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Abstract
The significance of food in human health and well-being cannot be overemphasized. Nowadays, in our dynamic life, people 
are increasingly concerned about their health due to increased nutritional ailments. For this reason, mobile food-tracking 
applications that require a reliable and robust food classification system are gaining popularity. To address this, we propose 
a robust food recognition model using deep convolutional neural networks with a self-attention mechanism (FRCNNSAM). 
By training multiple FRCNNSAM structures with varying parameters, we combine their predictions through averaging. To 
prevent over-fitting and under-fitting data augmentation to generate extra training data, regularization to avoid excessive 
model complexity was used. The FRCNNSAM model is tested on two novel datasets: Food-101 and MA Food-121. The 
model achieved an impressive accuracy of 96.40% on the Food-101 dataset and 95.11% on MA Food-121. Compared to 
baseline transfer learning models, the FRCNNSAM model surpasses performance by 8.12%. Furthermore, the evaluation 
on random internet images demonstrates the model's strong generalization ability, rendering it suitable for food image rec-
ognition and classification tasks.
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Abbreviations

ANN  Artificial neural network
BOW  Bag of words
CNN  Convolutional neural network
IFV  Improved fisher vector
LSTM  Long short-term memory
RELU  Rectified linear unit
RCF  Randomized clustering forest
RF  Random forest
RNN  Recurrent neural network
SVM  Support vector machine
WHO  World health organization

1 Introduction

The significance of food in human health and well-being 
cannot be overemphasized. It is vital for survival, furnish-
ing the body with essential nutrients and energy necessary 
for optimal functioning. Inadequate food intake can have 
adverse effects on fundamental bodily processes, such as 
the maintenance of a resilient immune system and the repair 
of cells and tissues. In today's increasingly competitive and 
dynamic world, people are growing more conscious of their 
health due to the growing prevalence of nutrition-related 
health issues. Moreover, Qui et al. [32] noted an upward 
trend in the incidence of diet-induced diseases in various 
populations. As reported by the World Health Organization 
(WHO), the incidence of obesity worldwide more than dou-
bled from 1980 to 2014, with 13% of individuals categorized 
as obese and 39% of adults classified as overweight. This 
trend can be partially attributed to inadequate management 
of individuals' daily dietary intake.

Accurately assessing one's dietary habits is paramount in 
mitigating the detrimental effects of unhealthy food choices 
and the growing prevalence of diet-related ailments. In this 
regard, food recognition systems that leverage image rec-
ognition technology have a pivotal role to play [36]. Such 
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systems bolster food traceability and enable precise track-
ing of one's dietary intake, thereby making a meaningful 
contribution towards our collective health objectives. This 
cutting-edge technology is an indispensable tool in address-
ing the multifaceted challenges presented by modern dietary 
habits and their associated health risks.

The relevance of an automated food recognition system 
is evident in its impact on public health and well-being. 
As discussed earlier, food monitoring and accurate intake 
assessment are essential for reducing the risk of develop-
ing chronic illnesses like obesity, diabetes, and cancer. By 
providing a reliable and highly accurate food classification 
model, individuals can acquire valuable insights into their 
dietary habits, enabling them to make informed decisions 
about their food intake, thus contributing to disease preven-
tion and health maintenance. Moreover, the integration of 
such a system into mobile applications allows users to easily 
monitor their food intake on a daily basis. Additionally, the 
technology can be seamlessly integrated into social media 
platforms, facilitating the categorization of users based on 
their food preferences or shared food pictures. This opens 
up possibilities for targeted advertising, reducing the stress 
associated with generic advertising and enhancing over-
all efficiency. Furthermore, an automatic food image rec-
ognition system holds promise in improving supply chain 
efficiency and food safety. By enabling quick and accurate 
tracking and identification of food items, food producers and 
distributors can enhance overall food traceability.

In recent years, food image recognition has made impres-
sive strides, thanks to technological advancements. Convo-
lutional Neural Networks (CNN) have played a crucial role 
in improving image identification and classification [27]. 
As a result, they have achieved remarkable accuracy when 
handling large image datasets. Nevertheless, deep learning, 
which is the most accurate method, still lags behind human 
recognition due to the absence of well-developed solutions 
[26]. The classification of food images presents unique chal-
lenges such as the diversity of food types, variations in pres-
entation and lighting conditions, and high-level semantics. 
High-level semantics entail detailed information about a 
food item, such as its ingredients, preparation techniques, 
and cultural context. Recognizing food images is a complex 
task, and ongoing research is crucial. Recent studies [23] 
have emphasized the need for continued exploration in this 
field.

In this paper, we tackle these challenges through the 
development of an advanced food recognition model, FRC-
NNSAM. By integrating advanced techniques like scaled 
dot-product attention and ensemble modelling, FRCNNSAM 
can accurately identify intricate patterns and relationships 
in food images. Its ensemble approach combines prediction 
probabilities through rigorous averaging methods, resulting 
in enhanced robustness and performance in food recognition 

tasks. These features make FRCNNSAM a dependable and 
effective tool for image classification. Furthermore, FRC-
NNSAM model is meticulously engineered to optimize 
computational resources and memory usage, incorporating 
techniques like weight sharing and data compression for 
enhanced efficiency and scalability.

Moreover, our study seeks to investigate whether CNN 
models, developed without the utilization of transfer learn-
ing techniques, can achieve performance levels comparable 
to those employing transfer learning. This inquiry is rooted 
in the potential of our FRCNNSAM model to contribute to 
disease prevention and the promotion of healthier dietary 
habits, addressing practical challenges in food monitoring 
and public health.

This paper is organized as follows: Sect. 2 details an over-
view of previous approaches employed in food image recog-
nition and the corresponding outcomes attained. In Sect. 3, 
we present the materials, such as methods and datasets, used 
in developing our food recognition model. Section 4 delves 
into the design and architecture of the FRCNNSAM model, 
covering aspects such as the proposed model structure and 
simulation results. The study concludes with Sect. 5, which 
offers recommendations for future research.

