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Abstract
Automated process discovery as one of the paradigms of process mining has attracted both industries and academic research-
ers. These methods offer visibility and comprehension out of complex and unstructured event logs. Over the past decade, the 
classic heuristic miner and applied heuristic-based process discovery algorithms showed promising results in revealing the 
hidden process patterns in information systems. One of the challenges related to such algorithms is the arbitrary selection of 
recorded behaviors in an event log. The offered filtering thresholds are manually adjustable, which could lead to the extrac-
tion of a non-optimal process model. This is also visible in commercial process mining solutions. Recently, the first version 
of the stable heuristic miner algorithm targeted this issue by evaluating the statistical stability of an event log. However, 
the previous version was limited to evaluating only activities’ behaviors. In this article, we’ll be evaluating the statistical 
stability of both activities and edges of a graph, which could be discovered from an event log. As a contribution, the stable 
heuristic miner 2 is introduced. Consequently, the definition of the descriptive reference process model has improved. The 
novel algorithm is evaluated by using two real-world event logs. These event logs are the familiar Sepsis data set and the 
urology department patients’ pathways event log, which is recorded by monitoring the interpreted location data of patients 
on hospital premises and is shared with the scientific community in this article.
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Abbreviations
LCL:	� Lower control limit
CL:	� Central line
UCL:	� Upper control limit
MR:	� Moving range
LCL.edge:	� Lower control limit for edges
CL.edge:	� Central line for edges

UCL.edge:	� Upper control limit for edges
Stable heuristic miner V2:	� Stable heuristic miner version 
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1  Introduction

Process mining is leading the process-oriented data sci-
ence research paradigm that is predominantly known for 
extracting insights from event logs captured by information 
systems. It aims at analyzing and visualizing event logs to 
reveal process patterns. Process mining is identified by three 
main activities: automatic process discovery, conformance 
checking, and enhancement.

Over the past decade, more than 80 papers addressed the 
automatic discovery research issues by proposing new and 
variations of existing algorithms [1]. Often, these methods 
tend to extract models that differ in their approach to con-
sider the trade-off among precision, fitness, and complex-
ity criteria. Generally, the decision to respect which quality 
dimension criteria is arbitrarily made. Hence, it is difficult 
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to detect a reference model using conventional process dis-
covery methods.

For instance, the heuristic-based process discovery meth-
ods captivated the attention of researchers in the discipline 
of process mining. They have been identified as a proper 
solution to discover less structured process models. This is 
due to their ability to handle noises in an event log [2, 3]. 
The work in [4] was one of the pioneers in developing heu-
ristic-based process discovery algorithms, and the developed 
algorithm was named the heuristic miner. It can be inferred 
that the main objective of such an algorithm was to give flex-
ibility to users so that they can detect the target model from 
an event log. This has been observed in improved versions 
of this algorithm [5].

The classic heuristic-based methods are developed mainly 
in five general steps which is (i) identifying the footprint 
matrix, (ii) calculating the dependency measure, (iii) devis-
ing the graph, (iv) discovering the splits and joins, and (v) 

adjusting the loops. In this article, we will elaborate on the 
second step of this algorithm. This decision is founded upon 
one of the scientific gaps that we have identified, and we will 
elaborate on it in the subsequent section.

1.1 � The Scientific Gap and Its Risks

The actions to extract the footprint matrix lead to detect-
ing the direct relations among activities. The advantage of 
the classic heuristic miner algorithm is within its second 
step where the algorithm calculates the dependency meas-
ure among activities. By defining this metric, the algorithm 
gives the mentioned flexibility advantage to select a target 
model [5].

This so-called flexibility is offered to users by provid-
ing manually adjustable thresholds, which is a common 
approach of most process discovery algorithms. These 
thresholds allow modification of the graph by adding or 

Fig. 1   Illustration of the steps of the first version of the stable heuristic miner to evaluate the statistical stability for activities [10, 12]

Fig. 2   Stable heuristic miner 2 algorithm: the sequence of actions that lead to the output of the algorithm
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removing activities (vertices) and connections (edges) 
among them. This modification is mainly carried out arbi-
trarily, and it’s highly dependent on the experience and 
knowledge of the user. This is incompatible in case the 
user wants to understand how a process normally is being 
executed in reality, and the detection of drifts is not pos-
sible. This shortcoming was evoked in other works as well 
[6]. Additionally, in data-driven simulation, one of the main 
challenges is to extract the reference behavior recorded in an 
event log to eventually identify a simulation model.

Moreover, the extracted results are likely to illustrate a 
non-optimal graph. Increasing the value of these thresholds 
could also lead to detecting uncommon behaviors, more 
entropy, and impractically enlarging the size of the graph.

This gap could be observed in other studies too [6–9]. 
For instance, researchers in [9] mentioned that the quality 
of the discovered model depends on trial-and-error and can 
be time-consuming to detect a target model. Therefore, con-
sidering the second step of these algorithms, the research 
question for heuristic-based process discovery algorithms is 
“how to calculate the optimal values for thresholds?"

The primary version of the stable heuristic miner 
algorithm was proposed to address this research question 
[10–12]. To do so, the stable heuristic miner proposed to 
evaluate the statistical stability in an event log. As a result, 
a process model is discovered that represents the descriptive 
reference process model. This algorithm was developed to 
detect a reference behavior of patients with the objective of 
diagnosing deviations and drifts from it [11]. This was seen 
as an important requirement in the analysis of patients’ path-
ways. This was due to the fact that the healthcare processes 
are highly complex, and users need a reference model for 
diagnosis actions, which is difficult to obtain.

However, the previous version of the stable heuristic 
miner addressed the evaluation of statistical stability by 
focusing only on activities (vertices). As a result, the dis-
covered process model could not effectively consider the sta-
tistical stability of the whole behavior registered in an event 
log (i.e., activities and relationships among them). This was 
one of the concerns highlighted in [10, 12]. In this article, 
we aim to address this issue.

1.2 � Hypothesis and Contributions

In complex systems with emergent properties like a hospital 
or environments where humans are running the majority of 
tasks, it’s a challenge to capture a model that illustrates the 
reference behavior of a statistical population. To address this 
issue, we define statistical stability in process discovery.

We establish that Statistical stability in process discov-
ery is manifested through a meta-analysis that evaluates 
the consistency of samples’ behaviors against the recorded 
information in an event log, which we consider as a statisti-
cal population.

