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Abstract
Stroke is one of the leading causes of long-term disabilities in motor and cognition functionality. An early and accurate pre-
diction of rehabilitation outcomes can lead to a tailor-made treatment that can significantly improve the post-stroke quality 
of life of a person. This scoping review aimed to summarize studies that use Artificial Intelligence (AI) for the prediction of 
language and cognition rehabilitation outcomes and the need to use AI in this domain. This study followed the PRISMA-
ScR guidelines for two databases, Scopus and PubMed. The results, which are measured with several metrics depending on 
the task, regression, or classification, present encouraging outcomes as they can predict the cognitive functionality of post-
stroke patients with relative precision. Among the results of the paper are the identification of the most effective Machine 
Learning (ML) algorithms, and the identification of the key factors that influence rehabilitation outcomes. The majority of 
studies focus on aphasia and present high performance achieving up to 97% recall and 91.4% precision. The main limitations 
of the studies were the small subject population and the lack of an external dataset. However, effective ML algorithms along 
with explainability are expected to become among the most prominent solutions for precision medicine due to their ability 
to overcome non-linearities on data and provide insights and transparent predictions that can help healthcare professionals 
make more informed and accurate decisions.
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Abbreviations
AI  Artificial intelligence
ML  Machine learning
DL  Deep learning
DNN  Deep neural networks

RL  Reinforcement learning
MSE  Mean squared error
RMSE  Root mean squared error
CBF  Cerebral blood flow
FA  Fractional anisotropy
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fMRI  Functional magnetic resonance imaging
rsf-MRI  Resting state functional magnetic resonance 

imaging
CV  Cross-validation
RF  Random forest
SVM  Support vector machine
SVR  Support vector regression
RFE  Recursive feature elimination
SOM  Self-organizing map
AAT   Aachen aphasia test
LOOCV  Leave one out cross validation
MADP  Mean absolute deviation percentage
AUC   Area under curve
MRI  Magnetic resonance imaging
SHAP  SHapley Additive exPlanations
IQ  Intelligence quotient
WAB-R  Western Aphasia Battery-Revised
MMSE  Mini-Mental State Examination
BI  Barthel Index
FIM  Functional Independence Measure
LRS  Language Recovery Score
LUQ  Language Use Questionnaire
BNT  Boston Naming Tests
PAPT  Pyramids and Palms Trees test
PNT  Philadelphia Naming Test
fALLF  Fractional amplitude of low-frequency 

fluctuations

1 Introduction

1.1  Backdrop

Stroke is not only the second greatest cause of death among 
adults, but also the primary cause of acquired disability, 
with a significant negative impact on long-term functional 
independence of stroke survivors [1]. Given the age-related 
nature of the disease and the fact that nearly two-thirds of 
stroke patients are over 65, it is anticipated that the overall 
burden of stroke will significantly increase, along with the 
number of stroke survivors, as a result of ongoing global 
population growth and significant improvements in life 
expectancy [2].

Aphasia, defined as an acquired impairment in language 
production and/or comprehension, is among the most com-
mon complications of stroke affecting 21–38% of acute 
stroke individuals [3]. Cognition, a term referring to the 
mental processes involved in gaining knowledge and com-
prehension, such as thinking, knowing, remembering, judg-
ing, and problem-solving, is also frequently affected as rates 
of cognitive impairment post-stroke range from 35 to 92% 
[4]. Aphasia and cognitive impairment both have drawbacks 
that can include hampered daily living activities, lost pay, 

higher health care costs, loss of freedom, and social isola-
tion [3]. A person's post-stroke quality of life can be greatly 
enhanced by a treatment that is specifically designed for 
them if language and cognition rehabilitation outcomes can 
be predicted early and accurately.

AI is widely used in the medical field to create precision 
medicine, aiming to enable personalized diagnoses and treat-
ments for each patient. The era of big data has allowed AI 
algorithms to predict and diagnose diseases with equal and 
sometimes superior accuracy than humans. The diagnosis 
and treatment of stroke require a vast amount of data and 
multi-disciplinary approaches, making it convenient for pre-
cision medicine [5]. In this study, we focus on post-stroke 
cognitive functionality prediction with ML algorithms, as it 
is under-represented in relation to motor function recovery 
after stroke.