2  Literature Review

In this section, we delve into the literature related to food 
image recognition, exploring various methods and tech-
niques that have been employed in the past decade. The field 
of food recognition has witnessed significant advancements 
due to the integration of machine learning, computer vision, 
and improved processing efficiency. We will discuss the 
prevalent use of deep learning techniques, particularly CNN, 
and the application of attention mechanisms and ensemble 
models to image recognition tasks.

CNN have gained popularity in food image recognition 
due to their remarkable features like equivariant repre-
sentation, sparse interaction, and, parameter sharing [27]. 
These advanced deep learning models have been exten-
sively applied in recent research and publications related to 
image identification and classification. The application of 
CNN in food image recognition has significantly contrib-
uted to the field's success, enabling high accuracy in analys-
ing large image datasets. Prior to the widespread adoption 
of CNN for food image identification and classification, 
alternative methods were commonly employed. An early 
method for food recognition, the Fisher vector technique, 
was introduced by Sanchez et al. in [34]. This technique 
analyses the visual characteristics of food images in certain 
regions using a mathematical tool called the Fisher kernel. 
The Fisher kernel uses a generative model (e.g., Gaussian 
Mixture Model) to express the divergence of a sample from 
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the model as a unique Fisher Vector that can be applied to 
classification. Another method that was used was the bag 
of visual words (BOW) technique, which involves vector 
quantization of affine-invariant descriptors extracted from 
image patches. According to Csurka et al. [12] this approach 
is made to address the difficulty of recognizing objects in 
realistic photos while taking into account inherent variances 
within the object class. In addition, a method was suggested 
by Matsuda et al. [24] that enables the recognition and cat-
egorization of food items within an image. This compre-
hensive approach makes use of a variety of methodologies. 
The method begins by identifying potential regions of food 
using several techniques, including whole image analysis, 
object detection using the deformable part model and linear 
SVM as suggested by Felzenszwalb et al. [15], image seg-
mentation using JSEG algorithm and circle detection using 
Canny Edge Detector and Hough Transform. Subsequently, 
it extracts features from these regions identified as candidate 
areas within the image and applies a sophisticated machine 
learning technique called multiple-kernel learning with non-
linear kernels for image classification, allowing for the iden-
tification of multiple food items.

In their 2014 study, Bossard et al. utilized discriminative 
components, specifically random forest mining—a frame-
work crafted for simultaneous extraction across all food data-
set classes. They also introduced the Food-101 dataset, now 
widely embraced as a benchmark in the research community 
for multi-class food datasets. Comprising 101 unique food 
categories, the dataset contains a total of 101,000 images. 
Each food category is represented by 1000 images, with 250 
images designated for testing and 750 for training purposes. 
Notably, the random forest technique they proposed was able 
to learn across multiple classes. Their experiment revealed 
that the model accuracy was 50.76%. It is important to high-
light that, apart from CNN which achieved an accuracy of 
56.70%, this model surpassed alternative methods such as 
IFV, and BOW, and local methods like RCF and RF [10].

Although these methods have performed well in the past 
for recognizing and categorizing food images, deep learn-
ing algorithms, particularly CNN, have significantly outper-
formed them in the last several years. The next paragraph 
will describe how diverse studies have utilized deep learning 
methods for the task of food image classification.

The widespread adoption of deep learning algorithms has 
notably enhanced the accuracy of image categorization. As 
a result, numerous researchers have explored the potential 
of deep learning in the classification of food images. In the 
context of categorizing Indian food images, Vijaya Kumari 
et al. leveraged transfer learning techniques, utilizing pre-
trained models such as InceptionV3, VGG16, VGG19, and 
ResNet. Their findings highlight the superior performance of 
InceptionV3 in classifying various Indian food images. Ma 
et al. took a different approach by utilizing deep learning to 

predict food categories and nutrient content using ingredient 
statements. Their model, named “Ingredient2Vec,” demon-
strated high accuracy in this predictive task. Bishop et al. [9] 
introduced a deep learning model employing LSTM-RNN to 
classify major cuisine types of takeaway food outlets, show-
casing its potential in automating this categorization, valu-
able for public health monitoring and decision-making. Akhi 
et al. [6] achieved a high success rate in recognizing and 
classifying fast food images. They used a multi-class linear 
Support Vector Machine (SVM) classifier along with a pre-
trained Convolutional Neural Network (CNN) as a feature 
extractor. Finally, Özsert Yiğit G, & Özyildirim explored 
food image classification using deep convolutional neural 
networks, comparing models trained from scratch with pre-
trained structures like Alexnet and Caffenet. Their findings 
underscored comparable performance between the proposed 
trained-from-scratch models and pre-trained models, with 
optimization methods improving the overall performance of 
the compared models. These studies collectively underscore 
the potential and versatility of deep learning techniques in 
achieving high accuracy for food image recognition tasks, 
attributed to deep learning's capability to capture intricate 
and complex patterns, thus making it well-suited for tasks 
involving subtle differences or intricate textures in food 
images. However, it's crucial to acknowledge that achiev-
ing optimal performance with deep learning models often 
necessitates a significant amount of labelled training data, 
presenting challenges when such data is scarce, especially in 
specialized food domains, and additionally, they may be sus-
ceptible to over-fitting, particularly when the training data is 
limited or when the model's architecture is overly complex.

Recent research has shown that the fusion of CNN archi-
tectures, known as ensemble modeling, has surpassed the 
accuracy of state-of-the-art CNN models, achieving even 
better results. For instance, Fakhrou et al. [13] developed a 
smartphone-based system to recognize food and fruits for 
visually impaired children. They combined two deep CNN 
models, InceptionV3 and DenseNet201, fine-tuned on a 
customized food recognition dataset. They applied aver-
age voting (also known as soft voting) for ensemble learn-
ing, achieving a 95.55% accuracy on their customized food 
dataset. Similarly an ensemble framework that includes 
several pre-trained CNN models, such as InceptionV3, 
DenseNet201, and ResNeXt-50, was presented by Rane et al. 
[33]. This ensemble model achieved a better AUC-ROC than 
other underlying researches. These studies exemplify the 
success of ensemble models in enhancing the accuracy of 
food image classification tasks, providing valuable insights 
for the development of our proposed FRCNNSAM model.