Each sample is identified by an activity or a connection 
between two activities. By evaluating the statistical stability, 
one could obtain a snapshot that can be used as the main and 
reference behavior of the population. This evaluation–sta-
tistical stability–is carried out by assessing the frequency 
of mass events, and also by taking the stability of averages, 
variances, and the standard deviations of the samples into 
consideration [13, 14]. Accordingly, the contribution of this 
article is:

•	 The new stable heuristic miner 2 algorithm, which rede-
fines the descriptive reference process model by assess-

Table 1   Presenting the value of observations and the  average Mov-
ing Range ( M̄R)

Order FirstActivity Secon-
dActivity

× (Edge value) MR

1 a c 34 0
2 a b 26 8
3 b c 46 20
4 b i 5 41
5 b k 4 1
6 b f 1 3
7 c d 52 51
8 c b 31 21
9 c i 10 21
10 c f 6 4
11 c j 6 0
12 c e 5 1
13 c h 4 1
14 d l 23 19
15 d g 17 6
16 d e 14 3
17 e l 20 6
18 e c 5 15
19 f c 15 10
20 f d 2 13
21 g l 11 9
22 g h 5 6
23 g e 1 4
24 h e 5 4
25 h c 4 1
26 i c 9 5
27 i f 6 3
28 j l 6 0
29 k e 4 2
30 l m 60 56
x̄ = 14.566 M̄R = 11.133
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ing the statistical stability of both activities and edges 
extracted from an event log.

•	 A real-world event log, which is used to assess the capa-
bility of the novel algorithm, which is accessible in [15].

1.3 � Article’s Structure

The remainder of the article is organized as follows: 
Sect. 2 collects the main state of the art of the related 
works addressing the heuristic-based mining methods 
for process discovery. Section 3 describes the developed 
algorithm and its definitions. Additionally, it provides a 
running example for a better illustration of the introduced 
method. Section 4 reports two experiments to validate the 
applicability of the new algorithm, and it provides a com-
parison with previous methods. These experiments are 
based on two real-world event logs. Section 5 summarizes 
the main conclusions of this work, its limitations, and its 
potential future works.

2 � Background

2.1 � A Review of Heuristic‑Based Process Discovery 
Methods

As mentioned in Sect. 1.1, calculating the dependency 
measure is a principal step targeted by several heuristic-
based process discovery algorithms. Optimizing the out-
put of this step could lead to the extraction of an optimal 
dependency graph, or as mentioned here the descriptive 
reference process model.

Previously in [4, 5, 16], the dependency graph was 
defined as:

This definition expresses ‘E’ as a limited set of activities. 
Each event could represent an activity. ‘ ◻b ’ stands for the 
activities that come before ‘b’. ‘ a◻ ’ denotes the activities 
that come after ‘a’. Accordingly, a dependency relation 
is represented by (a, b) expressing the input − output and 
sequence of activities.

Therefore, the dependency measure [5] could be 
expressed by equation 2:

(1)
DependencyGraph

= {(a, b) ∣ (a ∈ E ∧ b ∈ a◻) ∨ (b ∈ E ∧ a ∈ ◻b)}

(2)

DependencyMeasure ∶ a ⇒w b =

∣ a >w b ∣ − ∣ b >w a ∣

∣ a >w b ∣ + ∣ b >w a ∣ +1

Fig. 3   The process model extracted by the classic heuristic miner 
approach with a manual threshold set at 20%. Accordingly, the model 
presents activities that have a dependency measure higher than 20%. 
Only 67% of the recorded behaviors respect this threshold
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Here, ‘w’ stands for the event log with ‘n’ number of activi-
ties. ∣ a >w b ∣ denotes the number of times activity ‘a’ is 
followed by ‘b’. An increase or decrease in the value of these 
thresholds by the user will lead to a set of vertices and edges. 
This selection is arbitrary and doesn’t guarantee an optimal 
graph.

The primary heuristic miner algorithm [4] discovered 
the dependency graph based on the minimum thresholds 
for evaluating the dependency among activities.

Authors in [17] presented another version of the heuristic 
miner by focusing on the mentioned scientific gap. They 
proposed a new approach to calculate the dependency meas-
ures. One of the advantages of this version was the ability to 
extract dependency graphs from event streams.

Heuristic miner ++ was introduced in 2015 [18]. This 
version also tried to modify the approach in calculating the 

Fig. 4   The process model extracted by the classic heuristic miner 
approach with a manual threshold set at 80%. Accordingly, the model 
presents activities that have a dependency measure higher than 80%. 
Only 45% of the recorded behaviors respect this threshold

Fig. 5   The process model extracted by the classic heuristic miner 
approach with a manual threshold set at 90%. Accordingly, the model 
presents activities that have a dependency measure higher than 90%. 
Only 25% of the recorded behaviors respect this threshold
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dependency measures by considering the time intervals in 
an event log.

Another version of the heuristic miner was proposed as 
the “flexible heuristic miner” in [5]. The output of this ver-
sion was constructed similarly to the classic heuristic miner, 

however, it improved the results by considering long-dis-
tance dependencies as well.

The Fodina algorithm [19] is another improved version of 
the heuristic miner, which is capable of detecting duplicate 
tasks and providing more flexibility for the user to extract a 

Fig. 6   The process model 
extracted by the classic heuristic 
miner approach with manual 
configuration of thresholds. The 
value for the threshold is set at 
0, therefore, the model shows all 
the registered behaviors



Human-Centric Intelligent Systems	

dependency graph. Authors in [8] mentioned that this algo-
rithm could lead to disconnected graphs, which could be 
seen as irrelevant.

These presented works aimed at improving the heuris-
tic miner functionalities. However, their aim was narrowly 
different from the focus of the stable heuristic miner 2. In 
this new algorithm, we focus on the extraction of one target 
model from the data for specific analytical purposes such as 
diagnosis and concept drift detection.

Several researchers in [8, 20–24] worked on mathemati-
cal programming applications to address the research ques-
tion of “how to discover an optimal process". For instance, 
authors in [21] considered integer linear programming. They 
try to optimize their functions according to an interesting 
constraint, which is assuring the modeled activity is on a 
path starting from the initial activity to the end activity. The 
Proximity miner algorithm [22] is an interesting example 
of these works, which integrates the domain knowledge in 
the discovery task of the dependency graph. Consequently, 
the scientific question appears here again that the mining 
procedure is dependent on the expert’s knowledge.

We identified two promising methods with an approxi-
mately similar objective to ours. The first one is the Induc-
tive Miner algorithm [25], which is one of the most applied 
process discovery algorithms. This method aims to detect 
the most significant splits in an event log and determine 
associated operators to characterize each split. This method 
results in block-structured process models, which are visu-
ally appealing. However, such a model could generate a 
flower-structure process model, leading to low fitness and 
generating behaviors that were not seen in the event log. 
Moreover, this method identifies various process structures 
and suggests thresholds to detect linear models. Considering 
its approach, it did not match our plan to propose a reference 
model based on mathematical logic. It has been seen that 
both Inductive Miner and classic Heuristic Miner have been 
ineffective in detecting the relevant/reference process model 

[6]. In [6], authors compared the effectiveness of classic 
heuristic miner and inductive miner while using the sepsis 
data set–used in this paper as well–and highlighted the need 
to develop methods for advancing towards extracting a refer-
ence process model.

The other method is the Split Miner algorithm [26]. The 
objective of this promising method is to extract simple pro-
cess models with low branching complexity while keeping 
a high fitness value. This approach does not predominately 
lead to a reference model, since it does not consider the 
statistical distribution of the events nor the nature of the 
observed system. The application of this method to our study 
could lead to the extraction of a simple model, but not neces-
sarily the descriptive reference model.

