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Abstract
Machine intelligence is at great height these days and has been evident with its effective provenance in almost all domains 
of science and technology. This work will focus on one handy and profound application of machine intelligence-time series 
forecast, and that too on visual data points, i.e., our objective is to predict future visual data points, given a subtle lag to 
work on. For the same, we would propose a deep learner, Newtonian physics informed neural network (NwPiNN) with the 
critical modelling capabilities of the physics informed neural networks, modelled on the laws of Newtonian physics. For 
computational efficacy, we would work on the gray-scale values of pixels. Since the variation in data pixel values is not 
only provoked by the pixel gray values but also by the velocity component of each pixel, the final prediction of the model 
would be a weighted average of the gray value forecast and the kinematics of each pixel, as modelled by the PINN. Besides 
its’ proposal, NwPiNN is subjected to benchmark visual dataset, and compared with existing models for visual time series 
forecast, like ConvLSTM, and CNN-LSTM, and in most of the occasions, NwPiNN is found to outperform its preliminaries.
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1  Introduction

Time series is a statistical term for a collection of non-static 
data points [10] with temporal coherence between them. 
Time series forecasting involves predicting futuristic data 

points in time by statistical or intellectual means. Tradition-
ally, time series prediction finds its intuition from statistical 
inference methodologies, for example, autoregressive inte-
grated moving average (ARIMA) [23], simple exponential 
smoothening (SES) [14], etc. In recent times, machine intel-
ligence has been notable, and they are being used in almost 
every domain of science and technology, be it, engineering 
[29], medicine [28], or even the legislature [31]. Thereby, 
machine learning is also utilized for time series forecasting, 
for example, long short-term memory (LSTM) [15], reser-
voir computing (RCN) [32], etc.

One of the best exemplary uses of time series forecast-
ing was evident during the COVID-19 Pandemic; several 
researchers, across the statistical and computer domains 
came forward to provide defense against the virus. This 
resulted in the development of novel epidemic forecast-
ing models, epidemiologically-informed neural networks 
(EINNs) [30], epidemiological priors informed deep neu-
ral networks (Epi-DNNs) [25], etc. Post-COVID-19 saw a 
boom in Machine Intelligence, be it, large language models 
(LLMs) [8], natural language processing (NLP) [16], gen-
erative adversarial networks (GANs) [6], etc.

Mostly, time series is used for forecasting numeric data 
points, but with this, in our research, our target is visual data 
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points, (or multimedia). Multimedia is a stream of binary 
digits [17], with added semantics. For this research, we are 
considering the most important component of multimedia-
images. Our objective is to predict the next Frame, from a 
set of previous frames as a lag. Recent works on time series 
forecast focus on two important aspects of forecast, length 
of forecast, and computational time of forecast.

Initially, LSTMs were used for the forecast. Still, it was 
difficult to scale up using LSTM units, later on with the 
innovation of attention-based strategies [34], Transformers 
came up with their stack-based architecture which is easy 
to scale. But the main aspects were still lagging. They were 
not computationally efficient. Then came, the lightweight 
stack-block type architecture [36], Neural basis expansion 
analysis for interpretable time series forecasting (NBEATS) 
[27], neural basis expansion analysis with exogenous vari-
ables (NBEATSx) [26], neural hierarchical interpolation for 
time series forecasting (NHiTS) [7], etc. Alongside these, 
the trivial models came up again hybridizing with loss 
functions inspired by physical differentials like the works 
of Elabid et al. [13], and Dutta et al. [12], performing almost 
similarly to the stack-block type architecture. While the for-
mer focused on a unit-step-ahead forecast, the latter focused 
on extending the paradigm to a multi-step-ahead forecast. 
Besides, the latest work by Cerqueira et al. [5] contributed 
extensively to the existing literature by proposing, a novel 
methodology, forecasted trajectory neighbors (FTN), that 
claims to be integrated with existing multi-step-ahead fore-
casting algorithms provoking substantial improvements in 
their performance. Drawing from the positives of these para-
digms, we will propose, newtonian physics informed neural 
network (NwPiNN), a physics informed neural network built 
on the laws of Newtonian (or classical) physics, thus giving 
it the ability to forecast alongside modelling the perturba-
tions in the forecasting lag.