Recent studies not only showcase successful results 
with deep learning and ensemble models but also inves-
tigate the effectiveness of self-attention in image recog-
nition models [39]. When combined with convolutional 
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techniques, self-attention has proven effective in various 
computer vision tasks. Zhao et al.'s research emphasizes 
the robustness and generalization advantages offered by 
self-attention networks.

In summary, the literature review has showcased the 
progression of food image recognition methods over time. 
From early techniques like the Fisher vector approach to 
the advent of deep learning, particularly CNN, the field 
has witnessed significant advancements in accuracy and 
performance. Ensemble learning has emerged as a power-
ful method for further enhancing the capabilities of CNN 
models, demonstrating improved results in food image 
recognition tasks. Additionally, the exploration of self-
attention mechanisms has shown promise in augmenting 
convolutional approaches, leading to improved robustness 
and generalization. Building on these foundations, the pro-
posed FRCNNSAM model amalgamates the strengths of 
deep learning (CNN), ensemble learning, and self-atten-
tion to create an efficient and accurate food image recogni-
tion system.

3  Materials and Method

This chapter outlines the comprehensive process that was 
employed in the design and implementation of the FRC-
NNSAM model for precise and effective food image rec-
ognition. This chapter provides an in-depth look at the 
major components that contribute to the development of 
the FRCNNSAM model.

3.1  Dataset

The FRCNNSAM model was trained and evaluated using 
two unique datasets, the Food-101 dataset and the MA_
Food-121 dataset. Bossard et al. [10] created the Food-101 
dataset, which includes food images from foodspotting.
com. Users can use this website to exchange photographs, 
locations, and information about the food they are eating. 
The dataset comprises a grand total of 101,000 images, 
featuring a wide array of common foods such as pancakes, 
French toast, apple pie, chicken wings, Greek salad, pizza, 
pork chops, steak, and many others. To maintain uniformity, 
smaller photos were carefully deleted from the collection, 
and all images were standardized to have a minimum dimen-
sion of 512 pixels. Consequently, they successfully curated 
101,000 images representing 101 distinct food classes, with 
each class containing precisely 1000 images. For the pur-
pose of model development and evaluation, 250 of the 1000 
images from each class were set aside for testing and the 
remaining 750 for training. Figure 1 depicts a preview of 
the Food-101 dataset.

The MA Food-121 dataset, compiled by Aguilar et al. [4] 
was also used. It consists of 21,175 food images representing 
121 dishes from 11 popular cuisines worldwide. The dataset 
includes three groups: dish, cuisine, and categories (food 
groups). Each food item in the dataset is affiliated with at 
least one of the ten food categories, including Meat, Bread, 
Fried food, Vegetable, Dumpling, Rice, Seafood, Egg, Soup, 
and Noodles/Pasta. The dataset provides single-label annota-
tions for both dish and cuisine tasks and allows for the poten-
tial of multi-label annotations specifically for categories. 

Fig. 1  Food-101 dataset preview
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This dataset aids in the development and evaluation of pre-
cise food recognition models and is a useful resource for 
food classification research. Figure 2 depicts a preview of 
the MA Food-121 dataset.

3.2  CNN Architecture

CNNs, which are classified as Deep Artificial Neural Net-
works, are commonly used for recognizing and detecting 
items. They function especially well with input that has a 
grid structure, such as images [38]. They have similarities 
with Artificial Neural Networks (ANNs). CNNs organize 
their parts, called nodes or neurons, in layers. Each layer's 
output is sent to the next layer for more processing. CNNs 
also use a learning technique called back-propagation, much 

like ANNs. This involves adjusting the weights based on 
how far off the predictions are, similar to how ANNs use 
a loss function to measure the difference between what's 
expected and what's predicted during training. This way, 
back-propagation reduces the overall error in the predictions.

The three types of layers that are frequently found in 
CNNs are the convolution layer, pooling layer, and fully 
connected layer, as shown in Fig. 3 below, which depicts 
the overall CNN architecture. The fully connected layer han-
dles classification, while the convolution and pooling layers 
extract features.

The convolution layer serves as a foundational component 
within the CNN architecture, facilitating a sequence of math-
ematical operations for feature extraction. Convolution, a lin-
ear operation, leverages a kernel to extract features. In this 

Fig. 2  MA Food-121 dataset preview

Fig. 3  CNN architecture. Source [20]



176 Human-Centric Intelligent Systems (2024) 4:171–186

process, the kernel is applied to an input array of numbers, 
often referred to as a tensor, with the goal of producing a fea-
ture map. The feature map emerges through the computation 
of dot products between each kernel element and the input 
tensor, with the results summed to generate the output. The 
convolution operation's effectiveness is notably influenced by 
the depth of the output feature maps, which corresponds to 
the number of kernels, as well as the kernel's size, typically 
denoted as 7 × 7, 5 × 5, or 3 × 3. According to Yamashita et al. 
[37], these parameters are essential in determining how the 
convolution process is shaped. After the linear convolution 
process, the output is passed through activation functions such 
the sigmoid, rectified linear unit (ReLU), and hyperbolic tan-
gent (tanh) functions that add non-linearity to the activation 
map. Specifically, the ReLU function is widely employed due 
to its significant contribution to the resolution of the vanishing 
gradient problem, which was a significant advance in the field 
of deep learning [22]. The RELU (Rectified Linear Unit) func-
tion introduces non-linearity to the model by evaluating the 
function f (x) = max(0, x). This non-linear activation function 
ensures that the subsequent layer receives nodes with positive 
activation values only. When the input value, x is negative, the 
RELU function outputs 0, effectively preventing the neuron 
from being activated.

