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Abstract
Estimating the remaining useful life (RUL) of critical industrial assets is of crucial importance for optimizing maintenance 
strategies, enabling proactive planning of repair tasks, enhanced reliability, and reduced downtime in prognostic health 
management (PHM). Deep learning-based data-driven approaches have made RUL prediction a lot better, but traditional 
methods often do not look at the similarities and differences in the data, which lowers the accuracy of the estimates. Previ-
ous attempts to use Long Short-Term Memory (LSTM) networks for RUL prediction have failed because they depend on 
learned features for regression at the very end of the time step. The single objective function for estimation also constrains 
the learned representations, which has an impact on RUL estimation. The goal of this study is to find out how to predict the 
RUL of mechanical systems using complex sensor data. To do this, we present a data-driven framework called temporal 
convolution, along with a recurrent skip component and an attention mechanism network called TCRSCANet. It uses a com-
bination of temporal convolution, recurrent skip parts, and an attention mechanism to make RUL estimation more accurate. 
The recurrent skip component finds long-term patterns in time series data, while temporal convolution pulls out high-level 
features from longer sequences. Finding hidden representations and degradation-development interactions between features 
at each window position in the input matrix is what the attention layer does to focus on the most important information for 
RUL estimation. The proposed methodology is tested and validated against the well-established C-MAPSS dataset, which 
focuses on aircraft degradation. The TCRSCANet model is better at predicting RUL as compared to other state-of-the-art 
methods because it uses the root mean square error (RMSE) and a scoring function to measure performance. The results of 
this study demonstrate the importance of the recurrent skip component and attention mechanisms for determining how long 
an industrial asset will be valuable.

Keywords Industry 4.0 · Smart manufacturing · Recurrent skip component (RSC) · Attention layer (AL) · Remaining 
useful life (RUL) · Temporal convolution with recurrent-skip-component and attention mechanism network (TCRSCANet)

Abbreviations
PHM  Prognostic health management
RUL  Remaining useful life
ANN  Artificial neural network
SVR  Support vector regression

RF  Random forest
LSTM  Long short-term memory
RNN  Recurrent neural network
CNN  Convolutional neural network
RSC  Recurrent skip component
SVRM  Support vector regression machine
BPNN  Back propagation neural network
TCRSA  Temporal convolution recurrent skip component 

with attention

1 Introduction

In the industrial sector, maintenance plays a critical role. 
It helps to ensure that equipment and machinery are func-
tioning at their optimal level. Proper maintenance can help 
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to prevent breakdowns and downtime, which can be costly 
for businesses [1]. By keeping machinery and equipment in 
good working order, maintenance can help to increase the 
reliability of products and services and therefore enhance 
the performance of the business [2]. In the modern age of 
the Industrial Internet of Things [3], it’s quite usual to use a 
multitude of sensors to keep track of machines’ operational 
behaviours. The associated wealth of data being generated 
has resulted in a significant amount of interest in using this 
sensor data for making decisions in areas like maintenance 
management [4], quality improvement [5] and machine 
health monitoring tasks such as anomaly/fault detection and 
prognostics, which involve calculating the remaining useful 
life (RUL) of machines in action [6].

The estimation of RUL spans several disciplines, form-
ing a significant part of the wider domain of PHM [7]. This 
domain investigates the performance of a system throughout 
its lifespan, specifically from the moment the most recent 
maintenance was conducted until the point of system failure 
or when performance deterioration hits a predefined thresh-
old [1]. Mechanical equipment has become increasingly dif-
ficult to monitor in recent years, and mechanical reliability 
has therefore become very important, so the methods of 
prognosis and health management have received more atten-
tion than before [8, 9]. Predicting RUL in PHM has emerged 
as a proactive maintenance method as it helps in making 
suitable maintenance decisions at the right time and avoids 
poor estimations of when maintenance should otherwise be 
carried out, which can result in unforeseen catastrophic fail-
ures [10]. In [11] researchers came up with different ways to 
predict RUL, which can be put into three groups: (1) phys-
ics-based approaches; (2) hybrid-model approaches, and (3) 
data-driven approaches.

Physics-based methods leverage our comprehension of 
a system’s breakdown processes (such as the expansion of 
cracks) to generate a mathematical representation of the 
system’s decline process and calculate the RUL. Based on 
physics or fundamental theories, these mathematical models 
numerically capture the behaviour of a system [12]. Deter-
mining the parameters of the model typically necessitates 
carefully structured experiments and a considerable amount 
of empirical data. To discover and update these parameters 
from condition data, prognostics often employ statistical 
methods, such as regression and Bayesian updating. This 
method requires comprehensive knowledge and vast physical 
experience from researchers [13]. Furthermore, the creation 
of dynamic mathematical and physical models to represent 
various failure modes within a system presents a significant 
challenge [6].

Data-driven strategies are based on the idea of form-
ing a non-linear correlation between historical data and 
the respective normal operating conditions of a machine. 
Artificial Neural Networks (ANN) [14], support vector 

regression (SVR) [15], and random forest (RF) [16] are 
examples of traditional data-driven models. These models 
typically involve two steps: extracting the features manually 
and learning the degrading behaviour. However, these meth-
ods rely on human input and do not fully understand how 
manual feature extraction and degrading behaviour learning 
are related, thus further reducing the estimation accuracy. 
Recent advances in deep learning [17] have made it pos-
sible for data-driven approaches to successfully decrease 
the need for human intervention by learning directly about 
degradation from unprocessed monitoring data. Data-driven 
techniques require one or more sets of data that extend to 
the point of failure to anticipate the RUL and depict the 
deterioration process [18]. When there are no a priori deg-
radation sequences available, the indirect method for RUL 
estimation is the best option. Furthermore, a hybrid model 
approach integrates model-based and data-driven methods to 
increase RUL prediction accuracy and overcome the gaps in 
different methods [19]. However, due to complicated system 
degradation mechanisms, there have not been many stud-
ies on hybrid techniques [18]. Consequently, in the field of 
RUL estimation, data-driven methodologies are becoming 
more popular.

As data becomes more detailed, the identification and 
extraction of performance deterioration signals from multi-
sensor data becomes a major technical problem for complex 
systems [18]. This has a substantial impact on prediction 
performance. Unfortunately, the usual method of manually 
constructing features for complex domains necessitates a 
lot of human effort, and the majority of information can be 
lost, so performance cannot be assured. Deep learning, as 
discussed in [17], has emerged as an effective and beneficial 
alternative to some aspects of human labour. For instance, 
in modern natural language processing (NLP) research, 
recurrent neural network (RNN) and convolutional neural 
network (CNN) models, as discussed in [20], have gained 
significant popularity. Due to their strong ability to learn fea-
tures, these methods have also provided effective solutions 
for identifying faults. In [21] a simple machine-health moni-
toring system was proposed based on auto-encoder, CNN, 
and RNN. In [22] a deep-learning-based framework for 
prognostics and health management was proposed. A CNN 
utilising an auto-encoder for induction motor diagnosis was 
introduced in [23]. A hybrid model incorporating a Local 
Feature-based Gated Recurrent Unit (LFGRU) network was 
proposed in [24]. This method merges the creation of hand-
crafted features with the process of automatically learning 
features for machine health monitoring. A vanilla Long-
Short Term Memory network (LSTM) was employed to 
achieve high precision in forecasting the RUL in [25]. This 
approach effectively leverages LSTM capabilities, especially 
in complex scenarios involving intricate operations, working 
conditions, model degradation, and significant noise.
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It’s interesting to note that LSTMs aren’t among the 
best-performing models for various operating conditions 
[26]. Even though they are widely used, combining CNNs 
and LSTMs seems to outperform stand-alone CNNs and 
LSTMs [27]. Even though deep learning offers numerous 
advantages for prognosis and health monitoring, it’s essen-
tial to acknowledge its notable limitations, especially in the 
context of identifying patterns within a multivariate time 
series. A significant challenge arises from the dynamic, non-
stationary, and spatiotemporal characteristics of time-series 
signals. Such complexity can hinder deep learning models 
from accurately identifying and representing the inherent 
patterns within the data [18]. The dynamic, non-stationary, 
and spatiotemporal characteristics of time-series signals pre-
sent a significant challenge. This complexity can impede the 
ability of deep learning models to accurately capture and 
represent the inherent patterns within the data [20]. In this 
case, another problem with deep learning models is that they 
usually use a network with a single input unit (single-head) 
to extract features from all the signals in the multivariate 
dataset [28]. This method presumes that a single unit is suffi-
ciently robust to process all time-series variables effectively, 
an assumption that often falls short. Such an architecture 
usually depends on sequential models to encode past inputs 
and generate future predictions. Yet, in numerous practical 
situations, using a single unit to process information from 
heterogeneous sensor networks can lead to a sub-optimal 
model that fails to explicitly accommodate the diversity in 
time-varying inputs.