The reason behind the choice of a PINN for the forecast 
is that the forecast of pixel gray values (which is the main 
objective of the research) will not only be dependent on the 
base pixel gray values throughout the lag but also, it will be 
affected by the velocity and acceleration possessed by pixels. 
If it had been simply the base gray values, lightweight mod-
els like NBEATS, or NHiTS would have taken the pie, but 
since it involves the perturbations of the velocity and accel-
eration of each pixel’s values, a physics informed neural 
network [4] is needed to model its parameters accordingly.

Newtonian Laws of Motion is an established set of con-
ceptualizations that succeeds in explaining the dynamics of 
several (non-chaotic) observations that we witness around 
us. Since the targeted input for this proposal is a sequence of 
frames, containing visual data; besides the proposal NwP-
iNN being a physics-informed neural network, for the mod-
elling purpose, we adopt the Newtonian Laws for the physics 
behind the PINN. Further, suppose we peep deep into the 

input characteristics, they are simply a sequence of pixels, 
with physical coherence between them, in terms of their 
derivates of displacement, concerning the temporal depend-
ence. For Example, if we break down a “One-Second Video” 
into say 24 frames, we can notice the coherence between 
consecutive frames [19]. Now, the relationship between pix-
els can be well visualized; some pixels will keep moving by 
a constant shift (displacement), while some will move with 
a constant scale (velocity, or higher order differentials of 
displacement), which can be well modelled by the PINN.

In recent times, much work is being done on the spatio-
temporal forecast of the image sequence, For example, the 
work by Meyer, Langer et al. [21] on the forecast of fresh 
concrete properties concludes on the fact that their research 
can be modified by utilizing more of updated forecasting 
models like those based on Transformers, promising hope of 
improved performance. Another work by Arslan et al. [1] on 
the forecast of molecular profiling of multi-omic biomarkers 
using hematoxylin and eosin stained slide images comments 
on exploring assortment between tumour morphology, and 
model predictions, and this correlation is hoped to promise 
improved accuracy.

2 � Problem Statement

Given a sequence of n frames of a q × p visual data, as n 
data points, V(n) = {v1, v2,… vn} , we need to generate the 
spatio-temporal future data points, vn+𝜆, ∀ 𝜆 > 0 , such that,

where, each 0 ≤ �x,y,i ≤ 28 − 1 in (1) represents the gray 
value of the pixel in xth row, yth column, of the ith data 
point (or frame). For this research, we would consider, 
� = 1 . Therefore, the data stream is supposed to be cuboidal. 
Now, LSTM expects three-dimensional input in the form of 
(batch, seq_length, input_feature), to make the 
input data ( n × p × q ) compatible for the same, samples of 
seq_length n from each of p × q pixels were considered 
in iterations, with batch of 64 each with their respective 
input_feature.

3 � Preliminaries

3.1 � Long‑Short Term Memory

The artificial neural network (ANN) [11], long short-term 
memory is utilized in machine learning and machine intel-
ligence. LSTM features backpropagation instead of typical 

(1)vi =

⎛⎜⎜⎝

�1,1,i ⋯ �1,p,i
⋮ ⋱ ⋮

�q,1,i ⋯ �q,p,i

⎞⎟⎟⎠
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feed-forward neural network [3] models. Such a neural 
network with recurrent connections may comprehend com-
plete data streams and individual data pieces. Because of 
this feature, LSTM recurrent networks are perfect for han-
dling and forecasting information. A cell, an input 