The feature map, which is the output of the convolutional 
layer, is the input used by the pooling layer that follows. Pool-
ing is utilized to minimize the size of feature maps while 
retaining essential information, thereby conserving computa-
tional resources and expediting the training process [1]. Unlike 
the convolution operation, the pooling layer does not possess 
learnable parameters. However, it does involve hyperparam-
eters such as the stride, filter size, and padding, as detailed by 
Yamashita et al. [37]. Striking a balance between efficiency 
and accuracy is essential, as larger strides or filter sizes can 
result in information loss [28]. Three prevalent types of pool-
ing commonly used in pooling operations include Max Pool-
ing, Sum Pooling, and Global Average Pooling, as depicted in 
Fig. 4. Max pooling stands out as the most popular choice for 
down-sampling feature maps because it maintains their depth 
dimension [11]. In the typical application of max pooling, 
patches are selected from the input feature maps, and only the 
maximum value within each patch is kept, while other values 
are discarded. It is common to use a 2 × 2 filter with a stride of 
2, which effectively reduces the in-plane dimension of feature 
maps by a factor of 2. This approach is widely adopted for 
downsizing feature maps in practical applications [37].

Typically, the convolutional (or pooling) layer's final 
output feature maps are flattened and converted into a one-
dimensional (1D) array. This 1D array is then used as the 
input for the fully connected layers, where it is processed 
to produce the final outputs.

The fully connected layer, often referred to as the dense 
layer, comprises learnable weights connecting every input 
node to each output node. The number of output nodes 
in this last dense layer in multi-class classification tasks 
corresponds to the total number of classes that need to 
be classified. To derive probabilities for each target class 
from the real-valued outputs of the last dense layer, the 
SoftMax function is commonly employed. This function 
normalizes the values to a range between 0 and 1, ensuring 
that the sum of all values equals 1. The SoftMax function 
possesses several key properties: firstly, it is a smooth and 
differentiable function, making it well-suited for utiliza-
tion in optimization algorithms reliant on gradients. Sec-
ondly, it effectively maps arbitrary real-valued vectors to 
probability vectors, proving beneficial in generating out-
puts for classification tasks. Lastly, the function remains 
scale-invariant, consistently producing the same output 
irrespective of the input vector's magnitude. This prop-
erty is valuable for normalizing the network's output and 
preventing potential dominance by large input values [25].

The SoftMax function is

Each element of the input vector is represented by xi in 
the equation above, and η is the total number of elements 
in the vector. The softmax function modifies the output 
vector to ensure that the total of all elements equals one 
after calculating the exponentials of each element in the 
input vector. With this modification, the vector becomes a 
set of values with a range of 0 to 1, making it interpretable 
as probabilities (F).

The learning of network parameters (θ) commences 
after determining the output signals of the CNN. This 
learning process involves minimizing a loss function calcu-
lated at the CNN's output. To achieve this, training exam-
ples containing input–output pairs 

{(

x(i), y(i)
)

;i ∈ [1, ..,N]
}

 
are utilized. The objective is to adjust the parameters (θ) 
through an iterative process, using these examples, aiming 

(1)softmax�(x)i =
exi

∑n

j=1
exi

Fig. 4  Pooling operation a max 
pooling, b sum pooling, c global 
average pooling)
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to minimize the loss function and obtain an optimal con-
figuration for the network.

The loss function is given by:

where the signals denoted by  oi and yi are, respectively, the 
current output and target output. The loss function is used 
to determine the unknown parameters θ.

Section 4.1 provides a comprehensive overview of the 
CNN architecture used in the FRCNNSAM model, including 
its components such as convolutional layers, max pooling 
operations, and the SoftMax activation function. A visual 
representation an high-level overview of the model is pre-
sented in Fig. 6 for better clarity.

3.3  Ensemble Learning

Ensemble learning stands as a powerful technique in 
machine learning, centered around combining multiple 
models. The core idea driving ensemble learning is that the 
ensemble, through the integration of predictions from vari-
ous diverse models, often outperforms the capabilities of any 
single model [5]. Ensemble learning can take various forms, 
including Bagging, Boosting, and Stacking [16].

Bagging is the process of training several instances of the 
same model using randomly selected subsets of the train-
ing data with replacement. The final prediction is typically 
obtained by averaging or voting on the predictions of these 
individual models. In contrast, Boosting is another widely 
embraced ensemble method. In Boosting, base models are 
trained consecutively, with each model focusing on correct-
ing errors made by its predecessor. The final prediction is 
a weighted combination of all models' predictions. Addi-
tionally, Stacking entails training multiple base models and 
using their predictions as input for a higher-level model, 
often referred to as the meta-model or aggregator. The role 
of the meta-model is to learn how to combine the outputs of 
the base models to generate the ultimate prediction.

Ensemble learning is a versatile technique extensively 
used across domains, including recommendation systems, 
computer vision, and, natural language processing. In the 
context of food image recognition, ensemble learning has 
demonstrated significant potential in enhancing classifica-
tion accuracy and robustness. Several studies have under-
scored the significance of ensemble models in achieving 
improved recognition outcomes [13, 30]. In a food recogni-
tion-based task, for example, Fakhrou et al. [13] discovered 
that their ensemble model performed better than the most 
advanced CNN models, obtaining high accuracy.