2.2 � The Previous Version of the Stable Heuristic 
Miner Algorithm

As mentioned earlier, in the first version of the stable heuris-
tic miner [10, 12], we aimed to find the presence frequency 
of all activities in an event log. Then, we obtained three main 
thresholds to see how important the activity is according to 
the statistical stability phenomenon.

The reason statistical stability was found to be an appro-
priate approach to evaluate and discover a process model 
from an event log was based on the nature of the studied 
system.

According to the hypothesis of statistical stability [13, 
14], to understand the behavior of a complex system, it is 
required to evaluate the behavior of each member of the 
system based on its impact on the whole system. To our hum-
ble knowledge, this is a missing notion in the core of most 
process discovery algorithms.

The statistical stability evaluation could be driven by the 
Shewhart control charts approach [10, 27]. These control 
charts include a center line (CL) that represents the average 
value of a measured characteristic, relevant to the in-control 

Table 2   Presents the evaluation of process discovery results of the running example considering the quality criteria mentioned in the literature

Discovery approach Precision Fitness Complex-
ity in size

Complexity 
in behavior

Logic of substracting information

Classic heuristic miner (Fig. 6) 0.1 1 1 1 All behaviors of the log are selected
Classic heuristic miner (Fig. 3) 0.4 1 1 0.8 Dependency measure over 0.2
Classic heuristic miner (Fig. 4) 0.4 0.9 0.9 0.5 Dependency measure over 0.8
Classic heuristic miner (Fig. 5) 0.3 1 0.6 0.3 Dependency measure over 0.9
Stable heuristic miner 1st version (Fig. 7) 0.1 1 0.8 0.9 Evaluating statistical stability by considering 

each activity in an event log as a sample of a 
statistical population which is the event log

Stable heuristic miner 2nd version (Fig. 8) 0.66 0.67 0.7 0.51 Evaluating statistical stability by considering 
each activity AND each edge’s behaviors 
in an event log as a sample of a statistical 
population which is the event log
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state. The Upper Control Limit (UCL), and Lower Control 
Limit (LCL) are calculated by considering the standard devia-
tions and averages of the samples. These two limits—UCL & 
LCL—are the borders of a statistically stable state. As long 
as the analyzed data points fall between these two thresholds, 

the outcomes of the process are in control. If a data point falls 
outside these limits, it will be considered as a variation of the 
process outcomes, and the process will no longer be consid-
ered stable.

Fig. 7   The process model 
extracted by the first version of 
the stable heuristic miner. Red 
activities have shown a high 
level of variation in their behav-
ior according to the algorithm
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As a result, the previous version of the stable heuristic 
miner algorithm proposed to replace the second step of the 
classic heuristic miner with ten new steps.

These steps were defined as the sequence of actions to 
identify the stable activities and activities that are imposing 
instability into the process. These steps are shown in Fig. 1. By 
identifying these two types of activities, a new definition was 
proposed in equation 3. This definition represents a descriptive 
reference process model.

According to equation 3, in order to acquire the descrip-
tive reference process model, we need to detect a state from 

the event log in which for each activity ( A ), a vector as s 
represents the frequency of relations with other activities. 
‘s’ vector is defined as a sample of the population (footprint 
matrix). Additionally, for each ‘s’ sample, there exists a x̄s , 
which is the average of direct relations frequencies. Therefore, 
the corresponding activity to the sample (s) will be shown in 
the descriptive reference process model ( P ) if the average of 
its direct relations frequencies is between the two thresholds; 
‘UCL’ and ‘LCL’. Consequently, such a sample (activity) is 
considered a stable behavior. If the average value is greater 
than the UCL value, then, it’s considered a hot zone that 
imposes instability into the process.

This definition—equation 3—evaluated the statistical stabil-
ity criteria to detect solely the stable, and unstable activities 
behavior. On the other hand, each edge can have an impact 
on the nature of a graph, but this is ignored here.

Therefore, we propose an improvement in the following. 
The second version of this algorithm not only considers the 
behavior of activities in a dependency graph but also the 
edges that can be discovered from an event log. The fol-
lowing section presents the new modification to the stable 
heuristic miner algorithm.

3 � Theory and Methods

This novel version will consider both activities (vertices) 
and relationships among them (edges) as samples of a larger 
statistical population, which is the event log.

3.1 � Presenting the Steps of the Novel Algorithm

To better illustrate this new algorithm, we are going to pre-
sent each step by using a running example. Figure 2 demon-
strates the procedure of the second version of the algorithm.

To avoid redundancy, we will not focus on the steps 
related to the previous version of the algorithm, and we will 
present through a running example the definitions regarding 
the new improvements.

3.1.1 � The Running Example

‘L’ represents a series of traces that are supposedly extracted 
from an event log.

(3)

[∀ A ∃ s] ∧ [∀ s ⊆ S ∃ x̄s]

∴

(A ∈ P) → [LCL < x̄s < UCL] ∪ [UCL ≤ x̄s]

Fig. 8   The model extracted by the new version of the stable heuristic 
miner. Red edges and activities have shown a high level of variations 
in their behavior according to the algorithm
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Inside L each group represents a trace. A trace consists 
of events corresponding to the activities. For instance, 
the first trace shows that 12 cases have followed the same 
sequence of activities. Figure 2 shows the new steps we 
are going to take to discover the descriptive reference 

process model. We’ll describe these steps in the follow-
ing definitions.

After extracting the footprint matrix (shown below), we 
will consider the matrix as the population and each value 
as a sample (se).

Fig. 9   Visualizing the sepsis process model by using the classic heuristic miner and applying a dependency threshold of 15%. The selection of 
the threshold value is random due to the approach of the algorithm
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Fig. 10   Visualizing the sepsis 
process model by using the clas-
sic heuristic miner and applying 
a dependency threshold of 50%. 
The selection of the threshold 
value is random due to the 
approach of the algorithm
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3.1.2 � Preliminaries and Definitions

Definition 1  Sample-edge (se ): Each connection or an edge 
between two activities with a value greater than 0 is consid-
ered as a sample. All the samples have a unique size of 1.

While it might seem unusual to select samples with the 
size of 1, there are statistical constraints that require such 
selection [28]. Accordingly, in the example above, there are 
‘ 30 + 1 ’ samples (edges). The ‘ +1 ’ is an assumption for pre-
senting the connection to the end activity.

S =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

a b c d e f g h i j k l m

a 0 26 34 0 0 0 0 0 0 0 0 0 0

b 0 0 46 0 0 2 0 0 5 0 4 0 0

c 0 31 0 48 5 9 0 4 10 6 0 0 0

d 0 0 0 0 14 0 17 0 0 0 0 23 0

e 0 0 5 4 0 0 0 0 0 0 0 20 0

f 0 0 15 2 0 0 0 0 0 0 0 0 0

g 0 0 0 0 1 0 0 5 0 0 0 11 0

h 0 0 4 0 5 0 0 0 0 0 0 0 0

i 0 0 9 0 0 6 0 0 0 0 0 0 0

j 0 0 0 0 0 0 0 0 0 0 0 6 0

k 0 0 0 0 4 0 0 0 0 0 0 0 0

l 0 0 0 0 0 0 0 0 0 0 0 0 60

m 0 0 0 0 0 0 0 0 0 0 0 0 0

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

Fig. 11   Visualizing the sepsis process model by using the classic 
heuristic miner and applying a dependency threshold of 80%. The 
selection of the threshold value is random due to the approach of the 
algorithm

Fig. 12   Result of the stable heuristic miner v1 by using the Sepsis data set
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Definition 2  Observation-edge (xij ): Each edge or sample 
within the population has a value. This value is called the 
Observation value.

