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Abstract
Bayesian networks are commonly used for learning with uncertainty and incorporating expert knowledge. However, they 
are hard to interpret, especially when the network structure is complex. Methods used to explain Bayesian networks operate 
under certain assumptions about what constitutes the best explanation, without actually verifying these assumptions. One 
such common assumption is that a shorter length of the causal chain of one variable to another enhances its explanatory 
strength. Counterfactual explanations gained popularity in artificial intelligence over the last years. It is well-known that it 
is possible to generate counterfactuals from causal Bayesian networks, but there is no indication which of them are useful 
for explanatory purposes. In this paper, we examine how to apply findings from psychology to search for counterfactuals 
that are perceived as more useful explanations for the end user. For this purpose, we have conducted a questionnaire to test 
whether counterfactuals that change an actionable cause are considered more useful than counterfactuals that change a direct 
cause. The results of the questionnaire indicate that actionable counterfactuals are preferred regardless of being the direct 
cause or having a longer causal chain.
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BN  Bayesian network
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1 Introduction

Bayesian networks (BNs) [1] are popular tools for represen-
tation, reasoning, and learning with uncertainty in artificial 
intelligence (AI). However, while BNs provide a graph struc-
ture of the direct dependencies between random variables, 
they are in practice hard to reason with for domain experts. 
For example, two random variables that are unconditionally 
independent may become dependent if a third variable is 
observed (a process that is called explaining away). This 
makes the representation and reasoning with BNs sometimes 
counter-intuitive and the interpretation of the results diffi-
cult in practice. Explaining Bayesian networks has therefore 
been a topic in literature for quite some time (see e.g., [2] 
for early work).

With the General Data Protection Regulation in place 
stating that everyone has the right to know how their data 
is processed, explainable artificial intelligence (XAI) is 
getting more important. The European Commission for 
AI published ethics guidelines to gain trustworthiness [3]. 
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However, these guidelines are formulated in imprecise lan-
guage and lack explicit and clearly defined rights and guar-
antees. The AI Act proposed by the European Commission is 
building on the groundwork of the General Data Protection 
Regulation by determining more specific regulations [4]. 
The AI Act defines different levels of risk for AI systems, 
and imposes corresponding obligations and requirements. 
E.g. AI systems used in critical infrastructure, would have to 
undergo a conformity assessment. Given these regulations it 
is more important than ever to make XAI methods available 
to end users.

XAI algorithms can broadly be divided into two sub-
categories of explanations: (1) explanations that enhance 
the understanding of a decision or prediction of a model 
and (2) explanations that enhance the understanding of the 
model itself [5]. Research is currently being conducted on 
a relatively new type of explanation, called counterfactual 
explanations, that can help the user to understand the deci-
sion of a model. These explanations indicate which circum-
stance, represented by a random variable, could have been 
changed to obtain the desired outcome [6]. Research from 
the field of psychology shows that with counterfactuals one 
can ask ‘what would have been’ which may guide the user to 
future possibilities for change [7]. Furthermore, actionable 
counterfactuals, meaning counterfactuals which alternate a 
condition that is perceived as changeable, are preferred as 
explanations over those that alternate a condition that cannot 
be changed, such as the current age.

Counterfactual explanations make use of causal rela-
tionships and chains of causal relationships to identify how 
the outcome could be different. These causal chains may 
be intelligible to the user, as suggested by Lewis [8], and 
therefore provide a solid basis for explanations. Another 
advantage of counterfactuals is that they can help to show 
whether a machine learning algorithm is fair or unbiased. 
Designing fair classifiers is difficult, and counterfactuals 
can be used to evaluate whether the algorithm would give 
the same prediction regardless of an individual’s age, race, 
sex, or other fairness attributes [9]. In this paper, we derive 
these counterfactuals and causal chains from causal Bayes-
ian networks (CBNs), which are Bayesian networks where 
the associated graph constitutes a causal diagram thereby 
enabling causal reasoning [10].

Using the length of causal chains is a common approach 
in literature to measure the usefulness of explanations in 
a Bayesian network [11, 12], as it is inherent in a causal 
Bayesian network. This is supported through the work by 
Lewis [8] who suggests that shorter chains may be better 
explanations than longer causal chains, where a causal chain 
is the path of reasoning from one to another variable. Studies 
form psychology [7] suggest that, it is more useful to give 
an explanation that offers a future course of action than to 
explain with a direct cause that is not controllable.

Counterfactual explanations from causal Bayesian net-
works can be computed using Pearl’s do-calculus [10]. 
However, this method does not provide information as 
to how valuable they are as an explanation. For example, 
someone could ask the question ‘What had to be different to 
not get heartburn.’ Possible counterfactuals could be: ‘You 
wouldn’t have heartburn if you had less stomach acid’ or 
‘You wouldn’t have heartburn if you ate a banana instead of 
fried chicken’. The second counterfactual seems to be a more 
useful explanation, because it is actionable but one cannot 
directly control stomach acid, even though both counterfac-
tuals are true.

In this paper we evaluate how and whether the do-calcu-
lus can be applied taking into account insights gained from 
psychology and philosophy on the use of counterfactuals. In 
particular, we investigate the hypothesis that an actionable 
explanation, such as ‘eating a banana to reduce heartburn’, 
is perceived as a more useful explanation than a direct cause 
with a shorter causal chain, such as ‘having less stomach 
acid would reduce heartburn’. Therefore, we used a question-
naire to test the usefulness of acquiring additional informa-
tion from actionability to enhance the quality of explana-
tions instead of using shorter chains, as this could be used to 
enhance existing methods for explaining Bayesian networks.