Predicting RUL in PHM [7] presents a distinct set of 
challenges that sets it apart from other spatiotemporal fore-
casting tasks, like traffic prediction. In the context of RUL, 
the goal isn’t just to capture the temporal progression of a 
system’s state but also to accurately determine when the 
system will fail. Graph Convolutional Networks (GCN) [29] 
are designed to handle structured data represented as graphs. 
They capture both local and global information through con-
volutions on nodes and their neighbourhoods. The major 
challenge for using GCN in RUL prediction lies in defining 
an appropriate graph structure for the machine or system in 
question. Also, while GCN is good at showing how nodes 
are connected in space, it might need to be changed to bet-
ter show how they change over time, which is important for 
predicting RUL [30]. CNNs are very efficient at identifying 
local patterns and features from data and can be leveraged to 
capture local temporal dependencies in the degradation data. 
LSTMs, on the other hand, can model long-term dependen-
cies, making them suitable for tracking the gradual degrada-
tion of systems over time. The hybrid architecture of CNN 
and LSTM can capture both short-term (local) and long-term 
(global) temporal dependencies in the data [31]. This can 
be particularly useful in situations where the degradation 
pattern shows varied behaviour over short and long periods.

Recently, models based on the concept of ‘attention’ have 
been employed to enhance the predictive capabilities of deep 
learning models [26]. The attention mechanism was first 
used in tasks associated with machine translation [32]. Given 
its interpretable weight values, it was widely used for image 
[33] and recommendation systems [34] tasks. The attention 
mechanism involves dynamically weighing the contributions 
of different inputs to the output of the model. The attention 
mechanism enables the model to prioritise crucial features 
and patterns within the input data. This proves particularly 
beneficial when handling data sequences like time series or 
language sequences [35]. Attention mechanisms have dem-
onstrated their ability to boost performance in various areas, 
including speech recognition [36], machine translation [32], 
and image captioning [37]. Researchers have gotten very 
good results in several areas by adding these structures to 
deep learning models. These areas include health monitoring 
and prognosis [26, 38, 39]. By leveraging the ability of these 
architectures to extract and focus on important features, deep 
learning models can more accurately and reliably predict 
outcomes, leading to potential benefits in diagnosis, treat-
ment, and overall patient care.

A temporal convolution and recurrent skip component 
with an attention mechanism are proposed in this paper. 
Using a 1D convolutional layer, the proposed deep learning 
framework extracts important features that change over time 
from input variables that are spread out in multiple dimen-
sions. The extracted temporal features are transformed into 
abstract features by passing them through a fully connected 
layer. Following this, a recurrent layer is employed to iden-
tify patterns and long-term dependencies in the data [40]. 
By allowing the model to circumvent specific layers, the 
skip components assist in mitigating the vanishing gradi-
ent issue. The attention mechanism is utilized to evaluate 
the significance of various segments of the input sequence 
dynamically. This functionality allows the model to focus on 
the critical attributes and trends relevant to the given task, 
consequently improving its precision and effectiveness. In 
addition to aiding in the management of the challenge posed 
by varying input lengths, the attention mechanism enables 
the model to dynamically focus on specific segments of the 
input sequence.

The key contributions of this work can be summarised 
as follows:

• A deep learning framework is proposed that efficiently 
extracts significant features exhibiting local or short-
term time-dependency patterns within multi-dimensional 
input time series. This model perceives all data encapsu-
lated within a designated time window as an indivisible 
entity, disregarding the length of the time series or the 
number of features embedded within the windowed data. 
The main contribution of this work is how it interprets a 
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whole-time window as a statement that expresses all the 
data for the remaining time in its usable lifetime through 
its temporal relationship.

• The introduction of a recurrent skip component fea-
turing an attention mechanism. Learning the weighted 
combination of hidden representations at each position 
of the time window in the input matrix is the purpose of 
the Recurrent-Skip-Component (RSC). At various time 
periods, the attention mechanism extracts the critical 
temporal patterns and feature relationships from a time 
series. Additionally, it acquires knowledge of the various 
degradation patterns that span the complete duration of 
the input time series.

• The recurrent skip component extends the period of the 
information flow using recurrent connections and there-
fore eases the optimization process.

• We evaluated the proposed approach on the C-MAPSS 
dataset. The findings suggest that our approach exhibits 
superior performance in comparison to numerous other 
data-driven strategies for RUL prediction.

Structure of the Paper: The remainder of this paper is 
structured as follows. Section 2 presents some state-of-the-
art data-driven approaches. Section 3 outlines the problem 
formulation. Section 4 presents the framework and explains 
the structural elements of the proposed model. Section 5 
explains the dataset and pre-processing techniques used. It 
also presents the evaluation metrics used to verify the pro-
posed approach on the CMAPSS dataset. Section 6 elabo-
rates on the network design and offers a comparative analy-
sis with other prominent approaches. Section 7 presents the 
ablation study. In conclusion, Sect. 8 finalizes the paper and 
sheds light on potential avenues for future research.

2  Literature Review

In the past few years, the fields of machine learning and deep 
learning have seen significant advancements. They have 
been extensively employed to address issues in manufactur-
ing and industrial systems, delivering outstanding results in 
RUL prediction. An overview of various RUL approaches 
was provided in [41]. Over the years, new ways to figure 
out the RUL of mechanical systems have been developed. 
These include support vector regression [15], recurrent neu-
ral networks [11], LSTMs [25], deep convolutional neural 
networks [42], and hybrid deep learning networks [31]. An 
accurate RUL prediction enables a mechanical system to 
seamlessly plan for future maintenance and repair. For esti-
mating the remaining life of complex mechanical systems, 
deep learning architectures such as RNN and CNN have 
been extensively implemented.

2.1  RNN and LSTM‑Based RUL Estimation

Unsupervised representation learning for sequences using 
RNNs has been successful in a variety of domains, including 
text, video, audio, and time series data (e.g., sensor data). 
In literature, RNNs have been utilised to analyse time-series 
data and forecast degradation patterns [11]. However, it suf-
fers from the problem of vanishing gradients, [43] which can 
make it difficult for RNNs to learn long-term dependencies 
in timeseries data. An LSTM that captured the long-term 
dependencies between features in the time-series data was 
proposed in [44]. A vanilla LSTM that could be used to 
improve prediction accuracy in complex operations, working 
conditions, model deterioration, and high noise was pro-
posed in [25]. In [45], LSTM was leveraged to learn the 
non-linear relationships between the RUL and degradation 
features. It utilised three evaluation indicators to pinpoint 
the most representative degradation features for RUL predic-
tion. This method led to improved results in comparison with 
conventional machine learning algorithms such as back-
propagation neural networks (BPNN) and support vector 
regression machines (SVRM). In another study, a bidirec-
tional LSTM for RUL prediction was introduced [46]. They 
first established a health index (HI) and then tracked the HI 
fluctuations to predict the RUL. In a different study, a trans-
fer learning-based bidirectional LSTM was introduced [47]. 
This LSTM could be trained on various relevant datasets 
before fine-tuning it on the target dataset. This bidirectional 
LSTM encapsulates temporal information from both past 
and future scenarios by processing input sequences in both 
forward and backward directions.