As an example, in the previous footprint matrix, the value 
of a → b is equal to 26. Therefore, a → b is a sample of the 
population. The value of this sample is considered as an 
observation.

The value of each observation will be used to build upon 
the extraction of a statistically stable state. Needless, to men-
tion, there are 31 edges in this example and accordingly ‘31’ 
observation values.

To understand the statistical behavior of each sample, we 
need to evaluate it by considering other samples’ behaviors. 
To do so, we define the Moving range (MR).

Definition 3  Moving Range (MR): MR represents the differ-
ence from one observation(xij) to another.

For instance, the xab = 26 and xac = 34 . Therefore, the 
MR from xab to xac is equal to ‘8’. The order is based on the 
sequence in which events are recorded.

The value of MR helps to consider the variations in sam-
ples’ behaviors.

Definition 4  Average behavior (x̄ ): As it can be expected, 
this value represents the average of all the samples(edges) 
values.

(4)x̄ =
x
1
+ x

2
+ x

3
+ ... + xn

n

Fig. 13   Result of the new stable heuristic miner v2 algorithm by using the Sepsis data set
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Definition 5  Average of Moving Range (M̄R ): While the 
value for each edge changes from one to another, the M̄R 
gives a value to represent the average of variations.

To calculate the value of M̄R for the running exam-
ple (L), at first, we sorted the observation values. Then, 
the average behavior x̄ was calculated. Finally, MR values 
or the changes in the values of edges will be calculated. 
This will lead to calculating the average of moving ranges 
( M̄R ). The result of these actions are shown in Table 1.

Accordingly, the average value of variations is 
M̄R = 10.51 . The average value for the recorded behavior 
of edges is x̄ = 14.225.

Definition 6  Central Line-edges(CL.edges): This central 
threshold determines the most statistically stable edges 
(samples). If the value of an edge is closer to this line, It 
is more likely for this edge to be seen in future behaviors.

(5)M̄R =

MR
1
+MR

2
+MR

3
+ ... +MRn

n

As shown in equation 6, the most stable behaviors are 
close to the average behavior.

Definition 7  Upper Control Limit-edges (UCL.edges): This 
threshold determines the limit to conceive edge behavior as 
stable. If an edge value passes this threshold, it will be con-
sidered as an edge with a high variation ratio in its behavior.

Equation 7 presents the mathematical model of UCL. A 
customary constant as ‘ d

2
 ’ is defined here. The value for 

‘ d
2
 ’ is defined through a series of calculus operations and 

it has led to certain constant values. d
2
 values are depend-

ing on the number of monitored samples in a population. 
Additionally, these values are presented in most statistics 
handbooks [28].

(6)CL.edges = x̄ =
x
1
+ x

2
+ x

3
+ ... + xn

n

(7)UCL.edges = x̄ + 3

(
M̄R

d
2

)

Fig. 14   Visualizing the urology 
process model by using the clas-
sic heuristic miner and applying 
a dependency threshold of 15%. 
The selection of the threshold 
value is random due to the 
approach of the algorithm
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Definition 8  Lower Control Limit-edges (LCL.edges): The 
LCL value ascertains the unstable behaviors. The edges with 
values less than LCL are not expressed within the discovered 
process model. This threshold helps to remove the so-called 
“dirt roads” from a process model automatically.

Equation 8 refers to the mathematical model for extract-
ing LCL value.

For 31 samples in the population, d
2
 is equal to 4.113 [27]. 

Finally, the state of each edge will be determined according 
to the previous equations 6, 7, and 8. This procedure is also 
shown in algorithm 1.

•	 UCL = 14.225 + (3)

(
10.51

4.113

)
≈ 22

•	 CL = 14.225

•	 LCL = 14.225 − (3)

(
10.51

4.113

)
≈ 7

(8)LCL.edges = x̄ − 3

(
M̄R

d
2

)

After detecting the statistical stability thresholds, we 
redefine the descriptive reference process model in the 
following.

Definition 9  Descriptive reference process model V2 (P ) 
The updated definition of the descriptive reference process 
model or the common behaviors will contain activities (A ) 
and edges (E ) that respect the following conditions:

This definition–equation 9–expresses the conditions 
for the sets of activities (A ) and edges (E ) to be included 
within the descriptive reference process model(P).

(9)

[[∀ A ∃ sa] ∧ [∀ sa ⊆ Sa ∃ x̄sa]]∧

[∀ E ∃ se] ∧ [∀ se ⊆ Se ∃ xse ]]

∴

((A, E) ∈ P) → [LCL < x̄sa < UCL] ∪ [UCL ≤ x̄sa]∧

[LCL.edge < xse < UCL.edge] ∪ [UCL.edge ≤ xse ]

Fig. 15   Visualizing the urology 
process model by using the clas-
sic heuristic miner and applying 
a dependency threshold of 50%. 
The selection of the threshold 
value is random due to the 
approach of the algorithm
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As shown, for all activities ( A ), there exists a sample 
( sa ) that represents the behavior of each activity. A value 
as x̄sa shows the average behavior of each activity.

Additionally, the behavior of all the edges ( E ) is pre-
sented by a sample that has a value of xse . Therefore, a 
set of an activity and its edges is within the descriptive 
reference process model ( P ), if the average of the activity 
behavior(x̄sa ) is between the UCL and LCL. If x̄s is greater 
than UCL then the activity is considered as an activity 
with high instability.

Simultaneously, edges (and the linked activities) 
are within P if their values ( xse ) fall between the two 
thresholds UCL.edge and LCL.edge. If xse is greater than 
UCL.edge, then this edge is considered as an edge with 
high instability as well.

Note that the new evaluation of UCL.edges, LCL.edges, 
and CL.edges are in parallel with the previous calculation 
of the first version of the algorithm. Basically, this branch 
of calculations is added to improve a previous shortcom-
ing of the algorithm. The result of applying the new algo-
rithm is presented in Fig. 8. Needless to say, the behavior 
of activities was discovered by using the first version of 
the algorithm [10, 12], which had a focus on activities’ 
behaviors. However, to simplify our explanation we avoid 
re-explaining the previous work. In the following, we will 
compare the results of applying the stable heuristic miner 
1 &2 and classic heuristic miner to the running example. 
This procedure is also shown in algorithm 2.