Previous research [13] has shown that BNs themselves 
are perceived as an understandable representation of a case 
or situation. Participants felt that they were able to under-
stand the explanation that was given directly from the BN. 
The graph structure of a BN allows users to ask questions 
for further interpretations. In addition, subjects of the study 
perceived short additional explanation sentences as useful.

With that in mind, we developed the idea that short sen-
tence explanations in form of counterfactuals could be per-
ceived as understandable and useful for human interpreters 
structural data. Aligning to what was supported through 
literature and our previous work, the following hypotheses 
were formulated: 

[H0  ] There is no difference in the perceived usefulness 
of counterfactuals with non-actionable short causal 
chains to actionable counterfactuals in explanations.

[H1  ] Actionable counterfactuals are perceived as more 
useful explanations than non-actionable shorter 
causal chains.

According to the hypotheses, short sentence explanations 
in the form of counterfactuals were formulated to explore 
the usefulness for supporting understandability for human 
participants. This method is particularly useful when a user 
wants to interact with the causal Bayesian network (CBN) 
to receive feedback, identify opportunities for improvement, 
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and answer open questions. For instance, you can use this 
method to determine how the CBN evaluates the quality of 
a therapy, what aspects can be improved, and how different 
scenarios would affect the outcome. The method allows for 
constructive and solution-oriented communication with the 
CBN based on facts and data.

This paper is structured as follows. In Sect. 3 we provide 
the background for causal BNs and computing counterfac-
tuals. Section 2 gives a general overview of methods used 
explaining BNs. In Sect. 4, we explore how the insights from 
psychology can be applied to BNs. In Sect. 5 the methodol-
ogy and the case study used to conduct our questionnaire are 
discussed. The case study is evaluated in Sect. 6. We discuss 
the applicability of the results in Sect. 7 and conclude the 
research in Sect. 8.

2  Background

In this chapter, first, we discuss XAI and its relevance for 
BNs, and, second, we introduce the philosophical notion 
and introduction to counterfactuals. Third, we summarise 
their effects on human behaviour as described in the field of 
psychology. Finally, we discuss the contribution of our work 
compared to the current state of the art.

2.1  Explainable Artificial Intelligence

It is not surprising that the development of well explained AI 
algorithms, or XAI methods, is closely linked to the devel-
opment of AI methods. Already in the 1950 s, the beginning 
of AI research, there were approaches using symbolic logic, 
which offered some explanatory sentences. These systems 
used problem-solving algorithms that operated on data rep-
resented in the given formal language. [14]. For example, 
McCarthy described such an AI method in 1958 which has a 
transparent systems behaviour by design and could be under-
stood by users [15].

With the increasing popularity of machine learning in 
the 1980 s, the paradigm of AI research changed. Instead 
of programming rules and facts, AI systems learned from 
data and adapted on their own. This led to major advances 
in areas such as image recognition and language processing. 
However, this was accompanied by a loss of explainabil-
ity. AI systems became so called black boxes whose inner 
workings were no longer comprehensible [16]. This led to 
new challenges and risks for the application of AI systems. 
How to ensure that AI systems are fair, trustworthy, and 
accountable? How to detect and correct errors or biases? 
How to inform and empower users of AI systems? These 
questions motivated the development of XAI as a distinct 
research area.

XAI aims to develop methods and tools that improve or 
enable the explainability of AI systems. There are differ-
ent approaches and dimensions of XAI, two of them are 
are divided into post-hoc and ante-hoc [17] algorithms. 
The goal of ante-hoc algorithms is to create models that 
are self-explanatory, their application therefore depends on 
the selected AI model and the underlying data. Post-hoc 
algorithms are applied after the model has been trained. 
Ante-hoc algorithms are incorporated into the model design 
and training process. Post-hoc algorithms are divided into 
model-specific and model-agnostic techniques. Model-
specific techniques use the internal structure of the given 
algorithm, whilst model-agnostic techniques can be applied 
to any type of model. Post-hoc techniques can be further 
divided into global and local algorithms. Global techniques 
describe the overall behaviour of the model, while local 
techniques focus on a single prediction [17].

The dimensions of XAI also depend on the context and 
the addressee of the explanation. Depending on the objec-
tive, different aspects of the explanation may be important. 
For example: cause-and-effect relationships (Why?), alterna-
tives (What if?), generalisability (What else?), or reliability 
(How sure?). Depending on the addressee, different formats 
of explanation may be appropriate such as, visual (graphics), 
verbal (text), or interactive (dialogue). XAI is a dynamic 
and interdisciplinary field of research. As AI continues to 
progress, XAI reflects the challenges of AI research. In this 
paper we want to examine explanations through alternatives 
(What if?) which are presented in text format. By providing 
short counterfactuals in response to questions, we address 
the format of interactive dialog as well.

2.2  XAI and Bayesian Networks

Research conducted between 1988 and 1999 aimed to 
explain Bayesian networks (BNs) by focusing on how 
BN models were generated, and how inferences could be 
made. This research has been summarised in [2]. More 
recent research has shifted its focus to the dynamic behav-
ior of BNs, explaining posteriors and certain variables of 
interest. These methods are typically post-hoc, local, and 
model-specific.