2.2  Convolutional Neural Network‑Based RUL 
Estimation

In recent times, CNNs and LSTM networks have emerged as 
effective methodologies for pattern recognition across vari-
ous domains, including computer vision [48, 49]. Because 
the RUL estimation problem and pattern recognition are so 
closely related, identical strategies can be used to address the 
RUL estimation problem [50]. Because they can extract fea-
tures from both one-dimensional and two-dimensional data, 
CNN has been able to accurately predict the RUL of com-
plex systems [42]. In [51], CNNs were proposed to predict 
RUL for aero-engines. The authors used a time wrapping 
(TW) technique to pre-process the raw data samples and 
were able to extract more information about the degrada-
tion state of the system. However, the use of TW results in 
an increase in the dimensionality of the input data, making 
it more difficult to create an effective neural network (NN) 
model for the task. A 1D CNN for predicting the RUL was 
proposed in [28]. In this paper, the authors used a 1D CNN 
with a complete convolutional layer to extract the spatial and 
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temporal features from a given time series. 1D CNNs are 
well-suited to handle the challenges posed by highly nonlin-
ear and multidimensional sensor streaming data. They were 
successfully adopted to capture the salient features of the 
sensor signals [42]. A simplified 1D CNN was proposed 
in [52]. It bypassed a large number of parameters by using 
maximum pooling layers instead of fully connected layers. 
Additionally, 1D CNN was combined with bi-directional 
LSTM [53] to extract abstract features and encode temporal 
knowledge. Recently, CNN produced promising results in 
RUL prediction, which was used to collect spatial informa-
tion without taking into account the time-series correlation 
to the data. Meanwhile, 2D convolutions are computation-
ally expensive compared to 1D convolutions. It has been 
observed that, under equivalent conditions, a 1D CNN has 
a lower computational complexity [54], thus making it well-
suited for real-time applications.

2.3  Hybrid Methods for RUL Estimation

The adoption of a hybrid method and the implementation 
of a parallel multi-model approach have emerged as effec-
tive strategies for integrating the strengths of various mod-
els. These models collect different types of data at distinct 
time intervals, leading to more precise predictions. This is 
a method of improving accuracy that had not been explored 
previously [55]. A hybrid deep learning model was proposed 
in [31] which implemented 1D CNN with the LSTM for 
RUL prediction. A methodology utilizing 2D convolution 
for RUL predictions, founded on sliding windows, was put 
forward in [42, 46] and it supported the use of LSTM net-
works for these RUL estimations. While LSTM networks 
can establish long-term time dependencies, their ability 
to extract features is marginally less effective compared to 
that of CNNs [56]. Both CNN and LSTM networks possess 
the distinctive skill to extract features from data. The latest 
architectures for estimating RUL tend to rely on a singular 
approach, whether that be CNN, DNN, or LSTM as evi-
denced in [57]. In [58], a composite network was introduced. 
This method leveraged the time window technique and gra-
dient boosting regression for scrutinizing degradation trends 
within sensor sequences. Concurrently, the LSTM networks 
were deployed to uncover patterns and trends concealed 
within lengthy sensor data sequences.

2.4  Attention‑Based RUL Estimation

The attention mechanism has been widely used in NLP 
and has shown exceptional results [36]. It was introduced 
as an innovative approach for handling sequential data. 
The transformer encoder module, which includes a self-
attention module, allows for processing data inputs based 
on their timestamps [59]. This self-attention mechanism 

assigns varying weights to each timestamp, thereby under-
standing the importance of each input in the sequence [59]. 
In this network, the attention and linear layers are arranged 
alternately, with shortcut components used to establish 
connections between them. The authors of [60] introduced 
a framework for RUL prediction that uses an attention-
based methodology. They used an attention mechanism 
to simultaneously weigh time steps and features in the 2D 
sequence data output by the LSTM in the time dimension. 
The attention and linear layers are arranged alternately in 
this network, with shortcut components used to establish 
connections between them. A new way to predict RUL 
was suggested in the research paper called Dual Attention-
based Temporal Convolutional Network for RUL Predic-
tion [61]. This approach is called the distributed attention-
based temporal convolutional network (TCN). It uses an 
attention mechanism that applies a SoftMax function to 
sensor input data to determine the importance, or ‘weight’, 
of each feature at a specific time. The weighted data is 
then fed into the TCN, which extracts critical features. 
The outputs of the network are subjected to another atten-
tion mechanism, which weights the outputs in the time 
domain. Finally, the weighted outputs are averaged across 
all temporal intervals within the specified time frame. This 
approach has shown promise in accurately forecasting the 
RUL of machinery [61].

It is critical to extract important and relevant features. 
Attention mechanisms allow the model to prioritize differ-
ent aspects of input data based on their importance [39]. 
This improves the model’s ability to learn complex patterns 
and correlations in the data [60]. A multi-dimensional self-
attention network was proposed in [26]. Numerous attention 
networks process the input after it has undergone a linear 
transformation and then analyse the transformed input from 
their distinct perspectives. This permits the model to con-
centrate on different segments of the input distinctively. The 
multi-head attention mechanism can improve the model’s 
ability to extract important features from data. Another type 
of attention mechanism, called self-attention, specifically 
looks at the relationships between features within a single 
input sequence [38]. This feature allows the model to iden-
tify the intricate dependencies between features, which are 
challenging to capture with conventional attention mecha-
nisms. Our model is based on a self-attention mechanism 
designed to learn the correlations and degradation patterns 
present within multi-sensor data. This approach considers all 
time steps and features at the same time, which helps the sys-
tem learn how different sensor readings interact over time. 
By doing so, the approach identifies the important patterns 
and relationships in the data that might be missed by other 
modelling methods. This is an effective way to understand 
how these interactions contribute to the degradation of the 
system.
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3  Problem Formulation

Estimating RUL can be interpreted as a regression task. We 
utilize data gathered from sensors installed on machinery 
(specifically engines in our scenario) as inputs, while the 
designated RUL labels serve as outputs. Consider a system 
with N components (turbojet engines). The goal is to pre-
dict when the current operational component for which the 
multi-variate time-series data is available will fail. Let K be 
the number of sensors installed on each engine component. 
Therefore, an ith component throughout its useful time pro-
duces a multivariate time series which is as follows:

where Xi ∈  RTi×K represents the complete training trajectory, 
xit ∈ RK represents the K-dimensional vector corresponding 
to the k sensor reading at time-stamp t,  Ti represents the 
total number of time-stamps of n engines throughout their 
lifetime, and K is the number of sensors installed on each 
engine. Finally, we denote the RUL corresponding to the 
time-series  Xi

t as  RULi
t. In summary, the goal is to predict 

when failure will occur from a given time series for the train-
ing instances Xi. For the failed instances n, the length of 
training trajectory Ti corresponds to the entire lifetime from 
start to end, and for the in-process instance, the length Ti 
corresponds to the remaining operational life until the last 
remaining sensor reading.