Algorithm 1   Stable Heuristic Miner V2

Fig. 16   Visualizing the urology 
process model by using the clas-
sic heuristic miner and applying 
a dependency threshold of 85%. 
The selection of the threshold 
value is random due to the 
approach of the algorithm

Table 3   Comparing the number 
of observed behaviors in the 
event log, with the result of the 
stable heuristic miner V1

Lower than 
LCL

In the stable State Higher than UCL

Number of activities 4 8 2
Total number of modeled activities 10
Total number of observed activities 

(recorded in the event log)
14
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Fig. 17   The discovered model 
of the urology department by 
the stable heuristic miner 1. 
The statistical stability method 
is applied only to activities and 
behaviors

Fig. 18   The discovered model 
of the urology department by 
the stable heuristic miner V2. 
The Statistical stability methods 
are applied for both activities 
and edge behavior
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Algorithm 2   Stable Heuristic Miner V2

3.2 � Evaluating the Method on the Running Example

Figures 3, 4, 5, and 6 present the result of the classic heuris-
tic miner for the running example. The thresholds for deter-
mining the level of dependency measures for activities in the 
event log are set in an arbitrary manner which is considered 
a disadvantage of this algorithm [7, 8].

At first, we applied some known process discovery qual-
ity criteria evaluation metrics: precision, fitness, and com-
plexity in both size and behavior of the model [29, 30]. Pre-
vious research provided a concrete definition of these criteria 
[31]. Precision evaluates the ability of the discovered model 
to reproduce exactly what has been found in the original 
event log. This metric ranges between 0 and 1, where a value 
of the maximum of 1 means that the model can only gener-
ate sequences that are already seen in the event log. Fitness 

measures to what degree the recorded behavior in the event 
log is represented by the process model.

Complexity evaluates the difficulty of analyzing a pro-
cess model by humans. Simplicity is just the opposite value 
of complexity. One could argue that the complexity and 
simplicity criteria are subjective, and it is difficult to quan-
tify a quality metric this way. In this regard, the new algo-
rithm effectively stabilizes the metrics in the four quality 
dimensions.

The extracted results were evaluated by these presented 
metrics, which are depicted in Table 2. Looking at this 
evaluation and corresponding criteria, choosing a value to 
represent the reference behavior would be arbitrary. There-
fore, deriving a conclusion to select the descriptive refer-
ence process model solely based on the traditional process 
discovery criteria poses a challenge.

Accordingly, the new application of statistical stability 
ensures the detection of a stable amount of information from 
an event log. This task will be carried out by certain reac-
tive thresholds, which are determined by using the statistical 
stability methods. Therefore, by using the stable heuristic 
miner algorithm, it is not required anymore to arbitrarily 
select the threshold values. As a result, activities and edges 
with insignificant behaviors will be removed. A common 
path will present the stable behaviors in an event log, and 
the most variant behaviors will be detected as well. As stated 
before, these behaviors that are shown in red could raise 
issues in the process.

The descriptive reference process model extracted by 
the new algorithm is more explanatory in comparison with 
the classic heuristic miner and the previous stable heuristic 
miner. This is due to the automatic detection of stable and 
unstable behaviors for both edges and activities.

4 � Case Studies: Discussion and Evaluation

A pragmatic approach is selected to assess the capability of 
the new algorithm based on real-world scenarios that are:

•	 LivingLabHospital_Interpreted Location event logs [15]: 
This location event log is included in this article for the 
first time by the authors. It contains the events related to 
the movements of patients inside the urology department 
of the Toulouse hospital facility in the south of France. 
This data was recorded by the authors to monitor and 
improve patients’ pathways by using location data and 
process mining. This data is shared in this article, and 
a novel analysis could help compare the results of both 
versions. We focus on analyzing patients in the urology 
department. To better understand how the data was inter-
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preted and prepared for process discovery actions, we 
refer to the works in [32, 33].

•	 Sepsis Data set [34]: This event log consists of sepsis 
cases in a hospital. There are 1000 cases with a total of 
15,000 events that were recorded for a total of 16 differ-
ent activities.

4.1 � Comparing the Results of Different Versions 
of the Algorithm Based on Sepsis Data

At first, we analyzed this dataset with the classic heuris-
tic miner. Figures 9, 10, 11 present the results. As depicted 
there, the classic heuristic miner results in an arbitrary selec-
tion of thresholds, and it is not efficient in extracting the 
reference process model.

On the other hand, Fig. 12 presents the outcome obtained 
by applying the initial version of the stable heuristic miner 
algorithm to the sepsis data set. As mentioned, this data set 
contains the behaviors of 16 different activities. Nonetheless, 
the process discovery result shows that all of these activities 
exhibit stable behaviors.

Within this assessment, Fig. 13 depicts the outcome of 
the new version of the stable heuristic miner algorithm. 
Based on this result, edges related to four activities repre-
sented insignificant behaviors in the statistical population. 
These activities were ‘Release B’, ‘Release C’, ‘Release D’, 
and ‘Release E’. Consequently, they have been removed. 
There are no activities with high instability.

Moreover, according to Fig. 13, several edges show high 
instability in their behaviors. Such instability could be the 
cause of one or several inefficiencies. For instance, consider 
ER Triage activity. Here are all the outgoing edges:

•	 ER Triage → CRP: 52 (frequency)
•	 ER Triage → Leucocytes: 29 (frequency)
•	 ER Triage → LacticAcid: 48 (frequency)
•	 ER Triage → ER Sepsis Triage: 905 (frequency)

There is one edge (ER Triage → ER Sepsis Triage) that shows 
a higher instability and abnormal behavior than others. This 
edge is shown with a ‘red’ color code in Fig. 13. Unstable 
behavior may signal underlying issues. With this updated algo-
rithm, we can pinpoint potential bottlenecks and inefficiencies 
in our process, an analysis beyond the classic heuristic miner. 
To our knowledge, conventional methods lack this insight. 
Assessing event log stability yields a more informative process 
model, useful for automatic diagnosis of process deviations 
and concept drift detection. It should be noted that there is 
a difference between the in-going and the outgoing frequen-
cies of edges. This is due to removing the insignificant edges 
(edges with values lower than LCL). Furthermore, the stable 
heuristic miner algorithm efficiently handles large event logs, 

like sepsis data, due to improved statistical methods for large 
datasets.

4.2 � Comparing the Results of Different Versions 
of the Algorithm Based on Urology Data

As indicated earlier, this case study was designed to detect 
inefficiencies in patients’ pathways. Indoor localization sys-
tems were used to collect this data.

Similarly in this case study, firstly, we evaluated the 
results by applying the classic heuristic miner. Figures 14, 
15, 16 depict the results. As expected, the results failed to 
provide a reference process model according to solid math-
ematical logic.

On the contrary, Fig. 17 presents the effort to detect a ref-
erence model by the first version of the stable heuristic miner 
algorithm. Out of the 14 activities recorded in the event log, 
10 of them are shown by the result of the first version of the 
stable heuristic miner algorithm. Table 3 summarizes this 
observation.

Eight of the ten activities expressed stable behaviors, and 
two of them showed high instability in comparison with the 
total number of recorded behaviors. However, the statistical 
stability of edges are not addressed here.

Figure 18 illustrates the result of the second version of 
the stable heuristic miner algorithms by using the urology 
patients’ data.

By means of this algorithm, not only unstable activities 
but unstable edges are discovered as well. Now, by consider-
ing the “Registration” activity, it is possible to recognize the 
source of instability in this department.