In literature, several methods have been proposed for 
combining formal argumentation with Bayesian networks 
[12, 18–20]. These methods are based on building inference 
rules from variable-value pairs. Vreeswijk et al. [19] use a 
multi-agent system to determine if an inference rule supports 
a logical argument. Williams et al. [20] use argumentation 
theory to decide which arguments are justified for a particu-
lar patient in order to explain predictions of the Bayesian 
network. Timmer et al. [18] refine the approach from Wil-
liams et al., and in [12], they introduce a support graph. This 
support graph reduces the number of rules extracted from 



 Human-Centric Intelligent Systems

the BN by only considering variables that are not condi-
tionally independent, given the variable of interest, i.e., the 
variables which are in the Markov blanket of the variable 
of interest. Furthermore, Timmer et al. do not only show 
one argument to explain a variable of interest, but show 
arguments derived from different non-blocking paths in the 
network (so-called support chains). Therefore, the user can 
decide which argument is best for explaining the variable 
of interest.

There are also other approaches for explaining a variable 
of interest given evidence in Bayesian networks. Yap et al. 
[21] introduced a method that explains the variable of inter-
est by capturing how variable interactions in a BN lead to 
inferences, independently of the evidence, just using vari-
ables needed to predict the behavior of the variable of inter-
est. Vlek et al. [22] provide a text form report for different 
scenarios, consistent with the evidence, regarding a case in 
legal evidence. The report estimates the probability of each 
chosen scenario being likely, to present a global perspective 
on the case. In Kyrimi et al. [11], variables of interest are 
not explained by all variables, but only from variables hav-
ing a significant impact on it. To achieve this, Kyrimi et al. 
compute the impact of the evidence and all variables in the 
Markov blanket of the variable of interest.

2.3  Philosophical Background of Counterfactuals

Counterfactuals have long been discussed in philosophy, for 
example, in the work of Lewis [8]. The sentence structure 
of a counterfactual consists of a false antecedent followed 
by a conclusion that is true in the form ‘If A had been the 
case, then B would be the case’, for example: ‘If I hadn’t 
eaten fried chicken I wouldn’t have heartburn’. The conclu-
sion can be stated in a negative or positive form. The truth 
condition of the conclusion of those counterfactuals is dif-
ficult to determine. Usually in logical reasoning an argument 
is constructed by using one or several premises to come to 
a conclusion, which is either true or false. The antecedent 
of a counterfactual however never happened but just could 
have been, which is hard to reason with. To cope with this 
logical clash, Lewis makes use of Carnap’s ontology of pos-
sible worlds [23]. With this method, it is evaluated how far a 
possible world is away from the actual situation.

Lewis argued that two events can be causally related with-
out being counterfactually dependent on each other, thus 
counterfactual dependence is not a requirement for causation 
[8]. For example ‘If fried chicken had been sold out I would 
have eaten pizza buns instead and still have heartburn.’ From 
either fried chicken or pizza buns I would have had heart-
burn, hence the pizza buns are the cause of my stomach 
ache but not counterfactually dependent on the result. Lewis 
used the possible world semantics to model this counterfac-
tual dependence by determining the similarity of possible 

worlds. An event B is counterfactually dependent on A if and 
only if, if A would not occur B would not occur. Lewis later 
refined his definition as chains of counterfactual dependence 
where A is the cause of B if and only if there is a causal chain 
of counterfactual dependence leading from A to B.

According to Lewis, we must distinguish between cau-
sation and explanation. Causation is a dependency that 
exists without any subjective interpretation. An explanation 
depends on identifying a causal chain that is intelligible to 
the user [8]. If an apple falls from a tree, the cause is gravity, 
but the ripeness of the apple is also the cause. How useful 
one of these causes is as an explanation depends on each 
person, but still follows some general rules, which are dis-
cussed in Sect.  2.4. Lewis leaves it open for interpretation 
what intelligible implies. Thankfully, research has been done 
on this topic in the psychological field.

2.4  Relevance of Counterfactuals in Psychology

People use counterfactuals in their daily life to consider what 
might have been, in order to draw conclusions for future 
actions. They tend to design counterfactuals that add a new 
piece of information to the situation and allow new conclu-
sions to be drawn. Several papers are discussed below that 
address the question of what heuristically constitutes a good 
counterfactual explanation. We follow the work of Byrne 
et al. [7], where literature is categorised that is relevant for 
XAI.

Counterfactuals can be created by either adding or delet-
ing information from a set of evidence. Adding information 
is mostly used to determine how a result could have been 
better, and aids creative problem solving [24]. For example, 
we could argue: ‘If I took supplements earlier I wouldn’t 
have heartburn after eating the fried chicken.’ Counterfac-
tuals can be used to remove information as well. This leads 
us to our first example: ‘If I hadn’t eaten fried chicken I 
wouldn’t have heartburn’. This subtractive form of reasoning 
is less often used than the additive form [25].

Another method to categorise counterfactuals is whether 
an outcome could have been better or worse. Thinking of a 
better outcome helps to change our behaviour in future, for 
example: ‘If I had eaten half as much fried chicken, I would 
be feeling better now.’ [25]. It gives us a solution for the 
future: ‘Eat less fried chicken’ [26]. However, these counter-
factuals have the disadvantage of reinforcing negative feel-
ings such as regret [27], whereas imagining a worse outcome 
helps us to feel better. People like to think how an outcome 
could have been better [28]. For example: ‘If I would have 
eaten ice cream as well I would feel way worse’. They will 
use a counterfactual with a worse outcome, if there is less 
chance for future preventive action and want to deflect nega-
tive emotions, especially after large losses [29]. By appreci-
ating what is still there, negative emotions do not tend to feel 
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so overwhelming, e.g., ‘If they didn’t take my legs I would 
be dead’. Hence, by considering the worse outcome we shift 
our focus to still being alive instead of the loss of our legs.