4  TCRSCANet Framework

This section provides a detailed overview of TCRSCANet, 
which utilizes temporal convolution, a recurrent skip com-
ponent, and an attention mechanism. The proposed approach 
extracts hidden representations of sensor data and identifies 
degradation trends. The overall flowchart of the framework 
is shown in Fig. 1. It includes three main stages (1) Data pre-
processing; (2) Model construction; and (3) RUL estimation.

4.1  Training TCRSCANet

This section explains the data-driven prognostic framework 
that captures and identifies the degrading features from 
the absolute values of the monitoring data to predict the 
RUL. Since some sensor data is continuous and contains 
no relevant information, data visualization is employed to 
select meaningful sensor data. The normalization method 
explained in Sect. 5.3 is used for data preprocessing. The 
overall picture of the entire process is presented in the flow-
chart shown in Fig. 1. It mainly involves three main stages. 
The first stage is preparing to monitor data and assigning 
RUL labels to train and test data for RUL estimation. In 

Xi = xi
1
, xi

2
, xi

3
,… , xi

Ti

the second stage, the training data is fed through a 1D CNN 
that extracts temporal features from monitoring data. The 
extracted features are fed through a fully connected layer, 
creating abstract features. The final stage is the recurrent skip 
component with an attention mechanism. The recurrent skip 
component increases the temporal range of the information flow 
and facilitates optimization. The attention module calculates 
a weighted sum derived from enhanced features. The outputs 
are combined through a fully connected layer to predict RUL.

4.2  1D Temporal Convolutional Layer

CNN is highly effective for extracting insights from large 
image datasets due to the hierarchical nature of vision [21]. 
CNN has been successful in computer vision and has been 
applied to process time sequences by treating time as a spa-
tial dimension similar to that of a two-dimensional image. 
However, predicting RUL involves using features from dif-
ferent sensors, resulting in less correlation between spatially 
neighbouring features. To extract significant features and 
map internal characteristics, we utilized a 1D convolutional 
neural network. Table 1 outlines the details of the layers 
and hyperparameters used to train the proposed architecture.

The 1D CNN extracts short-term features and local 
dependencies from input time sequences with multiple sen-
sor measurements. Let h(j−1) denote the input sequence and 
hj denote the output of the jth layer. The output from the 
(j − 1)th layer serves as input to the jth layer. Since each layer 
has multiple feature maps, we denote the lth feature map of 
the layer j as hlj, which is computed as follows:

where ∗ denotes the convolutional operation and φ represents 
the linear activation function. ����⃗w

j

i,l
 is the weight kernel of the 

1D convolutional layer, and bj
i
 is the bias of lth feature map 

of the jth layer. The CNN extracts many features, and using 
all the features strongly affects the prediction process. To 
address this challenge, each feature map is down-sampled 
for important features using pooling. We used max pooling 
in this work. Serving as a progressive mechanism, it reduces 
the spatial size of feature representations, enhancing com-
putational efficiency and mitigating neuron overfitting. In 
CNN, max-pooling is the primary sub-sampling process, as 
it can operate independently of the convolutional operation. 
1D-max-pooling is defined as

where ( ∗) represents the down-sampling function corre-
sponding to max-pooling, hj+1

li
 is the ith element of the fea-

(1)h
j

i
= 𝜑

(

∑

i

h
j−1

i
∗
����⃗
w
j

i,l
+ b

j

i

)

(2)h
j+1

li
= down(hi

lnbk
)
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Fig. 1  The overall flowchart of 
the proposed TCRSCANet
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ture map hj
l
 and hi

lnbk
 denotes the set of values in 1D pooling 

vicinity of hj+1
li

 . After the temporal features are extracted a 
fully connected (FC) layer is used to generate the abstract 
features Kj . The abstract features are expressed as;

where ki represents the abstract features with 1 × n 
dimensions.

4.2.1  Attention Mechanism

The attention mechanism [35] has succeeded in natural 
language processing (NLP). Classical machine learning 
models like linear and logistic regression do not possess 
the ability to reason sequentially or utilize perception and 
memory through attention [62]. However, newer models 
like RNNs and Transformers have incorporated these 
features, enabling them to perform sequential reasoning. 
In this study, we propose an attention mechanism that 
focuses on one part of the sequence and guides the entire 
process of reasoning. The attention mechanisms with the 
RCS enable the model to focus on the most important 
parts of the sequential input data, leading to improved 
performance in identifying the degradation patterns in 
the input sequence. It allows the model to dynamically 
adapt to changing dependencies between time steps dur-
ing the health states. This helps in identifying the critical 
features by focusing on what is relevant at a given time. 
These mechanisms improve the understanding of different 

Kj = [K1,K2,… ,Ki]

time-varying degradation patterns between time stamps. 
To obtain the output a dual-stage attention mechanism is 
implemented. The first stage consists of an encoder with 
input features that extract the relevant features in our case 
the degradation patterns. The second stage consists of tem-
poral attention which selects the most relevant time stamps 
of the model. So we obtain the attention weights from the 
abstract features Kj = [k1, k2,… , ki] where ki serves as the 
input sequence, T is the length of the time interval and n 
the number of input dimensions. The input sequence KJ 
at time step i with k input features is replaced by ui as it 
adaptively selects the relevant input features which are 
expressed as

where hi−1 ∈ ℝ
m represents the hidden states, i the time 

interval, m the size of the hidden states, and f represents one 
of the RNN variants. Similarly ui can be expressed as

Here the αi
n denotes the attention weights and the bias 

of the k input feature maps at any given time. The atten-
tion weights are calculated by implementing a feedforward 
network which is a similarity cosine function. It scores the 
correlation between ui and the randomly initialized vector 
uv . The correlation score between features and degrada-
tion is used to determine the degradation attention weight. 
The higher the score, the stronger the correlation, and the 
higher the degradation attention weight assigned to the 

(3)hi = f (hi−1, ui)

(4)ui = (�n
i
hi + b)

Table 1  Details of the network architecture

Layer Type Description Number of parameters

Layer 1 Conv 1D
1D max-pooling

Filters = 32, f size = 3, stride = 1, padding = same, activation = ReLU
Pool_size = 2, stride = 2, padding = same

Layer 2 Conv 1 D
1D max-pooling

Filters = 64, f size = 3, stride = 1, padding = same, activation = ReLU
Pool_size = 2, stride = 2, padding = same

Layer 3 Conv 1 D
1D max-pooling

Filters = 128, f size = 3, stride = 1, padding-same, activation = ReLU
Pool_size = 2, stride = 2, padding = same

Layer 4 Fully connected (FC)
Dropout

Size-seq_len × channels, activation = ReLU
d = 0.2

Layer 5 Recurrent layer Hidden units = 100, activation = Tanh
Layer 6 Recurrent skip component (RSC) Hidden units = 100
Layer 7 Attention layer attention weights Head = 8, window size = 5, activation = Tanh

SoftMax
Layer 8 Fully connected (FC) Layer size = 8
Batch size 32
Epochs 500
Learning rate 0.0001
Optimizer Adam
Window size 30
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feature. Finally, a soft-max function is employed to calcu-
late the degradation weight �k

w
 as;

The next stage includes a decoder that reveals key deg-
radation patterns. The decoder comprises a SoftMax layer, 
and its input is a fusion of the output and the context vector. 
The context vector, a weighted sum of the hidden states from 
the input sequence, is influenced by the alignment scores. It 
can be formulated as follows:

The similarity and the soft-max functions are used to cal-
culate the �w of each state hi . Finally, cj is fed through a fully 
connected layer to make RUL predictions at a jth time stamp. 
The parameters of TCRSCANet are summarized in Table 1.