The high level of fluctuations caused by this activity is 
seen by the connection/edge between “Registration” and 
“Reception_ Waiting_ room”. The value of these edges is 
57, which is higher than the normal value for all the other 
registered behaviors. As a result, it puts the process in an 
unstable state.

The same behavior causes instability for edges between 
“Waiting_ Room5” and “Box Consultation” activities.

Detection of these deviating behaviors could help the 
domain experts in highlighting the causes of inefficiencies 
in patients’ pathways.

It is important to stress that acquiring such a diagnosis 
is only feasible if experts are assured of a mathematical 
logic behind the process discovery. A logic that could lead 
to the extraction of the descriptive reference process model 
of patients’ pathways. Based on our extensive experiments 
involving the monitoring of patients’ activities, it was evi-
dent that the outcome observed was not attainable using the 
classic heuristic miner algorithm.

Moreover, the novel approach of the stable heuristic 
miner algorithm helped experts to detect deviating behaviors 
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automatically and to capture an image of what patients nor-
mally do, even if the domain experts did not particularly 
have a piece of complete knowledge about the process.

In the past, domain experts were required to possess an 
in-depth understanding of the process, as the discovered 
model had to be manually filtered. However, given the intri-
cate nature of complex healthcare processes, this task posed 
significant challenges.

5 � Conclusion

Heuristic-based process discovery methods showed promis-
ing results in the literature on process mining. For instance, 
based on the literature review in [1, 3], the classic heuristic 
miner algorithm has been identified as the most applied pro-
cess discovery algorithm in the healthcare sector. The heu-
ristic-based methods discover an initial set of activities and 
edges according to dependency measures and then modify 
the set regarding some arbitrarily defined thresholds. This 
has been identified in this article and the literature as a sci-
entific challenge leading to the extraction of a non-optimal 
set of activities and edges.

Based on the hypothesis of this article, evaluating the 
statistical stability in an event log could lead to the discov-
ery of a descriptive reference process model. Eventually, 
this evaluation could address the mentioned scientific gap. 
This hypothesis is mainly driven by the definition of statis-
tical stability phenomenon that addresses the question of 
“how one can represent the reference behavior of a com-
plex system with emerging properties". Such a workflow 
could be used as one of the building blocks of data-driven 
simulation models.

The first version of the stable heuristic miner algorithm 
introduced the evaluation of statistical stability in an event 
log. However, the assessment was carried out only by con-
sidering activities’ behaviors. This has been mentioned as 
a limitation of the previous version of the algorithm.

In this article, we presented a new version of the sta-
ble heuristic miner. We redefined the descriptive refer-
ence process model and presented an assessment of this 
algorithm by using two real-life event logs. Thanks to this 
algorithm, we were able to extract a more comprehensive 
and informative descriptive reference process model. The 
discovered results showed the detection of unstable and 
insignificant behaviors for both activities and edges among 
them. Accordingly, users could obtain a stable amount of 
information from an event log without the need to manu-
ally and arbitrarily modify a filtering value. The obtained 
model could also detect a stable state among 4 traditional 
process discovery quality dimensions criteria (i.e., fitness, 
precision, generalization, and simplicity/complexity).

5.1 � Limitations and Challenges

It is a demanding task to evaluate the results of a process 
discovery algorithm. Some researchers used conformance-
checking-based methods to identify and evaluate certain 
criteria such as fitness, simplicity, generality, etc. [1]. 
These criteria have been applied in this article for the run-
ning example. They evaluate the correlation between the 
recorded information in the event log and the discovered 
model. However, these methods are not the most effective 
metrics to measure statistical stability results. The nature 
of this work is based on the assessment of statistical sta-
bility criteria. Accordingly, methods and definitions are 
presented to examine and eventually discover the behav-
ior registered in event logs. Assessing statistical stabil-
ity performed by conformance checking-based criteria 
is conceived as not the best practice. Similar issues and 
concerns have been seen before in other research works as 
well [7, 31, 35]. We aim to address this challenge in our 
future research, with the objective of developing an overall 
applicable evaluation approach.

5.2 � Future Perspective

We are planning to focus on devising a set of quantitative 
evaluation criteria for this algorithm rather than a qualita-
tive approach. Moreover, this algorithm has the potential for 
automatic diagnosis and reasoning of business processes. 
Accordingly, we are aiming to improve the task of process 
discovery by developing a knowledge-driven approach. 
Also, it is beneficial to integrate a procedural semantic in 
the representation of the process discovery results rather 
than a declarative semantic. The other avenue of research is 
the application of this algorithm for the discovery of a data-
driven simulation model.

Acknowledgements  The authors would like to thank all reviewers of 
the manuscript for their input.

Author Contributions  Evaluation of the statistical stability phenom-
enon for both activities and edges in an event log. Introducing the stable 
heuristic miner 2 process discovery algorithm. Automatic detection of 
deviating behaviors in an event log. A potent method to be used for 
concept drift detection. Conceptualization: Sina NAMAKI ARAGHI. 
Methodology: Sina NAMAKI ARAGHI, Frederick BENABEN, Franck 
FONTANILI. Software: Sina NAMAKI ARAGHI. Validation: Sina 
NAMAKI ARAGHI, Frederick BENABEN, Franck FONTANILI, 
Elyes LAMINE. Resources: Frederick BENABEN, Franck FONT-
ANILI. Writing original draft: Sina NAMAKI ARAGHI. Writing—
review: Frederick BENABEN, Elyes LAMINE. Project Administration: 
Frederick BENABEN, Franck FONTANILI.

Funding  Not applicable.

Availability of Data and Materials  The data of the mentioned case study 
will be shared in this publication [15].



Human-Centric Intelligent Systems	

Declarations 

Conflict of interest  The authors have no competing interests to declare 
that are relevant to the content of this article.

 Consent for Publication  The authors hereby consent to the publication 
of the work.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Augusto A, Conforti R, Dumas M, Rosa ML, Maggi FM, Marrella 
A, Mecella M, Soo A. Automated discovery of process models 
from event logs: review and Benchmark. IEEE Trans Knowl Data 
Eng. 2018. https://​doi.​org/​10.​1109/​TKDE.​2018.​28418​77.

	 2.	 Garcia CS, Meincheim A, Faria ER Jr, Dallagassa MR, Sato DMV, 
Carvalho DR, Santos EAP, Scalabrin EE. Process mining tech-
niques and applications—a systematic mapping study. Expert Syst 
Appl. 2019;133:260–95. https://​doi.​org/​10.​1016/j.​eswa.​2019.​05.​
003.

	 3.	 Rojas E, Munoz-Gama J, Sepúlveda M, Capurro D. Process min-
ing in healthcare: a literature review. J Biomed Inf. 2016;61:224–
36. https://​doi.​org/​10.​1016/j.​jbi.​2016.​04.​007.

	 4.	 Weijters AJMM, van der Aalst WMP, Alves De Medeiros AK. 
Process Mining with the HeuristicsMiner Algorithm. BETA pub-
licatie : working papers. Technische Universiteit Eindhoven; 2006.