Rips and Edwards [30] have conducted studies that inves-
tigate which counterfactuals are more intelligible. In [30], 
people answered questions about simple machines of the 
form ‘If component A had not operated/failed, would com-
ponent B have operated?’. They discovered that people tend 
to do causal backtracking, which can be described as follow-
ing an (allegedly) causal chain of events to its source. For 
example, given that A operating always causes B to operate, 
participants tended to answer the question ‘If B didn’t oper-
ate, did A operate?’ with ‘No’ whilst answering ‘If someone 
prevented B from operating, would A operate?’ with ‘Yes’. 
Hence in the former case, participants causally backtracked: 
they explained B not operating by its cause. They also dis-
covered that the wording of counterfactuals is crucial. Using 
the word ‘failed’ instead of ‘not operating’ leads to different 
results [30]. Participants were more likely to believe that the 
other component may still function when the phrase ‘not 
operating’ was used instead of ‘failed’ even though the sce-
nario described was equivalent.

2.5  Related Work

Several studies have been conducted on the usefulness of 
counterfactuals in general [24–30] (see Sect. 2.4). However, 
to our knowledge, there are no studies to date that evaluate 
the usefulness of counterfactuals for BN explanations based 
on user feedback. Additionally, to our knowledge, there are 
no papers that have evaluated which counterfactuals should 
be extracted from a BN from the user perspective or have 
developed methodologies for this. All papers published so 
far are choosing counterfactuals in an arbitrary way.

Keane [31] has recognised this problem as well for XAI-
techniques based on classifiers (e.g. decision tree, k-NN, 
deep learning algorithms). They criticised that most meth-
ods do not guarantee that the generated counterfactuals are 
useful. Therefore Keane [31] did define what good counter-
factuals are and suggested a novel approach for generating 
good counterfactuals. They defined good counterfactuals as 
follows: (i) counterfactuals have a different class label and 
are close in the feature space of the query; (ii) counterfactu-
als have no more than two feature differences with the query, 
and (iii) counterfactuals are valid data points in the domain 
and do not suggest impossible or unrealistic feature changes. 
In [31] no empirical results are reported on how useful their 
method would be for users. Instead, they acknowledged the 
need for more user testing to evaluate their notion of good 
counterfactuals and the effectiveness of their approach.

Miller [32] proposed an extension of structural causal 
models to add contrastive explanations for different types 
of questions, one of them being counterfactuals. They start 

with a definition of a contrastive cause and build a model of 
explanations with it. A contrastive cause for a counterfactual 
question is a pair of events that cause the fact and the foil 
respectively. The fact is the event that happened, and the foil 
is the event that did not happen but could have happened. 
The explanation is then given by the path in the structural 
causal model that leads from the actual cause and the foil to 
the contrastive cause. Miller discusses how the model can be 
applied to explainable artificial intelligence, where contras-
tive questions are often considered but contrastive explana-
tions are rarely given. However, Miller did not investigate 
how useful such explanations are perceived by end-users or 
made any suggestions what counterfactuals to choose.

A study comparing some explanatory methods of BNs, 
even if they do not include counterfactuals, was conducted 
by Butz et al. [13]. The purpose of the study is to evaluate 
the user experience of four different explanation approaches 
for Bayesian network inference in the medical domain. 
They surveyed a group of participants on their perceived 
understanding of the explanations and found that Bayesian 
networks were easier to interpret than their associated XAI 
methods. They also found that working with scenarios and 
natural language sentences helped the understandability of 
Bayesian networks graph structure. Natural language can 
hinder the quick and precise comprehension of information 
in a written format, that is why it was suggested to use BN 
graphs compared with short sentences, which could also be 
provided via audio. In continuation of this work this paper 
aims to find first reference points for useful sentences to 
explain a BN’s behaviour. Counterfactuals were chosen as 
first reference point because they are inherently interactive. 
To generate counterfactuals, a what-if question against the 
BN must be asked first. The approach in this paper defines 
and evaluates which counterfactual answer, out of several, 
is useful for the end-user.

3  Preliminaries

This section contains technical preliminaries on BNs includ-
ing counterfactual computation from causal BNs.

3.1  Bayesian Networks

BNs are a type of probabilistic graphical models, which 
represent the probabilistic independence relationship in the 
form of a directed acyclic graph [33]. The nodes represent 
random variables and the arcs model the absence of proba-
bilistic independences. The joint probability distribution of 
the graph is defined by the conditional probability of every 
node given their parents:
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where V = {V1,… ,Vn} , and pa(Vi) represent the parents of 
Vi in the graph. In the following, we will assume that each 
random variable is discrete.

Given evidence, the independencies between random var-
iables can be read from the BN’s graph structure by means 
of the d-separation criterion. E.g., considering the the struc-
ture V1 → V2 → V3 , without given evidence, V1 and V3 could 
be dependent, however, if there is evidence on V2 , then this 
‘blocks’ the information between V1 and V3 , meaning they 
are independent given V2 . Generally, two sets of nodes X and 
Y are d-separated by a set of nodes Z if every path from X to 
Y is blocked by Z [33].

Causal Bayesian networks are Bayesian networks where 
the arcs can be interpreted as a causal relationship, i.e., 
if C → E is included in the graph, then C is considered a 
cause of the effect E. The inclusion of this causal knowl-
edge enables causal reasoning, as we will discuss in the next 
paragraph.