4.3  Recurrent‑Skip‑Component (RSC)

We propose RSC [40]. RSC is a form of deep neural network 
architecture that amalgamates the advantages of recurrent 
neural networks (RNNs) and residual components. The idea 
behind RSC is to allow information from earlier time steps 
to bypass multiple hidden layers and directly connect to the 
output layer. This helps in mitigating the issue of vanishing 
gradients, where the gradients of the back-propagation algo-
rithm become too small to effectively train the network. The 
RSC makes optimisation easier by increasing the temporal 
range of the information flow. The skip-links are created 
between the present hidden cell and hidden cells in adjacent 
periods that are in the same phase. Together, the attention 
mechanism can help enhance the ability of the RSC network 
to selectively focus on important parts of the input data and 
improve its performance on sequential prediction tasks. The 
merger of these two strategies, RSC and the attention mecha-
nism, enhances performance compared to utilising either one 
individually, contingent upon the specific task and data set. 
Using these methods together, however, needs careful tweak-
ing and real-world research to make sure that the model can 
correctly find relevant connections in the data. We combined 
RSC with the attention mechanism for the hidden state com-
putation of the RSC network as follows:

This assists in mitigating the issue of gradient 
disappearance

• We calculate the hidden state in the RSC network as 
usual, accounting for the skip connection between the 
current and previous hidden states.

• To assign attention weights to every point in the input 
sequence, we utilize a fully connected layer with Soft-

(5)�k
w
=

exp(score(ui
i
uv))

∑

iexp(score(u
i
i
uv))

(6)cj =
∑

i

�whi

Max activation. This process generates a probability 
distribution across the sequence, indicating the relative 
importance of each data point. This not only assures 
the values are non-negative but also ensures their sum 
equals one, enabling a more insightful understanding of 
the sequence’s structure.

• The weighted sum, representing the significance of each 
step-in time, is processed through a fully connected layer 
coupled with a non-linear activation function. This step 
creates a refined hidden state for every moment in the 
sequence, effectively capturing the intricate correlations 
and dependencies within the data. Thus, it provides a 
comprehensive representation of the input sequence at 
each step, offering an enhanced understanding of the 
underlying patterns.

• Use this hidden state as input to the output later for mak-
ing predictions.

The updating procedure can be written as

In this scenario, q is the number of skipped hidden cells. 
At each window position of the input matrix, the atten-
tion mechanism, as proposed in [32] effectively discerns 
a weighted mixture of specific hidden states. This process 
allows the system to understand and emphasize the impor-
tance of certain elements over others in the data. The atten-
tion weights �t ∈ ℝ

p at the current timestamp t are calculated 
as

where HR
t
= [hR

t−p
,… , hR

t−1
] represents the matrix stacking 

the hidden representations of RNN column-wise, and AM 
is the similarity function, which operates as a cosine or dot 
product. The RSC and LSTM outputs are combined using 
the dense layer and the final output is the concatenation of 
the weighted context vector ct = Ht�t and the hidden repre-
sentation of the last window hR

t−1
.

where hD
t
 represents the output from the 1D convolutional 

layer.

4.4  Time‑Window Size

Segmenting sensor streaming data into sequences of mov-
ing windows is a common preprocessing step used in 
machine learning and artificial intelligence applications. 
This approach helps to break down the continuous stream 
of data into smaller, manageable chunks that can be used 
as inputs to a model [63]. By using moving windows, the 

(7)ht = �(XiWxh + ht−qWhh + bh)

(8)�n = AM(HR
t
, hR

t−1
)

(9)hD
t
= W

[

ct;ht−1r
]

+ b
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model can consider a sliding window of historical data when 
making predictions or decisions, which can help it better 
capture the temporal dynamics of the data. The choice of 
window size and step size can have a significant impact on 
the performance of the model, so these parameters should 
be carefully selected based on the specific requirements of 
the task at hand. In the RUL estimation, the sliding win-
dow approach is crucial. Since in prognostics, information 
degrades over time, the sliding window approach helps to 
contain this information. Moreover, the window size should 
be wide enough so that it can accommodate the maximum 
amount of data. The dimensions of the time window play 
a crucial role in influencing the process of estimating the 
RUL. Previously, in [27] window sizes of 15 and 30 were 
compared; however, a window size of 30 outperformed the 
window size of 15. Moreover, the sequences in the test data 
have a minimum running cycle length of 31 cycles; hence, 
the window length should be fewer than 31 cycles. There-
fore, we adhered to the same strategy of a window size of 30 
throughout our experiments. An example of a sliding time 
window with length Ttw is shown in Figs. 2 and 3. Figure 3 
illustrates that for every run-to-failure time series, there is a 
time window that sweeps from the start point to the endpoint 
of the series. All the data from the previous time window 
is compiled into a high-dimensional feature vector and fed 
as an input to the network at each time step. The windows 
are processed one at a time and the results are combined 

to produce a complete picture of the data being monitored. 
This approach allows for a more detailed analysis and helps 
to identify trends or patterns over time. The given input time 
series is formulated according to [51]. The input sequence 
can be expressed as:

W
(

Xi

)

 represents the segmented data sequences that are used 
as input to the TCRSCA model and Ttw represents the win-
dow size.

5  Dataset and Pre‑processing

5.1  C‑MAPSS

The Commercial Modular Aero-Propulsion System Simu-
lation (C-MAPSS) dataset [64], developed by the NASA 
Glenn Research Centre, is a benchmark dataset that has been 
widely utilized in various studies [1, 27, 51]. As displayed 
in Table 2, C-MAPSS consists of four distinct sub-datasets, 
each offering a wealth of information concerning the pro-
gressive deterioration of turbofan engines. These engines 
are classified into four different groups based on their opera-
tional conditions and fault modes. Each group’s data is split 
into a training set, which includes all data up to the end of 

W
(

Xi

)

= {(X
t−wtw+1

i
,X

t−wtw

i
,… , xt

i
)}

Ti

t=wtw

Fig. 2  Example of data segmentation using time window approach
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the engine’s lifespan, and a test set that concludes before the 
engine’s failure. The aim here is to leverage the sensor data 
in the test set to predict each machine’s RUL. The dataset 
features a wide range of variables, including the engine num-
ber, the number of operational cycles, three operational set-
tings, and 21 sensor measurements, along with each engine’s 
RUL for validation purposes.

• Training set consists of the engine’s run-to-failure data.
• Test set consists of the engine’s functioning data recorded 

without the failure events. • RUL labels are the informa-
tion regarding the remaining cycles left for each engine 
in the test data.

Each sub-dataset includes multiple sets of turbofan engine 
degradation data, encompassing three setting parameters that 
greatly affect engine performance and 21 sensor signals. 
These signals, sourced from different turbofan engine com-
ponents, encapsulate degradation details like temperature, 
pressure, and speed. The dataset operates under the assump-
tion that the turbofan engines are in prime operational con-
dition at the onset. However, as the run cycle prolongs, the 
engines experience degradation until they are unable to 

execute regular functions, a condition termed’failure’. The 
maximum time cycle distribution is shown in Fig. 4. We 
observed that the maximum time cycles for an engine fall 
somewhere between 90 and 210 before any failure occurs.

The C-MAPSS dataset includes only the final cycle’s 
RUL for each engine in the test data. To investigate the cor-
relation between sensor data and RUL, the training data is 
augmented with RUL labels. The degradation of turbofan 
engines is a slow process that is difficult to detect in its early 
stages. However, when a fault occurs, the engine’s perfor-
mance declines, leading to its eventual failure when the RUL 
reaches.