	 5.	 Weijters AJMM, Ribeiro JTS. Flexible Heuristics Miner (FHM). 
In: 2011 IEEE symposium on computational intelligence and 
data mining (CIDM); 2011. pp. 310–317. https://​doi.​org/​10.​
1109/​CIDM.​2011.​59494​53.

	 6.	 Bakhshi A, Hassannayebi E, Sadeghi AH. Optimizing sepsis 
care through heuristics methods in process mining: a trajec-
tory analysis. Healthc Anal. 2023;3: 100187. https://​doi.​org/​
10.​1016/j.​health.​2023.​100187.

	 7.	 De Cnudde S, Claes J, Poels G. Improving the quality of the heu-
ristics miner in ProM 6.2. Expert Syst Appl. 2014;41(17):7678–
90. https://​doi.​org/​10.​1016/j.​eswa.​2014.​05.​055.

	 8.	 Tavakoli-Zaniani M, Gholamian MR, Golpayegani SAH. 
Improving heuristic-based process discovery methods by 
detecting optimal dependency graphs; 2022. https://​doi.​org/​
10.​48550/​arXiv.​2203.​10145, arXiv:​2203.​10145 [cs]. Accessed 
2022-11-30.

	 9.	 Kurniati A, Kusuma GP, Wisudiawan G. Implementing Heuris-
tic Miner for Different Types of Event Logs. 2016. https://​www.​
seman​ticsc​holar.​org/​paper/​Imple​menti​ng-​Heuri​stic-​Miner-​for-​
Diffe​rent-​Types-​of-​Kurni​ati-​Kusuma/​417a1​4e5ae​fdb42​711d9​
8cfea​bcf5c​cec6a​da299 Accessed 2023-01-12.

	10.	 Namaki Araghi S, Fontanili F, Lamine E, Okongwu U, Benaben 
F. Stable heuristic miner: applying statistical stability to discover 
the common patient pathways from location event logs. Intell 

Syst Appl. 2022;14: 200071. https://​doi.​org/​10.​1016/j.​iswa.​2022.​
200071.

	11.	 Namaki Araghi S, Fontanili F, Sarkar A, Lamine E, Karray 
M-H, Benaben F. Diag approach: introducing the cognitive pro-
cess mining by an ontology-driven approach to diagnose and 
explain concept drifts. Modelling. 2024;5(1):85–98. https://​doi.​
org/​10.​3390/​model​ling5​010006.

	12.	 Namaki Araghi S. A methodology for business process discov-
ery and diagnosis based on indoor location data: Application to 
patient pathways improvement. These de doctorat, Ecole nation-
ale des Mines d’Albi-Carmaux (November 2019). https://​www.​
theses.​fr/​2019E​MAC00​14 Accessed 2023-09-20.

	13.	 Gorban II. Phenomenon of statistical stability. Tech Phys. 
2014;59(3):333–40. https://​doi.​org/​10.​1134/​S1063​78421​40301​
28.

	14.	 Gorban II. The statistical stability phenomenon. Math Eng. 
2017. https://​doi.​org/​10.​1007/​978-3-​319-​43585-5.

	15.	 Namaki Araghi S. LivingLabHospital_interpreted Location 
event logs. 2023;1. https://​doi.​org/​10.​17632/​v5kc7​chhpv.1 . 
Publisher: Mendeley Data. Accessed 2023-06-05.

	16.	 Aalst WMP: Data science in action. Berlin, Heidel-
berg: Springer; 2016. pp. 3–23. https://​doi.​org/​10.​1007/​
978-3-​662-​49851-4_1.

	17.	 Burattin A, Sperduti A, Aalst WMP. Heuristics Miners for Stream-
ing Event Data. In: 2014 IEEE Congress on Evolutionary Compu-
tation (CEC); 2014. pp. 2420–2427. https://​doi.​org/​10.​1109/​CEC.​
2014.​69003​41 . arXiv:​1212.​6383 [cs]. Accessed 2023-01-13.

	18.	 Burattin A. Process mining techniques in business environments. 
Lecture notes in business information processing, vol. 207. Cham: 
Springer; 2015. https://​doi.​org/​10.​1007/​978-3-​319-​17482-2. 
http://​link.​sprin​ger.​com/​10.​1007/​978-3-​319-​17482-2 Accessed 
2023-01-13.

	19.	 Broucke SKLM, Weerdt JD. Fodina: a robust and flexible heuristic 
process discovery technique. Decis Support Syst. 2017;100:109–
18. https://​doi.​org/​10.​1016/j.​dss.​2017.​04.​005.

	20.	 Prodel M. Process discovery, analysis and simulation of clini-
cal pathways using health-care data. Theses, Université de Lyon; 
April 2017. https://​theses.​hal.​scien​ce/​tel-​01665​163.

	21.	 Werf JMEM, Dongen BF, Hurkens CAJ, Serebrenik A. Process 
discovery using integer linear programming. In: Hee KM, Valk 
R. editors. Applications and theory of petri nets. Lecture Notes 
in Computer Science, Berlin, Heidelberg: Springer; 2008. pp. 
368–387. https://​doi.​org/​10.​1007/​978-3-​540-​68746-7_​24.

	22.	 Yahya BN, Song M, Bae H, Sul S-O, Wu J-Z. Domain-
driven actionable process model discovery. Comput Ind Eng. 
2016;99:382–400. https://​doi.​org/​10.​1016/j.​cie.​2016.​05.​010.

	23.	 Prodel M, Augusto V, Jouaneton B, Lamarsalle L, Xie X. Optimal 
Process Mining for Large and Complex Event Logs. IEEE Trans 
Autom Sci Eng. 2018;15(3):1309–25. https://​doi.​org/​10.​1109/​
TASE.​2017.​27844​36.

	24.	 Zelst SJ, Dongen BF, Aalst WMP, Verbeek HMW. Discovering 
workflow nets using integer linear programming. Computing. 
2018;100(5):529–56. https://​doi.​org/​10.​1007/​s00607-​017-​0582-5.

	25.	 Leemans SJJ, Fahland D, van der Aalst WMP. Process and devia-
tion exploration with inductive visual miner. In: Limonad L, 
Weber B. editors. BPM Demo Sessions 2014 (co-located with 
BPM 2014, Eindhoven, The Netherlands, September 20, 2014). 
CEUR Workshop Proceedings, pp. 46–50. CEUR-WS.org; 2014. 
BPM Demo Sessions 2014 (BPMD 2014), September 10, 2014, 
Eindhoven, The Netherlands, BPMD 2014 ; Conference date: 
10-09-2014 Through 10-09-2014.