Motivated by the success of ensemble learning in food 
image recognition, the FRCNNSAM model adopts a similar 

(2)L =
1

N

N
∑

i=1

l(�;y(i), o(i))

strategy to that applied by Fakhrou et al. [13]. However, 
as one of the primary aims of this research is to explore 
the performance of CNN models built from scratch with-
out utilizing transfer learning techniques, we devised three 
distinct models by fine-tuning various parameters of the 
Image data generator. These parameters include Rotation-
Range, WidthShiftRange, HeightShiftRange, ShearRange, 
ZoomRange, HorizontalFlip, and FillMode. Additionally, 
we adjusted the architecture of the FRCNNSAM model by 
exploring diverse layer and dense layer setups. To build the 
FRCNNSAM ensemble model, we first obtained predicted 
class probabilities from each individual model. Then, using 
an averaging technique, we combined these probabilities to 
create the ensemble model. This method allows us to capital-
ize on the capabilities of each unique model while captur-
ing a variety of features and patterns from the input data. 
By combining multiple models, the FRCNNSAM ensemble 
model exhibits improved accuracy and robustness in food 
image recognition tasks.

The mathematical formular for the ensemble model by 
averaging used for combining the prediction probability of 
the FRCNNSAM model is given below:

where n represents the total number of models in the ensem-
ble, i represents the index of an individual model in the 
ensemble, ranging from 1 to n and pi signifies the prediction 
made by the i-th model for a specific input.

3.4  Self‑Attention Mechanism

Self-attention mechanism, also known as scaled dot-product 
attention, is a mechanism used in deep learning models to 
capture long-range dependencies and relationships within 
input sequences, such as sentences or images. It was origi-
nally introduced in the context of natural language process-
ing but has since been successfully applied to various other 
tasks, including computer vision.

Self-attention has been effectively used in computer 
vision applications for tasks like segmentation and image 
recognition. By incorporating self-attention into CNN, the 
models can effectively capture global dependencies in an 
image, making them more robust to variations in scale, rota-
tion, and other transformations (Fig. 5).

The FRCNNSAM model takes advantage of the self-
attention mechanism to enhance its feature representation 
capabilities. This mechanism allows the model to focus on 
important relationships within the input data, capturing 
fine-grained details and contextual information. In the FRC-
NNSAM model, the self-attention layer was strategically 
integrated before the flattening step. This placement enabled 

(3)
1

n

n
∑

i=1

pi
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the model to assign varying weights to different regions of 
food images, emphasizing their relevance to the classifica-
tion task. By attending to crucial regions, the model gained 
the ability to effectively extract discriminative features.

The mechanism involves queries (Q), keys (K), and val-
ues (V), which are transformed through feed-forward layers 
(FF) to obtain representations. The mechanism computes the 
dot product between queries and keys, scaled by the square 
root of the key dimension (d_k), to stabilize gradients during 
training. The resulting scores pass through a SoftMax func-
tion to generate attention weights. These weights are applied 
to the values to compute a weighted sum, representing the 
attended output. The mechanism enabled the model to focus 

on relevant parts of the input sequence, capturing depend-
encies and extracting meaningful representations. Overall, 
it is a critical element influencing the model's learning and 
predictive accuracy.

4  Model Design, Simulation and Results

4.1  Model Architecture

The FRCNNSAM design follows the standard CNN archi-
tecture as discussed in Sect. 3.2. A layer in the FRCNNSAM 
model comprises a sequence of components, which include a 
convolution layer, batch normalization, another convolution 
layer, batch normalization, and a max-pooling layer. After 
the final max-pooling layer, the subsequent components 
involve a self-attention mechanism, flattening, a dense layer, 
batch normalization, a dropout layer, fully-connected layers, 
and the final classification layer. The self-attention mecha-
nism used for the development of the FRCNNSAM model 
was discussed in Sect. 3.4 of this paper. Figure 6 depicts the 
high-level overview of the FRCNNSAM model.

The FRCNNSAM model was developed by adapting 
the general structure depicted in Fig. 6. To construct the 
ensemble model, as described in Sect. 3.3, we made spe-
cific adjustments to the layers. Drawing inspiration from 
the experiment conducted by Josephine et al. [19], where 
they explored various configurations of CNN models with 
different numbers of dense layers, we developed three dis-
tinct models with varying architectures. Our first model 

Fig. 5  Scaled dot-product attention mechanism. Source [7]

Fig. 6  The FRCNNSAM high-level model overview
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comprised six dense layers with values of 1024, 512, 256, 
128, 101, and 101 neurons, respectively, the second had 
four dense layers with values of 512, 256, 128, and 101 
neurons, and the third contained five dense layers with 
values of 512, 256, 128, 101, and 101 neurons. Although 
the overall architecture of these models resembled the 
structure shown in Fig. 6, we introduced variations in 
the number of layers. Consequently, the first model con-
sisted of five layers, the second had four layers, and the 
third model utilized six layers. The results, as presented in 
Sect. 4.5, revealed that the first model outperformed the 
other two, which aligned with the findings of Josephine 
et al. [19] who also observed better performance from 
models with six dense layers.

In the convolution layer, we utilized 32 filters for all 
convolutions in the first layer, with subsequent layers hav-
ing initial filters of 64 and 128, respectively where the 
filter size doubled in each layer. The filter size was set 
to 3 × 3, and the padding was specified as ‘same.’ ReLU 
activation function was applied, with the kernel initial-
izer ‘he_normal.’ The pooling layer employed a pooling 
size of 2 × 2. In the dense layer, the number of neurons 
was specified as stated above and ReLU activation was 
applied for most layers, except for the final layer where 
softmax activation was used. We also incorporated l2 reg-
ularization in the last two dense layers to prevent overfit-
ting. For optimization, we employed the Adam optimizer, 
which dynamically adjusted the learning rate during train-
ing. The batch size was set to 32, and to enhance the 
model's generalization capabilities, dropout with a rate 
of 0.4 was also applied.