(
It
)
 , an 

output gate 
(
Ot

)
 , and a forget gate 

(
Ft

)
 make up a typical 

LSTM unit. The three gates determine how data moves 
through and out of the neuron, and the cell retains data 
across configurable time frames. By allocating a number 
between zero and one to a prior level in comparison to a 
current feed, forget gates choose which knowledge from 
a prior level to disregard. Considering there may be the 
latency of uncertain length amongst significant occur-
rences in a time series, LSTM recurrent networks are 
quite well suited to categorizing, interpreting, and pre-
dicting outcomes using time-series information. To solve 
the diminishing contour issue that can arise when learning 
conventional RNNs, LSTMs were created. The advantage 
of LSTM beyond RNNs concealed Markov models [9], and 
other succession learning approaches in many situations is 
their relative callousness to the separation distance. NwP-
iNN is also built on the realms of long short term memory. 
To adjust each component of the LSTM recurrent network 
following the gradient of the failure at the output nodes of 
the LSTM network, a Recurrent neural network [20] with 
LSTM blocks can be developed under supervision on a 
collection of training sequences using an optimizer-like 
gradient descent mixed with backpropagation throughout 
the duration to estimate the slopes desired throughout the 
optimization procedure.

3.2 � Newtonian Laws of Kinematics

The movement of macroscopic objects, celestial objects, 
and galaxies, is described by the physical theory of classi-
cal mechanics. Sir Issac Newton is regarded as the father 
of classical physics (or Newtonian Physics) because of his 
immense contributions to the field of classical dynamics 
[24], be it Kinematics, Gravitation, or Optics, Newtonian 
Laws cover them all. For this research, we would stick to 
his contribution to Kinematics. Kinematics is a sub-branch 
of Classical Physics that defines the dynamics of particles, 
without considering the compelling force.

To begin with, we have the position vector, r of any 
particle,

where, x, y, z are the coordinates, and î, ĵ , and k̂ are the unit 
vectors along the respective axes.

The rate of change of the position vector (refer to 
Fig. 1), as in (2) with time, is velocity, v,

(2)r = x î + y ĵ + z k̂

Further, the rate of change of the velocity vector (refer to 
Fig. 2), as in (3) with time, is acceleration, a,

Kinematic equations relating (2), (3), and (4), termed as 
equations of motion are as follows, 

1.	

2.	

3.	

(3)v =
dr

dt
=

(
dx

dt

)
î +

(
dy

dt

)
ĵ +

(
dz

dt

)
k̂

(4)a =
d2r

dt2
=

(
d2x

dt2

)
î +

(
d2y

dt2

)
ĵ +

(
d2z

dt2

)
k̂

(5)|vt| = |v0| + |a| ⋅ t

(6)|r| = |v0| ⋅ t + 1

2
⋅ |a| ⋅ t2

(7)|vt|2 − |v0|2 = 2 ⋅ |a| ⋅ |r|

Fig. 1   Velocity of any particle, v is computed by the gradient of the 
trajectory followed by the radial vector, r

Fig. 2   Acceleration of any particle, a is computed by the rate of 
change of velocity, v
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Equations 5, 6, and 7 serve a pivotal role in Newtonian Phys-
ics Informed Neural Network (NwPiNN).

4 � Newtonian Physics Informed Neural 
Network (NwPiNN)

This section lays the foundation, of Newtonian physics 
informed neural network (NwPiNN), building upon the sin-
gle step ahead prediction framework of knowledge based 
deep learning (KDL) [13]. The proposal, unlike other phys-
ics informed neural networks, is free from chunks of param-
eters. The model is composed of 2 conjugated components, 
incentivized by transfer learning [33]. The first segment, 
pre-training of the recurrent neural network (RNN), is done 
by modelling the weights and biases using an artificial data-
set, based on the dynamics of Newtonian mechanics, simu-
lated using the Runge–Kutta method, to teach the exogenous 
harmonic perturbations in the neurons. This training (techni-
cally, pre-training) is done by incorporating a physical loss 
function based on Newtonian dynamics, supported by an 
adaptive moment estimation optimizer; because of this, the 
RNN will successfully capture disturbances in the historical 