3.2  Computing Counterfactuals

One currently prominent approach to computing counter-
factuals is based on Pearl’s do-calculus [10]. This approach 
does not rest upon Lewis’ approach of similarity between 
possible worlds, but is rather based on causal relationships 
between variables. One possible representation where such 
counterfactuals can be evaluated are causal Bayesian net-
works, where the arcs in the graph are interpreted as causal 
relationships. While conditional probabilities p(y|x) are 
called observational since it focuses on situations where 
x is observed to be true, the do-calculus is interventional, 
and allows one to compute the post-intervention probability 
p(y|do(X = x)) , indicating that X is actively set to the value 
x.

Given a causal model, the joint distribution after interven-
tion can be evaluated by simply removing the conditional 
probability table of that variable from the factorisation, i.e., 
given a Bayesian network over variables V = {V1,… ,Vn} , 
the interventional distribution is defined by:

Example 3.1 ([34]) There exists a rather effective treatment 
for an eye disease. For 99% of all patients, the treatment 
works and the patient gets cured ( B = 0 ); if untreated, these 
patients turn blind within a day ( B = 1 ). For the remaining 
1%, the treatment has the opposite effect and they turn blind 
( B = 1 ) within a day. If untreated, they regain normal vision 

(1)P(V) =

n∏

i=1

P(Vi ∣ pa(Vi))

P(V1,… ,Vi−1,Vi+1,… ,Vn ∣ do(Vi = vi)) =
∏

j≠i

P(Vj ∣ pa(Vj))

( B = 0 ). Which category a patient belongs to is controlled 
by a rare condition that is unknown to the doctor, whose 
decision whether to administer the treatment ( T = 1 ) is thus 
independent of this condition. The causal assumptions are 
represented by a causal Bayesian network

T

B

w i t h  P(B = 0 ∣ T = 1) = 0.99  a n d 
P(B = 0 ∣ T = 0) = 0.01 . According to this graph it holds, 
for example, that P(T ∣ do(B = 1)) = P(T) , i.e., making 
someone blind has no effect on the treatment.

Counterfactual questions can be stated in the phrase: 
what is the probability of y if x would have been true, 
given that we know u? To compute a counterfactual, we 
need to take into account both an observational aspect (u) 
and an interventional aspect, as the part ‘if x would have 
been true’ can be seen as a situation where an experi-
menter controls x. This can be formalised in a CBN by 
conditioning on u and intervening on variables in a coun-
terfactual situation by constructing a so-called twin net-
work [35]. Counterfactuals used in the questionnaire for 
this paper were computed in this manner.

Example 3.2 Reconsider Example 3.1. Now suppose we 
observe a patient that came to the hospital with poor eye-
sight, received treatment and went blind. A counterfactual 
question is: ‘What would have happened if the doctor had 
not administered the treatment?’. To construct a twin net-
work from this Bayesian network, the network has to be 
presented as a structural causal model [36] where noise vari-
ables are explicitly represented and each observable vari-
able (B and T) is functionally dependent on other variables. 
In this case, we introduce a noise variable NT to represent 
the probability distribution of the treatment. Blindness is 
determined by the treatment and an additional variable that 
represents the rare disease (R). The adapted graph is:
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T

NT

R

B

In the twin network construction we use two versions 
of the observed variables, i.e., B and T in the actual world, 
and B∗ and T∗ in an ‘imaginary’ (counterfactual) world. The 
noise variables link the actual with the counterfactual situ-
ation as follows:

T

NT

R

B

T ∗

B∗

In this graph, the counterfactual question can be formal-
ised as:

I n  t h i s  c a s e ,  i t  h o l d s  t h a t 
P(B∗ = 0 ∣ T = 1,B = 1, do(T∗ = 0)) = 1 , i.e., in case the 
patient would not have received treatment, the patient would 
not have turned blind.

4  Applicability to Causal Bayesian Networks

Computing a useful counterfactual gets challenging when 
a user asks an open-ended question, for example: ‘What 
could have gone differently to improve my situation?’. 
In this case, Pearl’s method [10] can be used to generate 
several counterfactuals from a causal Bayesian network, 
satisfying the answer. But which of these counterfactuals 
offer a good explanation? In order to address this question, 
insights derived from the field of psychology have been sum-
marised in Sect. 2.4. The following will demonstrate how 
these insights can be incorporated into the do-calculus. The 

P(B∗ ∣ T = 1,B = 1, do(T∗ = 0))

equations will be used in Sect. 5 to create the questionnaire. 
We aim to identify some Zi = z�

i
 such that:

where z = {Z0 = z0,… ,Zn = zn} , represents the observed 
evidence in the graph, i.e., another value of Zi increases the 
chance of x. In case this holds for some Zi , then we call 
Zi = z�

i
 eligible. The question remains which of these eligible 

counterfactuals is a useful explanatory answer. Byrne [7] 
distinguishes the content of counterfactuals between excep-
tions, controllability, actions, recent events and probability.

Probability
People tend to construct plausible counterfactuals, which 

can be consolidated with their knowledge about the world. 
For example, people rarely form counterfactuals which let 
people eat trees. This suggests identifying the eligible factor 
that has the counterfactually best and therefore most prob-
able desired outcome, which can be formalised as follows:

Nevertheless people misjudge the likelihood of events, 
which is why they prefer less probable counterfactuals 
depending on their focus.