The FRCNNSAM model was meticulously designed, 
drawing insights from related research and experiments, 
to create an ensemble model with optimized architec-
tural configurations that prioritize higher accuracy and 
robustness in food image recognition. In contrast to the 
structure proposed by Özsert Yiğit & Özyildirim [29], 
the FRCNNSAM model introduced several key enhance-
ments. It incorporated a BatchNormalization layer after 
each convolutional layer, strategically placed a self-atten-
tion mechanism, and included additional dense layers. 
The FRCNNSAM model also employed stacked convolu-
tional layers, with the convolution filter size doubling at 
each subsequent layer. The empirical evaluation results, 
as presented in Sect. 4.5, provide compelling evidence of 
the exceptional performance of the FRCNNSAM model 
compared to the previously proposed structure by Özsert 
Yiğit & Özyildirim [29]. The FRCNNSAM's ability to 
achieve higher accuracy and robustness in food image 
recognition can be attributed to the thoughtful integration 
of advanced techniques and architectural adjustments.

4.2  Data Preprocessing

Before the training of the FRCNNSAM model, images com-
ing from the datasets were pre-processed by resizing and 
augmenting them. Resizing images is a crucial step in deep 
learning as it enables the model to learn more effectively 
from small-sized images. Additionally, data augmentation 
was implemented on the dataset, employing techniques such 
as shearing, rotation, or flipping to generate new iterations 
of the images. This process is done to create a more diverse 
and robust dataset that can mitigate overfitting and enhance 
the accuracy and robustness of the model [21].

To streamline the handling of image datasets and create 
a diverse training dataset, we utilized the Keras ImageData-
Generator class. This powerful tool from the Keras library 
facilitates the generation of image data batches and offers a 
wide range of options for pre-processing and data augmenta-
tion, making it particularly effective for training deep learn-
ing models, including CNN (R. H. [3]. A summary of the 
data augmentation parameters used with the image data gen-
erator can be found in Table 1. While constructing the three 
different models, we fine-tuned these parameters to achieve 
improved accuracy. Although some values were altered to 
optimize performance, the values presented in Table 1 were 
ultimately found to yield superior results.

4.3  Overfitting and Underfitting

In deep learning, two common challenges are overfitting 
and underfitting. Overfitting arises when a model is exces-
sively fine-tuned to a limited dataset, causing it to struggle 
with generalizing to new data. In these situations, the model 
performs well on training data but poorly on unknown data. 
On the other hand, underfitting happens when a model per-
forms poorly on both the training data and unseen data due 
to insufficient training on the available data. To mitigate the 
risks of underfitting and overfitting, it is crucial to utilize 
a sufficiently large training dataset and employ strategies 
like early stopping and regularization to prevent the model 
from becoming overly complex. Additionally, evaluating the 
model on a held-out dataset is imperative to ascertain its 
capacity to generalize to new data [2, 31]).

Table 1  ImageDataGenerator 
parameters

Image data generator table

Parameters Values

Rescale 1/0.255
Rotation range 20
Height shift Range 0.2
Width shift range 0.2
Zoom range 0.3
Shear range 0.2
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To address overfitting and underfitting in the FRC-
NNSAM model, several methods were employed:

Data augmentation was applied to introduce random 
transformations to the existing training data, effectively 
generating additional training samples. This strategy aids in 
preventing overfitting by providing the model with a more 
extensive and varied dataset to learn from.

Regularization, a strategy that enforces a penalty on the 
model's objective function during training, is renowned 
for curbing model complexity and mitigating overfitting 
to the training data [14]. Within the context of the FRC-
NNSAM model, regularization was implemented in two 
key steps. Firstly, weight initialization was introduced, care-
fully selecting initial values for the neural network's layer 
weights to maintain activation variation across layers. Sec-
ondly, L2 regularization, also referred to as weight decay, 
was employed. This approach introduces constraints on the 
weights of the network through an additional term in the loss 
function, penalizing weights that are too large. By encourag-
ing the network to learn fewer impactful weights, the risk of 
overfitting is mitigated, consequently enhancing the model's 
overall performance. The L2 regularization term is included 
in the loss function to achieve this goal.

The term 'original_loss' in Eq. (4) above denotes the loss 
that the network would experience in the absence of regu-
larization. 'w' refers to a vector that contains the weights 
in the network, and 'λ' is a tuning parameter that regulates 
the regularization strength. A higher value for 'λ' intensifies 
regularization, whereas a lower value reduces its impact. 
While L2 regularization is effective at countering overfit-
ting, it may also introduce challenges during training. This 
is because the regularization term can add complexity to the 
loss function, making it more intricate to optimize. Hence, 
the careful selection of 'λ' is imperative, and experimenta-
tion with different values is advisable to determine the most 
suitable choice for a given scenario.

4.4  Model Evaluation Metrics

The process of model validation involves dividing the 
available data into two separate sets, namely the test set 
and training set. The training set is used to train the model, 
and the test set is used to assess its performance. In this 
case, a 75%–25% split was utilized to train and test the 
FRCNNSAM model respectively. To evaluate the model’s 
performance, various metrics such as accuracy, precision, 
recall, and f1-score were utilized.

The formulas presented below define accuracy, predic-
tions, recall, and F1 score:

(4)loss = originalloss + � ∗ sum(w2)

TN (True Negatives): Denotes the count of negative 
samples correctly classified by the model.

TP (True Positives): Represents the count of positive 
samples accurately classified by the model.

FN (False Negatives): Indicates the count of negative 
samples inaccurately classified by the model.

FP (False Positives): Signifies the count of positive 
samples inaccurately classified by the model.

4.5  Simulation & Result

The FRCNNSAM model was trained on a high-perfor-
mance system, equipped with an  Intel®  Core™ i9-9900 k 
processor running at 3.60  GHz, 32  GB of RAM, and 
operated on a 64-bit operating system. This system was 
optimized for machine learning tasks and featured Nvidia 
compatibility, including the powerful Nvidia GeForce 
RTX 2080 Ti graphics card. Renowned for its robust 
performance within NVIDIA's lineup, the graphics card 
boasted 11 GB of GDDR6 memory and 4352 CUDA cores, 
making it exceptionally well-suited for handling complex 
graphical and computational operations, particularly in 
machine learning applications. The development environ-
ment for the FRCNNSAM model was established using 
Anaconda, providing a streamlined and efficient platform 
for model development. During the training phase, the 
FRCNNSAM model demonstrated impressive efficiency, 
with training times ranging from a minimum of 942 s to 
a maximum of 966 s. This optimized training environ-
ment significantly accelerated the learning process for the 
FRCNNSAM model, ensuring effective and timely model 
development.