sequence across the temporal domain. The resolution of the 
non-linear equations is the output, and the temporal compo-
nent is considered as an input in the conventional physics-
informed neural network (PINN) paradigm. Differentiating 
the highly-grained feed-forward neural network and comput-
ing the temporal relationships through auto-differentiation 
are the steps involved hereby in figuring out the control 
parameter. Time-series data are discrete events without a 
robust mathematical model, and to control the variables over 
time is difficult, thus we create discrete time-series data 
components to overcome this challenge. The first order dif-
ferentials, d�

d�
 are computed using the First Order Principle 

[35] as follows,

The traditional physics-informed neural network paradigm 
backpropagates the temporal implications to adjust the net-
work loss since the transfer function employed in multi-
layered perceptron (MLP) [2] is differentiable. The network 
thereby forecasts (or computes), the values of the zeroth, first, 
and second order differentials, of the discrete series, x(t).

d�

d�
=

�(� + ��) − �(�)

��

Fig. 3   Architectural view of the 
Newtonian physics informed 
neural network (NwPiNN). The 
model builds on the critical 
modelling capabilities of phys-
ics informed neural network to 
obtain the zeroth, first, second 
derivatives, x

event
 , v

event
 , and 

a
event

 , respectively. An LSTM 
unit is used as a back-end for 
NwPiNN, followed by a loss 
function, motivated by the laws 
of Newtonian physics for both 
the pre-training and training 
phases. The trained neuronal 
parameters (weights and biases) 
after �

max
 epochs from the Pre-

Training Phase are transferred 
to the training Phase. This 
procedure is followed for all the 
q × p pixels of the lag frames
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The Loss function that initiates the backpropation (both, 
for pre-training and training phases) for NwPiNN, is given 
in (8).

where,

and

Following the transfer of the learned neuronal parameters 
by the RNN, to the second segment where, we will compute 
x(t + 1) , which is the next data point in the discrete temporal 
sequence; computation of which, may result in an additional 
data loss, represented as �data , as in (9).

(8)�phy = RMSE
(
�pred, �real

)

�pred = 2 ⋅ ypred ⋅
d2ypred

dt2
−

(
dypred

dt

)2

�real = 2 ⋅ yreal ⋅
d2yreal

dt2
−

(
dyreal

dt

)2

where,  �pred =
d0(xpred(t+1))

dt0
,
d1(xpred(t+1))

dt1
,
d2(xpred(t+1))

dt2
 ,  and 

�real =
d0(xreal(t+1))

dt0
,
d1(xreal(t+1))

dt1
,
d2(xreal(t+1))

dt2
.

Algorithm 1 presents the Pseudo code for NwPiNN, and 
Fig. 3 presents the pictorial representation of the architec-
ture for NwPiNN model. In the context of the Pseudo code, 
in Algorithm 1, for the pre-training as well as training 
phase, the loss functions were combined with data losses 
as � = �data + C1 × �phy and � = �data + C2 × �phy , respec-
tively, where C1 and C2 are the hyperparameters. For the 
Newtonian physics informed neural network (NwPiNN), 
we considered both these hyperparameters to be 0.2. The 
value is chosen through Trial and Error. Now, since in 
this research, we are working with spatio-temporal data, 
we would apply the NwPiNN model recursively for all the 
q × p pixels of the lag frames.

(9)�data = RMSE
(
�pred, �real

)

Algorithm 1   Newtonian physics informed neural network (NwPiNN).
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5 � Experimental Setup

This section discusses the data and metrics for the experi-
ment and finally delineates the results.

5.1 � Datasets

For testing the efficiency of our model, we would run the 
model of 2 synthetic datasets, 

1.	 Repeated projectile on an elastic surface, which is a 
200 frame code generated synthetic dataset, gener-
ated subjecting to 3 degrees of freedom, initial velocity 
( v0 ), angle of projection ( Θ ), and coefficient of restitu-
tion ( eres ). Varying any (or all) of these parameters is 
expected to have a visible influence on the Number of 
Repetition ( nrep ), and the Maximum Height ( ymaxi

 ) for 
these nrep repeated projectiles, ∀ 1 ≤ i ≤ nrep.