The intricacy of the sub-datasets escalates proportion-
ally with the rise in the count of operating and failure sce-
narios, rendering FD002 and FD004 notably complex data-
sets. The training and test data from each sub-dataset are 
concatenated along the temporal axis, resulting in a final 
compiled matrix of dimension h × 26. The matrix is organ-
ized such that the first column represents the unit or engine 
number, followed by the operational cycles in the second. 
The third, fourth, and fifth columns chronicle the varying 
operational conditions. Different sensor readings are present 
in the subsequent 21 columns. The actual RUL values are 
given independently. The training set includes the complete 

Fig. 3  Time Window approach 
to split the data. A window 
length of 30 has been shown to 
work best for the FD001 dataset

Table 2  C-MAPSS dataset 
details

Dataset Number of 
engines in train-
ing set

Number of 
engines in test 
set

Operating 
conditions

Failure 
modes

Training samples Test samples

FD001 100 100 1 1 17,731 9211
FD002 260 259 6 1 48,819 23,999
FD003 100 100 1 2 21,820 12,697
FD004 249 248 6 2 57,763 31,725
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lifecycle of the engines until their ultimate failure, whereas 
the test set engines cease operation at an arbitrary time 
before the point of failure. In the context of this experiment, 
our performance evaluation is solely based on the training 
set. A random selection process is implemented, reserving 
90 engines for training and preserving the remaining 10 for 
testing purposes. Also, according to [11] the degradation 
occurs during the latter stages of the 120th to 130th cycles. 
Therefore, we set the maximum value of RUL to 125.

5.2  Sensor Selection

There are a total of 21 sensors that monitor engine degrada-
tion. However, the distribution of health cycles of all the 
engines is not the same. In the given dataset we have 81% 

of engines that are healthy meaning that they operate at their 
full capacity, 14.2% unhealthy engines that operate close or 
little over 50% of their full capacity, and finally, we have 
0.4% of engines whose health conditions are not determined.

The overall data distribution is shown in Figs. 5, 6 and 7. 
Some sensors do not show any change in their behaviour over 
time, thus providing no useful information like setting 1, Sen-
sor 1, Sensor 5, Sensor 10, Sensor 16, Sensor 18, and Sensor 
19, as shown in Fig. 7. Since these sensors do not provide 
any information regarding the engine states, they can cause 
issues during modelling. Therefore, we drop these sensors and 
consider the remaining 14 sensors, as described in [51]. Three 
operational settings, s1, s2, and s3 impact the performance of 
each engine. There are 21 sensors: m1, m2, …, m21 collect 
different information related to the engines during run-time. 

Fig. 4  The overall distribution 
of maximum time cycles for all 
the engines in FD001 dataset 
zero. Thus, this paper uses 
the piece-wise linear degrada-
tion function [39] as shown in 
Fig. 2b to set the RUL labels for 
the training data

Fig. 5  The figure illustrates the distribution of individual signals like 
run-to-failure cycles, and three operational settings in the FD001 data 
subsets, respectively. The id shows the maximum lifetime of the 100 

different units within FD001. It is seen in the figure that setting 3 dis-
plays no information
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However, the collected data is not free from noise. Each engine 
has its own unique lifespan and failure trend, indicating that its 
momentum does not synchronize over time.

5.3  Normalization

The raw sensor data is complex, with fluctuating magnitudes 
and multidimensional values, making it difficult to train a 
neural network. Therefore, we normalize every feature value 
within the range of [0, 1] by implementing min–max normali-
zation. The new feature distribution is shown in Fig. 8. We 
use the sliding window approach [51] for the input time series 
to collect as much information as possible. We formulate the 
input multi-variate time series according to [65]. Let Xi = XT

i
 

be the input time series of the ith engine. The sliding window 
generates an input data stream, which is expressed as:

(10)T
(

Xi

)

=

{

(x
t−Ttw+1

i
,X

t−Ttw
i

,… ,Xt
i
)

}Ti

i=Ttw

where T denotes the segmentation function and Ttw denotes 
the size of the time window. The normalization is performed 
as follows.

where xi
j
 denotes the jth output of the ith sensor, xi

min
 denotes 

the minimum values of all the outputs at ith sensor, and xi
max

 
denotes the maximum values of all outputs at ith sensor. The 
FD001 and FD003 datasets have a process of filtering out 
non-essential sensor information to increase computational 
speed and shorten training time. The datasets include 21 
sensors, identified by numbers 1–21, and have three modes 
of operation, designated as s1, s2, and s3.

5.4  Correlations with Engine RUL

Feature selection is very important during the pre-learning 
stage, as it removes unnecessary computation by selecting 
the optimal subset and therefore improves the model’s accu-
racy. Pearson’s correlation coefficient analysis [66] is a filter 

(11)yi
j
=

xi
j
− xi

min

xi
max

− xi
min

Fig. 6  The figure illustrates the distribution of individual signals 
in the FD001 dataset. Sensors [1, 2, 3, 4, 5] record the temperature 
measurements of different types of fan inlets and outlets. Sensor [6, 

7, 8, and 9] measure the pressure, speed of physical fan, and physical 
fan speed. It is seen in the figure that sensors [1, 3, 5, and 6] display 
no information
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method that is used to determine the degree of correlation 
between two variables in a dataset. This method helps us to 
identify variables that have a strong linear relationship with 
each other, which is very helpful in selecting features for 
machine learning models or in identifying patterns in data. 
According to [67], Pearson’s correlation coefficient is a sta-
tistical measure that quantifies the level of linear correlation 
between two variables.

Here, â symbolizes a correlation coefficient, which 
illustrates the relationship between two variables, Q and P. 
This coefficient can vary between − 1 and 1. A value of − 1 

(12)
â =

∑n

l=1
(Q1 − Q)(Pl − P)

�

∑n

l=1
(Qi − Q)

2
�

∑n

l=1
(Pl − P)

2

Fig. 7  The figure illustrates the distribution of individual signals in 
the FD001 dataset. Sensors [10, 11, 12, 13, 14] record the engine 
pressure, static pressure, the ratio of fuel flow, correct fan speed, and 
correct core speed. Sensors [15, 16, 17, 18, 19, 20, and 21] meas-

ure the bypass ratio, burner fuel–air ratio, bleed enthalpy, demanded 
fan speed, demanded, speed of the physical fan, physical fan speed, 
demanded corrected fan speed, and coolant blends. It is seen in the 
figure that sensors [10, 16, 18, and 19] display no information
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Fig. 8  The normalized data 
distribution of FD001 dataset
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signifies a perfect negative relationship, meaning if one vari-
able increases, the other decreases. A value of 0 indicates no 
correlation or relationship at all. A value of 1 demonstrates 
a perfect positive correlation, implying that an increase in 
one variable will increase the other variable as well. In this 
equation, Ql and Pl denote two sample points, while n stands 
for the total number of samples. The symbols Q¯ and P¯ 
are used for the average values of Q and P, respectively. 
When the correlation between Q and P gets close to 1, it 
suggests that the two variables tend to increase together. 
Figure 9 shows the heat map for the C-MAPSS dataset. The 
correlation between sensor data from s1 to s21 is the most 
important input variable to consider. In Fig. 9, the correla-
tion coefficient is highlighted in dark green whenever the 
number of rows and columns is equal, as it represents the 
correlation coefficient for itself. Green denotes positive 
correlations, pink denotes negative correlations, and white 
denotes no correlation. Due to their propensity to increase 

or decrease together, Q and P have a high correlation in the 
correlation analysis. But P doesn’t always tend to increase 
in relation to Q.