In this study, we evaluated the performance of the FRC-
NNSAM ensemble model by training three distinct mod-
els with varying configurations of dense layers and layer 
parameters, as detailed in Sect. 4.1. For the training pro-
cess, we utilized two datasets: the Food-101 dataset and the 
MA_Food-121 dataset, as described in Sect. 3.1.

Each model underwent training for 200 epochs, and the 
results are as follows:

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)f1 =
2(precision ∗ recall)

Precision + recall
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• The first model achieved an accuracy of 94.11% on the 
Food-101 dataset.

• The second model attained an accuracy of 93.85% on the 
Food-101 dataset.

• The third model showcased a notable accuracy of 91.48% 
on the Food-101 dataset.

Although, the base model exhibited commendable perfor-
mance across various metrics. However, with the strategic 
integration of a self-attention mechanism, notable enhance-
ments were observed across all metrics, particularly in 
model generalization capabilities. This augmentation under-
scored the discernible impact of leveraging self-attention 
mechanisms to further refine and optimize the model's pre-
dictive capacity.

To develop the FRCNNSAM ensemble model, we 
employed the methodology described in Sect. 3.3, which 
involved obtaining the predicted class probabilities from 
each individual model. By averaging these probabilities, 
we constructed the ensemble model, which demonstrated 
exceptional performance on the Food-101 dataset, achieving 
an accuracy of 96.40%.

Additionally, we applied the same approach to build an 
ensemble model using the MA Food-121 dataset, resulting 
in a commendable accuracy of 95.11%. In order to guarantee 
a thorough assessment, both datasets were split into subsets 
for training and validation, with 75% of the images going 
to training and the remaining 25% going to validation. This 
approach allowed us to assess the models' generalization 
capabilities on previously unseen data, providing reliable 
and robust results.

The outcomes of our study highlight the effectiveness of 
the FRCNNSAM ensemble model in food image recogni-
tion, with strong performance on multiple datasets. These 

results underscore the potential of ensemble learning to 
enhance the recognition capabilities of CNN-based models 
and demonstrate the significance of our proposed model to 
the food image classification task.

The visual representation of our results is presented in the 
figures below, which include the loss and validation plots, as 
well as the model test results plot (Figs. 7, 8, 9).

To evaluate the FRCNNSAM ensemble model's capacity 
to generalize to unfamiliar data, a selection of random food 
images from both the Food-101 and MA Food-121 datasets 
was sourced from the internet. The test results are presented 
below.

The simulation results we obtained indicate that the FRC-
NNSAM model excelled in the classification and identifica-
tion of food images, demonstrating its suitability for various 
food image recognition tasks.

4.6  Model Comparison

As discussed in Sect. 2, various CNN-based architectures 
have been employed, and Table 2 above showcases the 
results of some of these studies that utilized the same data-
set. Notably, Aguilar et al. [5] acknowledged that using sin-
gle CNN models and architectures yielded limited results, 
leading to the adoption of ensemble modeling as a common 
approach to improve accuracy and robustness.

Ensemble modeling has shown great promise in food 
image recognition, as demonstrated by Aguilar et al. [5] 
and Fakhrou et al. [13] with their utilization of trans-
fer learning techniques, employing CNN models like 
ResNet50, InceptionV3, DenseNet201, and InceptionV3. 
Additionally, Qui et al. [32] introduced the PAR-NET, a 
combination of three sub-networks classifying original full 
input images, images with discriminative regions erased, 

Fig. 7  Food-101 training, validation and loss function plot
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and cropped and upsampled discriminative regions. How-
ever, the PAR NET's performance limitations stem from 
the necessity of maintaining independent sub-networks for 
different tasks.

The results presented in Table 2 showcase the commend-
able performance of the FRCNNSAM model, surpassing 
other underlying models that utilized the same dataset. The 
FRCNNSAM model incorporates advanced techniques, such 

Fig. 8  MA Food-121 training, validation and loss function plot

Fig. 9  FRCNNSAM model test results
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as scaled dot-product attention and ensemble modeling, con-
tributing to its high accuracy and efficiency in food recogni-
tion. In comparison to previous research, Özsert Yiğit and 
Özyildirim [29] also developed a CNN model without utiliz-
ing transfer learning technique, however the FRCNNSAM 
model outperformed their proposed model by integrating 
diverse cutting-edge techniques. The high accuracy of the 
FRCNNSAM model can be attributed to several factors, 
including strategic placement of a Batch-normalization layer 
after the convolutional layer provided stability during train-
ing and accelerated convergence, the inclusion of extra dense 
layers to capture intricate patterns, and the incorporation of 
a self-attention mechanism to identify meaningful patterns. 
Over-fitting was prevented and generalization was improved 
by employing regularization techniques such as weight ini-
tialization and l2 regularization.

The integration of the scaled dot product attention mech-
anism into the model architecture significantly bolstered 
robustness and generalization capabilities. This observation 
aligns well with the findings elucidated by Zhao et al. [39], 
emphasizing the efficacy of attention mechanisms in enhanc-
ing model performance and adaptability.

Furthermore, our research recognizes the importance of 
sophisticated imaging systems, as highlighted by García-
Armenta and Gutiérrez-López [17], in understanding food 
micro-structure. In our research, advanced imaging tech-
niques have been instrumental in comprehending the fea-
tures and patterns within food images, leading to improved 
accuracy in the food recognition system. The potential for 
interdisciplinary collaborations between computer vision 
researchers and food scientists is evident, where insights 
from food micro-structure analysis can inform and enhance 

the development of accurate and robust food recognition 
systems, paving the way for future research and exploration.