2.	 Bouncy ball on a hard pitch, is again a 200 frame code 
generated synthetic dataset, generated subjecting to 2 
degrees of freedom, initial height ( ymax1

 ), and coeffi-
cient of restitution ( eres ). Varying one (or both) of these 
parameters is expected to have a visible influence on the 
number of bounce ( nbounce ), and the maximum height 
( ymaxi

 ) for nbounce repeated projectiles, ∀ 2 ≤ i ≤ nbounce.

Figures 5, and 4 give a pictorial representation of the Syn-
thetic Datasets.

5.2 � Implementation

Newtonian physics informed neural network (NwPiNN) 
is implemented on a general MIPS-5 Stage Architecture, 
with an Intel Core i7-1065G7 microprocessor, an NVIDIA 
GeForce MX330 graphic accelerator, and an Intel(R) 
Iris(R) Plus Graphics graphic accelerator.

5.3 � Metrics

For evaluation of Newtonian physics informed neural net-
work (NwPiNN), we would use the following metrics, 

1.	 Root mean squared error, which calculates the squared 
root of the average squared difference between the esti-
mated values 

(
�
pred

i,j,n+1

)
 and the actual gray values (

� real
i,j,n+1

)
 for the p × q pixels. Mathematically, 

2.	 Mean absolute error, which calculates the average abso-
lute difference between the estimated values 

(
�
pred

i,j,n+1

)
 

and the actual gray values 
(
� real
i,j,n+1

)
 for the p × q pixels. 

Mathematically, 

RMSE =

�����
∑p

i=1

∑q

j=1

�
�
pred

i,j,n+1
− � real

i,j,n+1

�2

p × q

Fig. 4   Bouncy ball synthetic dataset

Fig. 5   Projectile synthetic dataset
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5.4 � Results

The NwPiNN Module is implemented on the synthetic 
datasets, as discussed in Subsection 5.1. Table 1 gives a 
tabulated view of the RMSE, and MAE of the predicted 
visual data, and the actual visual data. The results were 
compared with existing models, like ConvLSTM [18], and 
CNN-LSTM [22], and are tabulated in Table 2. For each 
tabulated data, we have done an extensive run of 5 counts for 
each arrangement, and their mean values are reported, with 
the standard deviation from mean in brackets.

MAE =

∑p

i=1

∑q

j=1
��pred

i,j,n+1
− � real

i,j,n+1
�

p × q

6 � Discussion

This section is an introspection on the merits and demerits 
of the proposition, NwPiNN from a readers’ point of view. 
While, the need of the hour is machine intelligence, data 
engineering is quite an important task, because, as per expert 
opinions the 4th industrial revolution will come into the 
hands of artificial intelligence, and data will play a pivotal 
role in that. Concerning the proposal laid in this research, the 
PINN, induced by the laws of Newtonian physics has proved 
to work efficiently for the prediction of image sequences (in 
layman’s terms). On a broader note, though the task per-
formed is time-series forecasting, making use of standalone 
models like LSTM, or transformers won’t be able to take up 
the variation in every derivate of pixel displacement; these 

Table 1   Tabularized results 
for the implementation of 
NwPiNN module on the 
repeated projectile, and bouncy 
ball dataset with variable initial 
parameters

The module is run recursively on the same datasets up to a count of 5, and their respective RMSE, MAE 
and their deviation from the mean have been noted

Dataset Number of data 
points ( |x|)

Parameters RMSE MAE

Repeated projectile 200 v
0
= 5,Θ = 45

◦
, e

res
= 0.5 4.126 3.148

(0.259) (0.128)
v
0
= 6,Θ = 45

◦
, e

res
= 0.6 5.249 3.551

(0.378) (0.201)
v
0
= 7,Θ = 45

◦
, e

res
= 0.7 4.825 4.002

(0.895) (0.168)
Bouncy ball 200 y

max
= 5, e

res
= 0.5 2.589 2.222

(0.137) (0.271)
y
max

= 6, e
res

= 0.6 3.042 3.010
(0.199) (0.241)

y
max

= 7, e
res

= 0.7 3.236 3.164
(0.583) (0.946)