	26.	 Augusto A, Conforti R, Dumas M, Rosa ML, Maggi FM, Marrella 
A, Mecella M, Soo A. Automated discovery of process models 
from event logs: review and benchmark. IEEE Trans Knowl Data 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1016/j.eswa.2019.05.003
https://doi.org/10.1016/j.eswa.2019.05.003
https://doi.org/10.1016/j.jbi.2016.04.007
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1016/j.health.2023.100187
https://doi.org/10.1016/j.health.2023.100187
https://doi.org/10.1016/j.eswa.2014.05.055
https://doi.org/10.48550/arXiv.2203.10145
https://doi.org/10.48550/arXiv.2203.10145
http://arxiv.org/abs/2203.10145
https://www.semanticscholar.org/paper/Implementing-Heuristic-Miner-for-Different-Types-of-Kurniati-Kusuma/417a14e5aefdb42711d98cfeabcf5ccec6ada299
https://www.semanticscholar.org/paper/Implementing-Heuristic-Miner-for-Different-Types-of-Kurniati-Kusuma/417a14e5aefdb42711d98cfeabcf5ccec6ada299
https://www.semanticscholar.org/paper/Implementing-Heuristic-Miner-for-Different-Types-of-Kurniati-Kusuma/417a14e5aefdb42711d98cfeabcf5ccec6ada299
https://www.semanticscholar.org/paper/Implementing-Heuristic-Miner-for-Different-Types-of-Kurniati-Kusuma/417a14e5aefdb42711d98cfeabcf5ccec6ada299
https://doi.org/10.1016/j.iswa.2022.200071
https://doi.org/10.1016/j.iswa.2022.200071
https://doi.org/10.3390/modelling5010006
https://doi.org/10.3390/modelling5010006
https://www.theses.fr/2019EMAC0014
https://www.theses.fr/2019EMAC0014
https://doi.org/10.1134/S1063784214030128
https://doi.org/10.1134/S1063784214030128
https://doi.org/10.1007/978-3-319-43585-5
https://doi.org/10.17632/v5kc7chhpv.1
https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1109/CEC.2014.6900341
https://doi.org/10.1109/CEC.2014.6900341
http://arxiv.org/abs/1212.6383
https://doi.org/10.1007/978-3-319-17482-2
http://link.springer.com/10.1007/978-3-319-17482-2
https://doi.org/10.1016/j.dss.2017.04.005
https://theses.hal.science/tel-01665163
https://doi.org/10.1007/978-3-540-68746-7_24
https://doi.org/10.1016/j.cie.2016.05.010
https://doi.org/10.1109/TASE.2017.2784436
https://doi.org/10.1109/TASE.2017.2784436
https://doi.org/10.1007/s00607-017-0582-5


	 Human-Centric Intelligent Systems

Eng. 2019;31(4):686–705. https://​doi.​org/​10.​1109/​TKDE.​2018.​
28418​77.

	27.	 Montgomery DC. Introduction to Statistical Quality Control, 8th 
edn. Industrial Engineering/Manufacturing. General and Introduc-
tory Industrial Engineering. Subjects. Wiley; 2007. https://​www.​
wiley.​com/​en-​us/​Intro​ducti​on+​to+​Stati​stical+​Quali​ty+​Contr​ol. 
Accessed 2019-08-29.

	28.	 Introduction to Statistical Quality Control, 8th edn. Wiley. https://​
www.​wiley.​com/​en-​us/​Intro​ducti​on+​to+​Stati​stical+​Quali​ty+​
Contr​ol Accessed 2023-01-13.

	29.	 Buijs JCAM, Dongen BF, Aalst WMP. Quality dimensions in pro-
cess discovery: the importance of fitness precision generalization 
and simplicity. Int J Cooper Inf Syst. 2014;23(1):144. https://​doi.​
org/​10.​1142/​S0218​84301​44000​12.

	30.	 Janssenswillen G, Donders N, Jouck T, Depaire B. A comparative 
study of existing quality measures for process discovery. Inf Syst. 
2017;71:1–15. https://​doi.​org/​10.​1016/j.​is.​2017.​06.​002.

	31.	 The connection between process complexity of event sequences 
and models discovered by process mining. Elsevier Enhanced 
Reader. https://​doi.​org/​10.​1016/j.​ins.​2022.​03.​072.

	32.	 Araghi SN, Fontaili F, Lamine E, Salatge N, Lesbegueries J, 
Pouyade SR, Tancerel L, Benaben F. A conceptual framework 
to support discovering of patients’ pathways as operational pro-
cess charts. In: 2018 IEEE/ACS 15th international conference on 

computer systems and applications (AICCSA), IEEE; 2018. pp. 
1–6.

	33.	 Namaki Araghi S, Fontanili F, Lamine E, Salatge N, Benaben F. 
Interpretation of Patients’ Location Data to Support the Applica-
tion of Process Mining Notations. In: HEALTHINF 2020 - 13th 
International Conference on Health Informatics. Proceedings of 
the 13th International Joint Conference on Biomedical Engineer-
ing Systems and Technologies - HEALTHINF, vol. 5; 2020. pp. 
472–481. SCITEPRESS - Science and Technology Publications, 
La Valette, Malta. https://​doi.​org/​10.​5220/​00089​71104​720481.

	34.	 eventdataR/.Rhistory at master ⋅ gertjanssenswillen/eventda-
taR. https://​github.​com/​gertj​ansse​nswil​len/​event​dataR Accessed 
2022-12-07.

	35.	 Estrada-Torres B, Camargo M, Dumas M, García-Bañuelos L, 
Mahdy I, Yerokhin M. Discovering business process simulation 
models in the presence of multitasking and availability con-
straints. Data Knowl Eng. 2021;134: 101897. https://​doi.​org/​10.​
1016/j.​datak.​2021.​101897.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1109/TKDE.2018.2841877
https://www.wiley.com/en-us/Introduction+to+Statistical+Quality+Control
https://www.wiley.com/en-us/Introduction+to+Statistical+Quality+Control
https://www.wiley.com/en-us/Introduction+to+Statistical+Quality+Control
https://www.wiley.com/en-us/Introduction+to+Statistical+Quality+Control
https://www.wiley.com/en-us/Introduction+to+Statistical+Quality+Control
https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1016/j.is.2017.06.002
https://doi.org/10.1016/j.ins.2022.03.072
https://doi.org/10.5220/0008971104720481
https://github.com/gertjanssenswillen/eventdataR
https://doi.org/10.1016/j.datak.2021.101897
https://doi.org/10.1016/j.datak.2021.101897

	Stable Heuristic Miner 2: Evaluating the Statistical Stability in Event Logs to Discover Business Processes
	Abstract
	1 Introduction
	1.1 The Scientific Gap and Its Risks
	1.2 Hypothesis and Contributions
	1.3 Article’s Structure

	2 Background
	2.1 A Review of Heuristic-Based Process Discovery Methods
	2.2 The Previous Version of the Stable Heuristic Miner Algorithm

	3 Theory and Methods
	3.1 Presenting the Steps of the Novel Algorithm
	3.1.1 The Running Example
	3.1.2 Preliminaries and Definitions

	3.2 Evaluating the Method on the Running Example

	4 Case Studies: Discussion and Evaluation
	4.1 Comparing the Results of Different Versions of the Algorithm Based on Sepsis Data
	4.2 Comparing the Results of Different Versions of the Algorithm Based on Urology Data

	5 Conclusion
	5.1 Limitations and Challenges
	5.2 Future Perspective

	Acknowledgements 
	References