1.2  Prior Research

According to Horn et al. [6], early prediction or diagnosis 
is crucial, as treatment is more effective when applied early 
after a stroke because the first few weeks after the stroke 
are the most important for brain reorganization. Therefore, 
an accurate prediction of post-stroke language outcomes is 
significant in order for rehabilitation therapy to meet indi-
vidual needs [7]. To do this, the relationship between the 
data like neuroimaging, clinical, etc. must be found. Classi-
cal models used for statistical analysis such as ANOVAs [8], 
t-tests [9], etc. are limited to finding only linear relationships 
[10]. However, some studies [11, 12] have shown that brain-
behavior relationships are not always linear. The majority of 
ML algorithms are able to find non-linear patterns for more 
effective solutions, which is why AI is an essential tool in 
modern medicine [13].

Research in this particular field faces a considerable con-
straint in terms of its scope and depth, primarily due to the 
limited number of studies available. Moreover, these studies 
often grapple with a range of challenges, the most promi-
nent being the scarcity of comprehensive and standardized 
datasets. These collective limitations inevitably pose a for-
midable hurdle when it comes to drawing unequivocal and 
far-reaching conclusions about the current landscape of this 
field. Nonetheless, it is noteworthy that certain trends and 
patterns have emerged within these studies that merit atten-
tion. Notably, those studies that have managed to achieve 
higher performance metrics appear to favor the utilization 
of advanced techniques such as deep learning (DL) models 
[14], support vector machines (SVM) [15], and random for-
ests (RF) [10]. This preference suggests that these sophisti-
cated algorithms hold promise in extracting valuable insights 
from the data available in this domain. Furthermore, it is 
worth highlighting the intriguing observation that surveys 
and investigations specifically employing neuroimaging data 
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exhibit a tendency to yield more favorable and promising 
results compared to their counterparts that rely on alterna-
tive types of data. This underscores the pivotal role played 
by neuroimaging images, as they seem to possess a unique 
capacity for revealing critical information that is particularly 
relevant and valuable in this field of study.

1.3  Aim of the Study

Overall, AI has the potential to greatly improve the qual-
ity of life for people who have experienced a stroke. By 
predicting the likelihood of stroke, making accurate diag-
noses, and predicting the likelihood of complications, AI 
can help healthcare professionals to provide better care and 
support for stroke survivors, ultimately leading to improved 
outcomes and a better quality of life. Hence, the aim of the 
present scoping review is to investigate the current state-
of-the-art studies that deploy ML and Deep Learning (DL) 
algorithms for language and cognition rehabilitation out-
comes after stroke [5, 6]. Moreover, it intends to highlight 
the data and models used for this purpose and models’ capa-
bilities. The review will examine the use of various types 
of data, including neuroimaging, demographic, and clinical 
data, and will identify the most effective machine learning 
algorithms and key factors that influence rehabilitation out-
comes. Additionally, this review aims to understand the need 
of AI in this domain, and explore the potential benefits and 
limitations of using AI in the prediction of language and 
cognitive rehabilitation outcomes in post-stroke patients. 
Furthermore, our scoping review distinguishes itself from 
existing literature in several ways. Firstly, we address a nota-
ble gap in the field by concentrating on the prediction of cog-
nitive outcomes following strokes through the utilization of 
artificial intelligence. Most previous studies in this domain 
have primarily focused on predicting post-stroke impair-
ments [16] or exploring the application of artificial intel-
ligence in aphasia rehabilitation [17]. Our research not only 
sheds light on an underexplored area but also contributes to 
a more comprehensive understanding of the predictive capa-
bilities of AI in the context of stroke recovery. Finally, we 
ultimately opted for conducting a scoping review due to its 
suitability in the context of mapping a continuously evolv-
ing and expansive research domain, as well as its effective-
ness in pinpointing existing gaps and unanswered questions 
within the field.. Additionally, our primary aim is not cen-
tered around conducting quantitative accuracy comparisons 
due to the inherent diversity within the available dataset. 
Instead, our research is oriented towards achieving more 
qualitative objectives. These qualitative objectives pertain to 
the evaluation of various methodologies employed, the thor-
ough examination of clinical parameters under study, and a 
comprehensive assessment of the conducted evaluations. In 
essence, our study places greater emphasis on qualitative 

aspects rather than quantitative accuracy comparisons, as 
we believe these facets offer a richer understanding of the 
research landscape.