Exceptions
The exceptions category includes counterfactuals which 

are more likely to have occurred than the actual observed 
event. This can be formulated as an addition to the prob-
ability category in Bayesian networks, instead of using the 
most probable desired outcome as in Eq. 3. We say that some 
eligible zi is the most surprising if for each eligible zj with 
zi ≠ zj holds:

Controllability and Actions
The controllability category includes counterfactuals 

which change variables in peoples control. If tasks seem to 
be impossible, people tend to change events outside their 
control, whilst they tend to change events inside of the 
control of a protagonist for a better outcome. One exam-
ple Byrne [7] gives is a quiz show in which one envelope 
contained a difficult math problem that no one could solve 
in the given time, and the other envelope contained money. 
The protagonists formed counterfactuals in which they had 
an easier math problem, while viewers formed the counter-
factual, that they would have been better off taking the other 
envelope. Additionally, people tend to create counterfactuals 
that are actionable mainly if the previous event did not con-
tain any action. Knowledge of what is actionable and what 
is not cannot be drawn from a BN. However, it is possible to 
hand label the variables with the information whether it is 
changeable for a person:

(2)P(x ∣ z) < P(x ∣ z ⧵ zi, do(Zi = z�
i
))

(3)ẑi = argmaxZi=z�i
P(x ∣ z ⧵ zi, do(Zi = z�

i
))

(4)P(zi|z ⧵ zi) < P(zj|z ⧵ zj)
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where A ⊆ Z are actionable variables. The term actionability 
summarises the principle that people prefer to choose vari-
ables that they themselves have identified as variables they 
can act upon.

Recent Events
People like to change events with counterfactuals that 

just happened instead of events further in the past which is 
described in the recent event category. Modeling this in a 
BN is not trivial, because it cannot be realised by keeping 
additional labels for each variable, that indicate which event 
was observed in order to be able to roll them back until an 
eligible counterfactual is found. While this could be formal-
ised in context of temporal Bayesian networks, we focus on 
a-temporal Bayesian networks in this paper.

5  Methodology and Case Study Design

To explore the explainability of counterfactuals in Bayesian 
networks, a case study was designed. In this case study, the 
main objective is to find a possible metric to measure the 
explainability through explicitly exploring shorter versus 
longer, and actionable versus non-actionable statements. 
Even though many BNs in the literature feature specific 
information from knowledge domains, e.g., medical BNs, 
the objective of this case study was to research the useful-
ness of actionability statements to enhance the perceived 
explainability of BNs within the general population without 
specific or expert knowledge. The questionnaire was sent out 
via multiple channels, enabling a heterogeneous population 
to participate, in order to minimise results based on specific 
knowledge. The method of creating a questionnaire was cho-
sen to include a wide range of international participants, not 
focusing on a single demographic. An online-based ques-
tionnaire enables world wide participation, with the only 
recorded limits being access to internet and a suitable device 
(mobile, tablet, or desktop) and the ability to read and under-
stand the questionnaire in English.

To test our hypotheses, mentioned in Sect. 1, we created 
three scenarios based on three different causal Bayesian net-
works (CBNs).

The first CBN is a small network about heartburn as 
shown in Fig. 1. The scenario presented in the CBN is 
about a stressed person who has problems with heartburn 
and wants to know what they can change in their life to get 
rid of the heartburn.

The second network, shown in Fig. 2, is a medium-sized 
network about a car accident [37]. In this scenario, a per-
son who recently had a minor accident is wondering what 
they could do differently to prevent further accidents, is 
described.

(5)âi = argmaxa�
i
P(x ∣ z ⧵ ai, do(Ai = a�

i
))

The last CBN is a small-sized network about getting a 
loan, presented in Fig. 3. The person in this scenario wants 
to know what they could change to raise their chances of 
getting a loan. The heartburn CBN and the loan CBN were 
specifically designed for this study, so that there were more 
possibilities in which the shortest chain is not at the same 
time the most actionable variant. In order to compute all 
possible actionable variables, Eq. 5 was used which was 
defined in Sect. 4. Counterfactuals with a short causal chain 
were respectively calculated with the do-calculus described 
in Sect. 3.2. The following describes how the computed 
counterfactuals were juxtaposed in the questionnaire.

In the questionnaire, we presented the participants with 
two possible counterfactual answers and asked them to 
choose the one that was more useful for them in the given 
scenario. One of the counterfactual answers contained the 
direct cause, which is a parent node of our variable of inter-
est. For instance, if the variable of interest is an accident, 
one parent node could be antilock, and another could be 
driving quality (Fig. 2). The second answer contained the 
variable that we considered to be more actionable but with 
a longer causal chain. As described in the background sec-
tion (Sect. 2.2), most methods assume that a direct cause is 
a good explanation. There were few possible choices in con-
structing the questions because there are not many counter-
factuals in the combination that guarantee a better outcome 
and also fulfill the criteria of a direct parent node or a longer 
causal chain. As a first effort, we selected arbitrary action-
able variables with chains of different lengths to determine 
whether they would be preferred in some cases.

The participants had to choose which of the explanations 
seemed more useful to them. The participants were asked 

Fig. 1  The BN about heartburn used in the questionnaire
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about their own perceived usefulness of the explanations, 
because each person perceives an explanation as of varying 
usefulness. We want to explain to the end user, so we did 
not choose a scenario to be evaluated as an outsider, because 
studies have already shown that the evaluation is different if 
the participant is not affected [7].