5.5  RUL Labelling

The process of correctly adjusting or” rectifying” the RUL 
values, also known as training labels, from the training data-
set is crucial. A method called the piece-wise linear degrada-
tion model is typically used to figure out these RUL labels. 
This approach is effective when applied to the C-MAPSS 
dataset [68]. The task of correctly adjusting the values of 
RUL from the training data set is extremely important. We 
often use a method known as the piece-wise linear degra-
dation model to do this. This method has been tested and 
shown to work well with the C-MAPSS dataset. A fixed 
threshold of 125 as suggested by the literature [68] is 
assigned to RUL for several cycles at the beginning known 

Fig. 9  Heat maps diagram of the correlation matrix for the C-MAPSS dataset
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as early RULs. This rectification is necessary since the RUL 
should not decrease at the start of the degradation because 
the system is always deemed to be in good working order. 
Each engine follows a linear degradation as it reaches the 
early RUL, as shown in Fig. 2b. The rectified RUL labels 
are computed as follows:

where lr denotes the rectified RUL labels, lt denotes the 
original RUL labels of the training dataset, and li denotes 
the initial RULs.

5.6  Piece‑Wise Linear Degradation Model

The piecewise linear degradation model, as introduced 
in [68], enables us to estimate the RUL of a system. This 
model assumes that the deterioration rate remains constant 
over time. Predicting the exact RUL of a well-functioning 
engine can be challenging, particularly when the engine fails 
suddenly without any prior signs of issues. However, the 
linear degradation model provides a reasonable estimate of 
the RUL based on the current condition of the engine and 
the rate at which it is deteriorating. In this study, the RUL 
of an engine was analysed. As depicted in Fig. 2b, the RUL 
initially remains constant and then gradually decreases. To 
help the network converge, a successful approach is to use a 
piece-wise RUL model, which has been proven to work well 
with the C-MAPSS dataset [60]. For this experiment, we 
have set the maximum RUL to 125, following the examples 
of other research studies. 

5.7  Evaluation Metrics

The two commonly used evaluation metrics used in the lit-
erature are the root mean square error (RMSE) and the scor-
ing function. We adopted the same approach for evaluating 
the proposed method. The error of the ith component of an 
input time-series is estimated as follows:

The RMSE is most commonly used in regression and is 
calculated as follows.

where N denotes the total number of samples and Ei denotes 
the error between the true RUL labels and the estimated 
ones. The smaller value of RMSE indicates higher estima-
tion accuracy and lower estimation error.

(13)lr =

{

li, lr > li
lt, Lr ≤ li

(14)Ei = EstimatedRUL − ActualRUL

(15)RMSE =

√

√

√

√
i

n

N
∑

i=1

E2
i

Another metric adopted is the scoring function, which 
is defined as follows:

The lower score value represents higher prediction 
accuracy and lower estimation error, the same as RMSE. 
However, unlike the RMSE scoring function, which 
involves penalizing early and late predictions, because late 
predictions are more likely to result in serious disasters 
and significant economic losses, they must be penalised 
more severely than early predictions. As a result, the scor-
ing system will severely penalise large errors. It’s worth 
noting that the scoring function is a cumulative function 
with a value proportional to the number of samples. More-
over, one of the major drawbacks of the scoring function 
is its sensitivity to outliers, as a single outlier point can be 
responsible for a drastic change in the scoring function. 
Thus, making RMSE the most favourable metric for evalu-
ation. Figure 10 shows the comparison between RMSE 
and the scoring function. Since the scoring function is 
exponential and lacks error normalisation, a single outlier 
has a substantial impact on its value. As a result, it is noted 
that a singular scoring function cannot accurately assess an 
algorithm’s performance. Therefore, both the performance 
metrics (RMSE) and scoring functions are aggregated to 
ensure that the algorithm predicts accurately.

(16)Score =

�

∑N

t−1
(e −

Ei

13
),Ei < 0

∑N

i=1
(e −

Ei

10
),Ei ≥ 0

Fig. 10  Comparison between RMSE and scoring function
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6  Network Architecture

Our proposed network structure is illustrated in Fig. 11. 
It has three main parts: 1D convolutional layers, an RSC, 
and an attention mechanism. First, the 1D CNN is used to 
recognise and extract temporal features, or time-dependent 
patterns, from the input time series data. These patterns 
help in understanding the health status of the machine, 
detected through sensor readings. The outputs from this 
stage are what we refer to as abstract features. Next, the 
RSC, which uses an LSTM, learns the time related dynam-
ics of the machine’s health status. The RSC output and the 
abstract features from the 1D CNN are combined through 
a fully connected layer, resulting in a set of enhanced 
feature maps. Lastly, we have the attention mechanism, 
which plays a vital role in identifying the most relevant 
features to estimate the RUL of an engine. The RSC out-
put is fed into the attention mechanism, which generates a 
set of weighted feature maps. Each weight in these maps 
reflects the importance of a specific feature. The final 
step is a fully connected layer, which uses these weighted 
features to predict the RUL. The dataset we use includes 
three operational conditions and 21 sensor readings, as 
discussed in Sect. 5. However, based on the evaluation 
in Sect. 5.2, we only selected 14 of those sensor read-
ings. Hence, our input comprises 17 channels in total, with 
a sequence length of 90. The subsequent sections offer 

more detailed explanations of each part of our proposed 
architecture.

1D convolutional layers: TCRSCANet employs three 1D 
CNN layers, followed by batch normalisation and the ReLU 
activation function. These layers can find spatial correla-
tions on the C-MAPSS dataset and extract useful informa-
tion from the input sequence by using sensor readings from 
different engine parts. Each convolutional layer performs a 
set of convolutional operations on the input data, followed 
by a pooling operation to down-sample the feature maps. 
The 1D CNN generates high-level feature maps that capture 
important temporal patterns in the input sequence.

Recurrent Block: The recurrent block models temporal 
dependencies in input sequences using multiple LSTM cells, 
which are a type of RNN. The LSTM cells have an inter-
nal state that can store information about past inputs, which 
allows the network to maintain a memory of the temporal 
patterns in the sequence. The output of the recurrent block is 
a sequence of hidden states, which contain information about 
the temporal dynamics of the input sequence.

Skip component Block: The skip component is a key 
part of our network, which helps to improve how informa-
tion moves through the system. It does this by creating a 
direct connection, or”shortcut,” between the input and out-
put of the 1D CNN layers and the output from the recurrent 
component. This shortcut allows the network to learn from 
both immediate and distant relationships within the input 
data, which can boost the accuracy of the network’s predic-
tions. This means our network is capable of understanding 

Fig. 11  The overall architecture of the proposed TCRSCANet
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both immediate patterns and changes over time, making its 
predictions more reliable.

Attention Mechanism: An attention mechanism is a tool 
that helps the network concentrate on the most important 
parts of the data when trying to predict the RUL. It’s a bit 
like highlighting the most important points in a textbook. 
The mechanism uses something called attention weights, 
which are like markers showing how relevant each piece 
of data is for making the prediction. The network learns 
these weights as it’s trained and bases them on how similar 
the current data is to past data. The final output from the 
attention mechanism is a weighted sum of the hidden states; 
in simple terms, it takes all the data, weighs it based on 
importance, and sums it up. This output represents the most 
relevant information for predicting the RUL.