Table 2   Comparative analysis 
of the proposed NwPiNN 
model with the pre-existing 
ConvLSTM, and CNN-LSTM 
models

The best results for each dataset and initial parameters have been marked in bold

Datasets with parameters NwPiNN ConvLSTM CNN-LSTM

RMSE MAE RMSE MAE RMSE MAE

Repeated projectile, v
0
= 5,Θ = 45

◦
, e

res
= 0.5 4.126 3.148 5.077 4.519 5.109 3.997

(0.259) (0.128) (0.175) (0.206) (0.194) (0.212)
Repeated projectile, v

0
= 6,Θ = 45

◦
, e

res
= 0.6 5.249 3.551 5.937 5.100 5.549 4.528

(0.378) (0.201) (0.260) (0.210) (0.276) (0.277)
Repeated projectile, v

0
= 7,Θ = 45

◦
, e

res
= 0.7 4.825 4.002 4.597 3.803 4.978 4.185

(0.895) (0.168) (0.349) (0.283) (0.334) (0.512)
Bouncy ball, y

max
= 5, e

res
= 0.5 2.589 2.222 2.993 2.952 3.948 3.592

(0.137) (0.271) (0.203) (0.326) (0.265) (0.200)
Bouncy ball, y

max
= 6, e

res
= 0.6 3.042 3.010 3.146 3.184 4.251 4.072

(0.199) (0.241) (0.129) (0.194) (0.206) (0.337)
Bouncy ball, y

max
= 7, e

res
= 0.7 3.236 3.164 3.347 3.238 3.937 4.003

(0.583) (0.946) (0.159) (0.585) (0.448) (0.573)
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models can forecast the zeroth order differentials of the base 
pixel displacement, it won’t be able to catch up with the 
velocity, acceleration, and higher differentials, and for that, 
we would need some physics informed neural network that 
can model them based on some physical laws. For the same, 
NwPiNN comes into action by consuming the modelling 
capabilities of LSTM and the laws of classical physics. But, 
since everything good comes at a cost, for this model the 
major challenge (or limitation) is its dependence on com-
putational units (or the semiconductor industry). As a test-
ing phase, we implemented the model on a general MIPS-5 
Stage Architecture, with an Intel Core i7-1065G7 micropro-
cessor, an NVIDIA GeForce MX330 graphic accelerator, 
and an Intel(R) Iris(R) Plus Graphics graphic accelerator. 
Still, on a large scale, when dealing with some very large-
scale data sets, of higher dimensionalities, computational 
requirements will skyrocket. Besides, for testing purposes, 
a synthetic dataset is used, thus the model performance may 
fluctuate practically, though a promising expected perfor-
mance, similar to the results described in Sect. 5.4 can be 
anticipated.

7 � Conclusion

Nothing in this entire universe is complete, and so is 
the scenario with our proposition, Newtonian physics 
informed neural network (NwPiNN). For a wide variety 
of cases, the proposed model performs well in compari-
son with the pre-existing models for time series forecast 
of visual data, for instance, ConvLSTM, CNN-LSTM, 
etc. to name a few. Due to computational constraints (or 
limitations), we considered visual data of 200 × 200 pix-
els, but NwPiNN can be applied to even a broader spec-
trum of visuals, providing good computational power 
with GPU units.

A future direction to this research could be on optimizing 
the algorithm to a computationally less expensive model, or 
ensembling the same with lightweight models like NBEATS, 
NHiTS, or transformers. In a nutshell, the model has its arms 
spread throughout the ever-evolving domain of Sci-ML (sci-
entific machine learning). To promote more study and repli-
cation to develop time series prediction in complex systems, 
we made the source codes and datasets available at https://​
github.​com/​Anurag-​Dutta/​nwpinn.
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permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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