We targeted the same question from different perspectives 
by altering the answers to different pairs of chain lengths. 
We used the same sentence structure to present the problem 
to avoid bias by altering the sentences so that one problem 
description could not be favoured or interpreted differently 

from the other based on the sentence formulation alone. For 
example, the question for the first scenario was ‘You would 
not have heartburn if...’ and the first pair of counterfactuals 
was: ‘You had less stomach acid’ for the shorter chain and 
‘You ate a banana’ for the actionable variable but longer 
chain. The second pair of counterfactuals to the question 
was: ‘You had taken tablets (baclofen)’ for the shorter chain 
and ‘You did yoga’ for the presumably actionable variable 
but longer chain.

At the end of the questionnaire, we asked the partici-
pants to rate the variables from easy to change to hardest 
to change. In addition, we asked which variables are not 
actionable at all for them. Since actionability might differ 
to some extent between persons, we were able to measure 
if the participants selected the variable that is more action-
able for them. Note that this means that participants may 
evaluate the shorter chains as more actionable, for which we 
correct in the statistical analyses. We calculated probabilities 
for choosing actionable and shorter-chain explanations by 
means of a �2-test. Finally, we tested whether there is a sig-
nificant tendency to either choose shorter chains or action-
able variables, than what might be expected by chance. As 
a baseline of comparison, we also consider the probability 
that the participants chose the most probable counterfactual 
according to the Bayesian network.

Fig. 2  The BN about car accidents used in the questionnaire

Fig. 3  The BN about loans used in the questionnaire
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Three different CBNs were chosen, so that a single topic 
would not have a strong influence on the results. For exam-
ple, it is possible that people in the health context would 
prefer actionable answers, while people in the loan context 
would prefer to have causal answers. We further decided 
on not showing the CBNs to the participants, because we 
focused on the question which counterfactual is perceived 
as a more useful explanation for a question about alterna-
tive (counterfactual) situations, and not on how to explain a 
CBN with it. The participants had no information about the 
complexity or architecture of the network. Therefore this 
information was not reflected in the results either. The top-
ics of the CBNs were general because we wanted to ask a 
heterogeneous selection of people.

6  Evaluation

Fifty-four people participated in the questionnaire. They 
were acquired by social media posts and circular e-mails 
at the Open University and at a company focusing on IT 
solutions. The questionnaire was accessible online. Five 
questionnaires were inconsistent: they listed variables as not 
actionable at all, but in their rating the variable was listed 
as the easiest or one of the easiest variables to change, that 
is, as actionable. They were therefore excluded. One of the 
questionnaires listed three variables as not actionable at all 
but the easiest to change in the rating. This led us to the 
conclusion that it was intentionally filled out incorrectly, 
which is why we also decided to excluded it. Four other 
questionnaires had only one inconsistent variable, which was 
suspected to be a mistake, so we decided to include them in 
the analysis. We used a �2-test for our analysis.

We asked 13 questions in total, excluding the rating ques-
tions. The participants answered five questions in the heart-
burn scenario four in accident and four in the loan scenario. 
With 49 valid questionnaires we got a total of 402 answers 
that preferred a more actionable explanation in contrast to 
235 answers preferring the less actionable alternative. In the 
total of 637 answers, the participants shared our notion about 
what is more actionable 396 times. An overview of the total 
answers for each scenario is shown in Fig. 4.

Overall, 64% of the actionable explanations were pre-
ferred over less actionable explanations (p < 10−5) . This is 
consistent in all three scenarios: in the heartburn scenario 
70% preferred the actionable explanations (p < 10−5) , in 
the accident scenario 64% preferred the actionable explana-
tions (p < 10−3) , and in the loan scenario 57% preferred the 
actionable explanations, though this last one did not reach 
statistical significance ( p = 0.06 ). Not all participants pre-
ferred actionable explanations, but 76% of the participants 
chose more actionable than less actionable explanations 
throughout the scenarios (p < 10−3).

Similarly, 64% of the most probable explanations were 
preferred over less probable explanations (p < 10−5) . In 
this case, the results are not consistent in all scenarios: in 
the heartburn scenario, the more probable counterfactual 
was preferred less (44%), whereas in the accident scenario 
(66%) and loan scenario (87%) the more probable coun-
terfactuals were chosen. Overall, 90% of the participants 
chose more probable than less probable explanations 
(p < 10−5) , though this is primarily explained by the loan 
scenario.

We did not find a similar trend in the length of the 
chain: overall items shorter and longer items were chosen 
equally probable. Similarly, we found no statistical dif-
ference between the number of participants that preferred 
longer or shorter chains more often. Remarkable, in the 
accident case study the longer-chain explanations were 
preferred (p < 10−3) and in the loan scenario the shorter-
chain explanations were preferred (p < 10−6) . This might 
indicate that this is highly dependent on the type of appli-
cation or Bayesian network used.

To test the main hypothesis, we compared whether 
explanations with actionable long-chain explanations were 
more likely to be chosen than non-actionable short-chain 
explanations. We found that this was the case in 60% of 
the time (p < 10−5) , which indicates that actionable vari-
ables tend to be perceived as a more useful explanations 
than shorter chains. We did not find an overall difference 
in a choice between actionable and more probable expla-
nations, though the latter were not consistently preferred 
across different scenarios.

Another effect that emerged here, is that the interpreta-
tion of what is actionable was in many cases not accord-
ing to the expectations in the design of the questionnaire, 
i.e., participants rated the variable with the shorter chain 
as actionable more often than expected. Recall that ques-
tions were designed in such a way that answers with short 
chains were expected to be less actionable. In 73 of the 111 
answers for the loan scenario the more actionable coun-
terfactual also had a shorter chain. This was unexpected.

