can limit reliable model applicability, 
particularly in cases outside the calibration space. In many 
regions, data can be insufficient, hindering AI ability to 
generate accurate models and recommendations. The inte-
gration of diverse data sources, such as remote sensing, 
sensor data, and user inputs, can be challenging, particu-
larly when addressing different data formats, resolutions 
and temporal scales.

4.2  User Perspective

End-users also face challenges in AI application. For exam-
ple, farmers may lack the necessary technical expertise to 
effectively use and maintain such systems, highlighting the 
importance of accessible training and continuing support 
programs. Many farmers, especially those in developing 
countries, may not have access to advanced irrigation tech-
nologies or the capital to invest in them. Furthermore, user 
trusted and perceived legitimacy and credibility of company 
or institution may be hindered by factors such as unfamiliar-
ity or technical complexity. Affordability and accessibility 
are also concerns the cost of implementing AI-driven irriga-
tion technologies may be prohibitive for small-scale farmers 
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or those in developing countries, leading to lack of inclusiv-
ity and/or equity. Privacy, ownership and security concerns 
may also arise from the collection and storage of sensitive 
agricultural data [114].

4.3  Integration

Integration with existing systems can present challenges, 
especially in regions where farmers are resistant to adopting 
new technologies, have limited resources, or do not have the 
capacity to update software. Insufficient integration neces-
sitates context-specific solutions. Lastly, AI-based irrigation 
systems might not fully account for complex environmen-
tal phenomena, such as microclimatic inversions, which 
can influence the efficacy of chemical and herbicide spray 
applications.

5  Future Directions: Promises for AI 
Applications in Agriculture

Addressing complex challenges in AI-driven irrigation 
systems necessitates greater focus on data collection, inte-
gration, quality and pre-processing, and augmentation and 
synthesis. Leveraging diverse data sources, such as remote 
sensing, soil sensors, and weather stations, promises to pro-
vide a more comprehensive solution for tasks like irriga-
tion scheduling, farm management, variable rate nitrogen 
application or sequential improvement in chemical and her-
bicide applications with weed kill in subsequent seasons. 
Additionally, the implementation of data fusion techniques 
holds the promise of integrating diverse data streams while 
accommodating various formats, resolutions and temporal 
scales. Such advances in data utilisation and integration 
could be expected to enhance the effectiveness and efficiency 
of AI-driven irrigation systems, ultimately contributing to 
improved food security and sustainability.

Further investigation of the potential of human-centred 
AI systems for end-users may result in transformative out-
comes. According to Table 5, differences between traditional 

AI system and human-in-the-loop AI systems are compared 
from four aspects. Human-centred AI offers the capacity 
for real-time computation, comprehensibility, development 
of intuitive information for non-experts, and predictability 
of robot behaviour [1, 115], all of which hold significant 
promise for improving user experiences and outcomes. More 
fundamentally, systems that learn from the effectiveness of 
their previous learning cycles hold substantial promise for 
continual improvement and adaptation. The next steps in 
this domain should focus on applications, as the fundamen-
tal science and mathematics of such AI is reasonably well 
established [116, 117], thereby paving the way for realising 
the promises of human-centred AI in various fields.

Presentation of big data in intuitive, legible, and meaning-
ful forms for both specialists and the laypeople requires more 
work. As AI becomes more prevalent in agriculture, forestry, 
climate, and health, the demand for legible, simple, bespoke 
AI-explainable AI encompassing interpretability increases. 
Harnessing human expertise can enhance such AI capability, 
enabling farmers to contribute their experience, interests, 
and conceptual understanding into an AI pipeline, enabling 
bespoke information outputs in line with their interests. 
Human-centred artificial intelligence combines “artificial 
intelligence” with “natural intelligence” to augment human 
performance rather than replace it. Current “explainabil-
ity” research focuses primarily on providing explanations 
to experts and system developers rather than end-users. To 
address these limitations, future research should prioritise 
developing AI models that can consider and balance differ-
ent user requirements, which could be captured by multia-
gent systems. Enabling next- and end-users to share input 
data and information, leveraging satellite imagery for farm 
and field boundary identification, and integrating real-time 
growth, water prices, and seasonal climate forecasts may add 
value to AI applications. For example, AI techniques could 
help auto-populate inputs based on previous and contextual 
data, such as regional and crop-specific information.

Transfer learning and domain adaptation, crowdsourcing 
and data sharing, and encryption techniques also have roles 
to play in addressing human data challenges in AI-driven 

Table 5  Differences between traditional AI systems and human-in-the-loop AI systems

Aspect Traditional AI systems Human-in-the-loop AI systems

Decision-Making Process Automated based on predefined rules and historical 
data

Integrates human expertise and judgment

Adaptability Limited adaptability to changing conditions or 
unforeseen circumstances

Enhanced adaptability and flexibility

Incorporation of Human Knowledge Limited capacity to incorporate subjective human 
knowledge or preferences

Incorporates subjective human knowledge, prefer-
ences, and contextual understanding

Presentation of Big Data May not be intuitive, legible, or meaningful for 
end-users

Prioritises intuitive, legible, and meaningful 
presentation of big data for both specialists and 
laypeople
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irrigation systems. Transfer learning in concert with domain 
adaptation will enable AI application to specific regions, 
production systems or enterprise mixes, even with limited 
data. Encouraging data sharing and collaboration among 
farmers, researchers and organizations can generate com-
prehensive, high-quality datasets while leveraging crowd-
sourcing can provide valuable insights and expertise. Imple-
menting privacy-encryption techniques, such as federated 
learning or differential privacy, may help allow data sharing 
and collaboration while protecting sensitive information.

Future research should prioritise intelligent information 
fusion, robotics, and embodied intelligence, together with 
enhancement, interpretation [118] and verification of trusted 
decision support for practical application of human-machine 
intelligence in agriculture and forestry.

6  Concluding Remarks

Our premise is that AI holds great potential for revolutionis-
ing the planning, monitoring and management of agricultural 
systems. We opine that human- centred AI – a paradigm that 
learns from user inputs and experience over time – together 
with transfer learning and AI-explainable interpretability hold 
great promise. We further suggest that research and develop-
ment may be better placed if it were to focus on the applica-
tion of such science to transdisciplinary problems, including 
irrigated agriculture, for optimal outcomes in such domains 
requires balancing of economic, environmental, social and 
institutional considerations. The development and commer-
cialisation of sensing devices to harness big data – such as 
satellite imagery, within-field and machine-mounted sensors 
– has provided impetus for rapid development of AI in an 
array of disciplinary applications to harness enormous data 
streams. However, effective synthesis of such data into mean-
ingful, legible and actionable forms deserves more attention, 
including with how spatio-temporal variability can be best 
illustrated. While contemporaneous inertia underpinning tech-
nical development of AI as a science has been breathtaking, 
appropriate legal and regulatory policies have been somewhat 
outpaced. As such, end-users have become increasingly con-
cerned with encryption, data ownership and privacy of their 
information, giving rise to issues associated with trust, moral 
license to operate, legitimacy and credibility of AI and soft-
ware developers. Public good associated with AI may only be 
realised if such issues are addressed sooner rather than later.
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