6.1  Effect of Time Window Size

The sliding time window method is an important coeffi-
cient in RUL prediction. It captures the crucial degradation 

details over time. The size of the time window is measured 
in cycles, and it greatly impacts the prediction accuracy. In 
our case time window creates meaningful features within a 
window that serve as input. It also analyses the relationship 
between different data points and their relative position in 
time. We tested various window sizes: 10, 20, 30, 40, 50, 
and 60 cycles. However, some engines lacked sufficient data 
for the larger window sizes, so we excluded them for a more 
accurate analysis. In previous research, it’s been found that 
a window size of 30 does a better job than a window size 
of 15 when trying to predict the RUL of a machine [27]. 
Also, because the test data sequences have a minimum cycle 
length of 31 cycles, it’s crucial to pick a window size that’s 
less than 31 cycles. In our study, we tried different window 
sizes ranging from 20, 30, 40, 50, to 60 on all four sub-
datasets. The RMSE values with different window sizes on 
C-MAPSS datasets are shown in Fig. 12. We found that at 
first, a larger window size helps to make predictions more 
accurate (the RMSE, a measure of accuracy, decreases), but 
after a point, accuracy starts to drop off. Why is that? Well, 

Fig. 12  Impact of time-window on all four sub-datasets of C-MAPSS dataset
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it seems that the current state of a machine is mostly linked 
to the most recent data, and this link gets weaker the farther 
back you go. So, when the window size is too big, it’s like 
trying to understand the current page of a book by reading 
too many pages that came before it—the extra information 
just becomes noise and makes things harder. Our experi-
ments show that as the window size increases, the results 
vary more, indicating that the extra noise is indeed making 
it harder to train the model. For the first dataset (FD001), a 
window size of 30 gave the best results, while a window size 
of 40 worked best for the other three datasets.

6.2  Results and Comparison

We compare how well the TCRSCANet works with other 
methods on all parts of the C-MAPSS dataset using the per-
formance metrics of RMSE and Score shown in Table 3. 
Our findings show that the suggested strategy improves the 
RUL prediction significantly and performs better in vari-
ous situations. In particular, the suggested technique obtains 
smaller RUL standard deviations during the degradation pro-
cess, even if its score is comparable to the top score in prior 
research on the FD001 and FD003 datasets. With the lowest 
prediction errors, the suggested technique performs notice-
ably better than previous methods, according to the results 
of the FD002 and FD004 datasets. It decreased noticeably 
when compared to the best earlier outcomes. More than 23% 
for RMSE and 49% for the score on the FD002 dataset, and 
31% for RMSE and 34% for the score on the FD004 data-
set, respectively. This successfully validates the accuracy 
and dependability of the proposed TCRSCANet in practi-
cal PHM applications. Also, FD002 and FD004 have bigger 
prediction errors for all known methods compared to the 
two other datasets. This is because the operating conditions 
are more complicated. Because it extracts the characteristics 
related to degradation, the TCRSCANet has the smallest 

difference in prediction error of the four subsets. Further-
more, the TCRSCANet can match the prediction accuracy of 
other approaches under normal and complex circumstances. 
The notable performance gains highlight the TCRSCANet’ s 
superiority in challenging situations. Additionally, it should 
be noted that most of the industrial machinery operates 
under a range of challenging circumstances in the actual 
world, making the suggested approach well-suited for these 
applications.

One sample engine from each of the four datasets—
FD001, FD002, FD003, and FD004—is chosen to represent 
the prediction results. The evolution of the anticipated RUL 
around the actual RUL is depicted in Fig. 13. TCRSCANet 
is capable of accurately capturing the degradation devel-
opment trend. At the final failure stage of the degradation 
progression, the fault characteristics amass. When an engine 
is getting close to the final failure stage, the prediction error 
gradually drops. In Fig. 13 it is also seen that the antici-
pated RUL is typically lower than the actual RUL, reduc-
ing the possibility that overestimating the RUL may result 
in needless maintenance expenses. Remarkable prediction 
performance is achieved by the proposed TCRSCANet in the 
datasets FD001, FD002, FD003, and FD004 under diverse 
operating conditions.

7  Ablation Study

We proposed a new architecture called TCRSCANet, which 
is designed to predict the RUL of turbo-jet engines. The 
architecture is composed of three key components: attention 
mechanisms, 1D CNNs, and the RSC. To better understand 
the contributions and significance of these modules in the 
model’s predictive capacity, we conducted a systematic abla-
tion study.

Table 3  RUL prediction results 
in comparison with different 
methods for the C-MAPSS 
dataset

Methods RMSE Score

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

LSTM [46] 16.14 24.49 16.18 28.17 338 4450 852 5550
DCNN [51] 12.61 22.36 12.64 23.31 273.7 10,412 284.1 12,466
DAG [69] 11.96 20.34 12.46 18.67 229 2730 284 3370
HDNN [27] 13.02 15,024 12.22 18.16 245 1282.42 287.72 1527.42
DATCN [70] 11.78 16.95 11.56 18.23 229.48 1842.38 257.11 2317.32
RBPF [71] 15.94 17.15 16.17 20.72 383.39 1226.97 375.29 2071.51
Attent-Based LSTM [60] 14.53 – – 27.08 322 – – 5649
MDSA [72] 11.71 13.32 11.47 14.38 209 1058 1618
BIGRU-TSAM [38] 12.56 18.94 12.45 20.47 213.35 2264.13 232.86 3610.34
KGHM [73] 13.18 13.25 13.54 19.86 250.99 1131.03 333.44 3356.10
DTBA [74] 12.25 17.08 13.39 19.86 198 1575 290 1741
Proposed TCRSCANet 10.43 11.02 10.03 16.23 217.02 789.32 216.79 1107.96
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RSC: The RSC is an integration of LSTM that aims to 
capture the time-related complexities of machine health 
dynamics. One important feature of the RSC is its ability 
to create a shortcut connection between the 1D CNN layers 
and the recurrent output, which helps the model under-
stand both immediate and temporally distant relationships 
in the input data. It was found that the prediction accuracy 
decreased when the RSC was not included, and the model 
was trained without it. Comparing the RSC-integrated 
model with its modified version brought attention to the 
critical role of the component in improving the accuracy 
of the model.

Attention Mechanism: Removing the attention mecha-
nism and training the model resulted in reduced prediction 
accuracy because it was unable to identify essential data 
points. This comparative analysis reinforced the compo-
nent’s vital role in the architecture. Another aspect of our 
research explored the influence of window sizes on predic-
tion accuracy. Through systematic testing, we identified the 
best window sizes for different datasets, emphasising the 
significance of this parameter in timeseries data tasks. This 
module is responsible for determining the relative signifi-
cance of features and directing the model’s focus towards 
salient aspects of data relevant to RUL prediction. To create 
weighted feature maps, the mechanism emphasises features 
vital for prediction.

In the TCRSCANet design, the ablation analysis clearly 
shows that the RSC and attention mechanism play the most 
important roles. Combining these two components is not 
only a good idea, but it is crucial for getting the best possible 

predictive performance when it comes to estimating the 
RUL.

8  Conclusion

This paper introduces a data-driven deep learning frame-
work, TCRSCANet, designed to enhance the accuracy of 
RUL prediction. This new method uses the best parts of 
1D CNNs along with recurrent skip parts and an advanced 
attention mechanism to efficiently process and analyse data. 
Our testing of the model on the standard C-MAPSS dataset 
shows that it can identify and prioritise key moments in time 
that have a big effect on RUL outcomes. The recurrent skip 
part of the TCRSCANet finds the temporal dependencies 
in the data, and the attention mechanism learns the links 
between different features. It then uses attention to sequence 
to learn how the weights affect things at different times. This 
enables the model to focus on the sequences that signifi-
cantly affect the weights at different time instances, pinpoint-
ing the key degradation trends that are vital for precise RUL 
estimation. We also investigated the piece-wise degradation 
method and different window sizes that can impact the RUL 
prediction accuracy of the proposed model. Our results show 
that TCRSCANet predicts the RUL more effectively when 
compared to other state-of-the-art methods. Deep learning 
methods assume that online data must have a distribution 
that is comparable to the distribution of historical data. 
However, in real industrial processes, it is challenging to 
accomplish. In our future work, we would like to investigate 

Fig. 13  Remaining useful life (RUL) prediction results on four sub-datasets
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the imbalanced training datasets when it comes to RUL pre-
diction using generative adversarial networks (GANS). Also, 
we would like to explore GNN-based architectures and try 
to adapt our models to more industrial-focused scenarios.
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