Fig. 4  Overview of all answers split up by scenario
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7  Discussion

While actionability is one aspect of plausible counterfactu-
als (Eq. 5), we formalised several other aspects in Sect. 4, 
in particular the most probable desired outcome (Eq. 3) 
and the most surprising outcome (Eq. 4). The case study 
presented in this paper was limited to comparing causal 
chains and actionability given three scenarios. As a base-
line, we also considered the most probable explanation 
to put the results of the actionability and length of causal 
chains in perspective.

The implication of this limitation is that aspects such 
as actionability and length of causal chain could not be 
correlated to other aspects of useful explanations, as 
discussed in Sect. 4. In particular, the probability of the 
desired outcome (cf. Equation 3) might provide an alterna-
tive explanation of the results. To this end, we computed 
the probability of participants favouring the more probable 
counterfactual over the other. This posthoc-analysis shows 
that this is the case in 66% of the time in the accident and 
87% in loan case study. In the heartburn scenario however, 
the participants choose the more probable counterfactual 
over the other in only 44% of the times. Moreover, the 
distances between the probabilities are very small in most 
cases, e.g., most counterfactuals (five out of seven) for the 
loan example range between a 43 − 45% in the probability 
of a loan being approved.

While we did not find evidence that participants selected 
the more probable counterfactual, we also investigated 
whether there was a tendency to select the most probable 
one. For the heartburn scenario, this counterfactual was not 
part of the survey, so the tendency to select the most prob-
able counterfactual could not be analysed. However, the 
loan scenario offers an interesting result. The most prob-
able desired outcome is ‘Your chance getting a loan would 
be higher if the amount of borrowed money would be lower.’ 
In the scenario, this option was compared to ‘Your chance 
getting a loan would be higher if you were an adult instead 
of a young adult.’ Overall 80% of all people chose lowering 
the amount of borrowed money over changing the age. How-
ever, most participants considered reducing the amount of 
borrowed money the most actionable, whereas becoming an 
adult was considered the least actionable, so the results are 
consistent with the preference of choosing actionable vari-
ables. In the accident scenario the most probable counter-
factual is ‘Your chance of having an accident would be less 
severe if your car had antilock’. This counterfactual however 
had mixed effects in the case study. Only 10% picked a car 
with antilock over better driving skills, but 64% preferred a 
car with antilock over a new car.

In summary, while we cannot rule out confounding 
effects because of limited data, the current results do not 

indicate that the probability of the desired outcome is a 
more important factor than the actionability of variables.

8  Conclusion

In this paper, we explored the selection of a useful coun-
terfactual explanation, derived from a BN, when there are 
multiple to choose from. We have examined this question 
from several angles. On the one hand, we defined how find-
ings from psychology can be applied to the do-calculus. One 
example of this application is that humans typically respond 
better to actionable explanations that lead to positive out-
comes. On the other hand, we compared causal chains with 
actionability in terms of perceived usefulness. The graph 
structure is mostly used in XAI for BNs, but the results of 
our questionnaire indicated that actionable variables are pre-
ferred while the preferred length of the chain depended on 
the scenario.

Additionally, we established the more probable counter-
factual as the baseline. This evaluation indicated a preferred 
selection of the more probable counterfactual. However, this 
preference was not given for every individual scenario. In 
summary, our finding suggest that actionable counterfactu-
als appear to be a more robust finding than using the graph 
structure or the probabilities of counterfactuals.

The implication of this study shows that the approach 
of most methods that explain Bayesian networks may be 
sub-optimal, as they rely on the graph structure of the net-
work and use, for example, the Markov blanket of a vari-
able of interest to limit possible variables for an explanation. 
However, our results suggest that this is most likely not the 
best method to explain Bayesian networks, because longer-
chain actionable variables are generally outside the Markov 
blanket and would not have been considered. Therefore, this 
findings have a direct impact on the construction of Bayes-
ian network explanations and can be used to improve these 
methods.

We acknowledge that our CBNs are relatively small and 
focus on three specific domains. The consistent results 
with respect to the usefulness of actionability suggest that 
these generalise to other domains. On the other hand, we 
expect that there are differences in the perceived useful-
ness of shorter versus longer chains depending on domains 
or potentially the size of the overall BNs, because we 
observed that preferences differed significantly between 
the scenarios. This study is restricted to few scenarios. 
Further research on different scenarios should investigate 
the circumstances under which shorter chains are preferred 
over longer chains, even if the latter potentially represent a 
more actionable variable. By doing so, we can gain a more 
comprehensive understanding of the factors that influence 
the effectiveness of chains in different contexts. Similarly 



 Human-Centric Intelligent Systems

it should be further explored if actionable counterfactuals 
are superior to the most probable counterfactual.

Another aspect that we would like to investigate further 
is how to automate the generation of the most useful coun-
terfactual. The results of this paper suggest that we need 
to label variables according to the extent to which they 
are actionable or impossible to change. However, a causal 
Bayesian network provides information about causal rela-
tions, not about actionability. It is an open question what 
the most appropriate and efficient manner is to add knowl-
edge about actionability. One possible approach is to ask 
the user, which can provide the most useful actionable 
variables. However, that approach is time consuming.

We suggest that there are further opportunities to inves-
tigate the generalisability of the results of this paper. The 
setting in which we studied actionability compared to 
causal chains is limited because we focused on a special 
type of question that can be answered with counterfactu-
als. Instead of focusing on counterfactuals, another type 
of explanations that could be useful to investigate are con-
trastive explanations.
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