Overall, our research demonstrates that CNN models 
built without transfer learning can achieve comparable 
performance to those using transfer learning techniques. 
Proper fine-tuning, parameter adjustments, and integration 
of advanced techniques play crucial roles in maximizing 
the model's accuracy. These results support the notion that 
ensemble modelling and advanced CNN architectures sig-
nificantly contribute to enhancing food image recognition 
systems, enabling accurate dietary assessment and ultimately 
improving public health.

5  Conclusions & Recommendation

5.1  Conclusion

In this study, we developed an automated food recognition 
model named FRCNNSAM, utilizing a CNN architecture for 
its development. The task involved training the model to cat-
egorize and identify distinct food categories in images, with 
potential applications in various domains. The FRCNNSAM 
model was carefully designed, incorporating insights from 
related research and experiments to create an effective 
ensemble model with optimized architectural configura-
tions. Drawing inspiration from the experiment conducted 
by Josephine et al. [19], we developed three different mod-
els, each taking advantage of different CNN architectures. 
The experiment results aligned with Josephine et al.'s find-
ings, as models with six dense layers demonstrated better 
performance. Two novel datasets, the food-101 dataset with 

Table 2  FRCNNSAM model 
comparison with other models

Model comparison

Datasets Research works Method Accuracy (%) F1 Score Precision

Food-101 Bossard et al. [10] Random forest 50.76 NA NA
Özsert Yiğit & Özyildirim [29] Convolution 

neural network 
(CNN)

73.80 NA NA

Liu et al. [22] GoogleNet 77.40 NA NA
VijayaKumari et al. [35] EfficientNetB0 80.16 81% 83%
Attokaren et al. [8] Inception V3 86.97 NA NA
Hassannejad et al. [18] Inception V3 88.28 NA NA
Qui et al. [32] PAR-NET 90.4 NA NA
Current paper FRCNNSAM 96.40 97.0% 97.55%

MAFood-121 Aguilar et al. [4] RUMTL 83.82 85.02% 86.40%
Fakhrou et al. [13] Ensemble 84.95 NA NA
Aguilar et al. [5] ResNet50 83.16 NA NA
Aguilar et al. [5] Inception V3 86.94 NA NA
Aguilar et al. [5] FS_UAMS 88.95 NA NA
Current paper FRCNNSAM 95.11 95.60% 96.04%
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101 food classes and 101,000 images and the MA Food-121 
dataset with 121 food classes and 21,175 food images, were 
used to train the FRCNNSAM model. With the Food-101 
dataset, the FRCNNSAM ensemble model demonstrated a 
remarkable accuracy of 96.40%, while with the MA Food-
121 dataset, the FRCNNSAM ensemble model demonstrated 
a respectable accuracy of 95.11%. These results further dem-
onstrate that CNN models built without the use of transfer 
learning techniques can achieve comparable performance to 
those utilizing transfer learning, especially when advanced 
state-of-the-art techniques are integrated. The high accu-
racy of the proposed FRCNNSAM model can be attributed 
to the incorporation of diverse advanced cutting-edge tech-
niques. Notably, the model benefited from the inclusion of 
a self-attention mechanism and ensemble modelling. Data 
pre-processing using the ImageDataGenerator function 
was employed to generate additional training data, prevent-
ing over-fitting and enhancing generalization capabilities. 
Additionally, to control model complexity and penalize large 
weights, regularization strategies including weight initializa-
tion and l2 regularization were used, which enhanced perfor-
mance. These techniques contributed to the model's ability 
to effectively recognize and categorize different food items.

In conclusion, our study presents an effective FRC-
NNSAM model for automated food recognition, achieving 
state-of-the-art accuracy without relying on transfer learn-
ing techniques. The integration of advanced techniques, 
data pre-processing, and regularization played key roles in 
maximizing the model's accuracy. The results highlight the 
potential of building CNN models without utilizing transfer 
learning techniques and highlight the importance of employ-
ing advanced methods in the field of food image recognition.

5.2  Recommendation

Based on the research's findings, a number of recommenda-
tions can be made for future endeavours to improve the FRC-
NNSAM model's applicability and performance in automated 
food recognition tasks. Firstly, it is critical to investigate the 
use of cutting-edge methodologies beyond scaled dot-prod-
uct attention and ensemble modelling for heightened model 
accuracy and robustness. Additionally, considering the use of 
diverse datasets, a potential future exploration could involve 
combining the separate datasets used to develop a novel data-
set, allowing for a comprehensive evaluation of the ensemble 
model's performance on a wider range of food classes and 
variations. Furthermore, to assess the model's generalization 
capabilities, it is highly recommended to evaluate the FRC-
NNSAM model on larger and more diverse datasets, provid-
ing valuable insights into its real-world performance and its 

ability to handle a broader set of input variations. Moreover, 
in practical applications such as dietary assessment tools or 
food recognition mobile apps, deploying the FRCNNSAM 
model will allow for a better understanding of its usability 
and effectiveness in promoting public health through improved 
nutrition monitoring. Additionally, focusing on the interpret-
ability and explainability of the model is essential. Employ-
ing visualization techniques like feature visualization, saliency 
maps, or model explainability methods such as Grad-CAM 
will contribute valuable information about the model's deci-
sion strategy and enhance the trust and interpretability of its 
predictions. Incorporating these recommendations into future 
research endeavours can significantly contribute to advanc-
ing the understanding and performance of the FRCNNSAM 
model, ultimately leading to more robust and accurate results 
in food image recognition. Furthermore, the potential for inter-
disciplinary collaborations between computer vision research-
ers and food scientists is evident. Leveraging insights from 
food micro-structure analysis to enhance the development of 
accurate and robust food recognition systems offers intriguing 
avenues for future research and exploration, further contribut-
ing to improved public health and dietary assessment practices.
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