1.4  Artificial Intelligence in a Nutshell

Artificial Intelligence encapsulates the realm of computer 
science dedicated to creating machines and systems that 
mimic human intelligence. By leveraging techniques like 
machine learning, neural networks, and natural language 
processing, AI enables computers to perform tasks that typi-
cally require human cognitive functions, such as problem-
solving, decision-making, and language understanding.

ML is a subfield of artificial intelligence, and its main 
goal is to simulate human behavior using data. ML algo-
rithms are divided into three categories: supervised, unsu-
pervised, and reinforcement learning (RL). In the first cat-
egory, the data used for training are labeled while in the 
second, the data are unlabeled and the algorithms look for 
patterns. In RL, machines are trained through trial-and-error 
procedures in order to take action. Supervised ML consists 
of two phases, the learning and testing phases. Predicting 
cognitive functionality uses supervised machine learning as 
there is a plethora of labeled data for training and algorithms 
find patterns to perform best in the testing phase. The most 
prevalent ML algorithms are classification and regression 
models for supervised learning and the clustering models 
[18] for unsupervised learning. In the classification, the ML 
algorithm classifies an input into specific discrete values. On 
the contrary, regression models predict a continuous value 
for a specific input. In clustering models, unlabeled data 
are given to the algorithm and then it learns to group the 
similar data points. A traditional ML system starts with the 
feature selection stage to extract the most useful features 
of the given data which are then fed into the model. Next, 
during the training, a validation strategy is applied for the 
optimization of the model’s parameters.

Deep Learning is a subfield of artificial intelligence and 
machine learning where complex neural networks simulate 
the human brain’s intricate learning process. Utilizing multi-
ple layers of interconnected nodes, deep learning algorithms 
unearth patterns, representations, and features from vast 
datasets, enabling remarkable breakthroughs in image and 
speech recognition, natural language processing, and more. 
This approach’s power lies in its capacity to autonomously 
learn from data, gradually enhancing its performance with 
each iteration. As technology evolves, the concise yet pro-
found concept of deep learning continues to reshape indus-
tries, pushing the boundaries of what machines can achieve.

Numerous metrics were applied to the models to assess 
their performance [19]. For regression problems were mainly 
used the mean squared error (MSE), the root mean squared 
error (RMSE), and  R2. The MSE computes the average of 
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the squares of the difference between the estimated and 
actual value. The RMSE computes the root of MSE while 
 R2 is the difference between the samples in the dataset and 
the predictions made by the model and it ranges between 0 
and 1. Also, Accuracy, F1 score, Recall and Precision were 
used for classification problems. These metrics consist of 
four values, True Positive (TP), True Negative (TN), False 
Positive (FP) and False Negative.

1.5  Rehabilitation and AI

The combination of rehabilitation and AI utilizes cutting-
edge technology in the field of healthcare, improving the 
way individuals recover from injuries and medical condi-
tions [20]. By integrating artificial intelligence into reha-
bilitation processes, personalized treatment plans can be 
created based on a patient’s unique needs and progress [21]. 
AI-powered devices and systems facilitate real-time moni-
toring, data analysis, and adaptive adjustments to therapy 
regimens [22]. Whether it’s using wearable sensors to track 
movement, virtual reality simulations for cognitive rehabili-
tation, or robotic assistance for physical therapy, the synergy 
between rehabilitation and AI holds the potential to enhance 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Recall =
TP

TP + FN

(3)Presision =
TP

TP + FP

(4)F1score =
2 ∗ TP

2 ∗ TP + FP + FN

patient outcomes, accelerate recovery, and improve the qual-
ity of patients’ lives.

1.6  Cognitive Functionality Indicators

The assessment of language outcomes after stroke is not an 
easy task; therefore, several indicators have been proposed 
to quantify cognitive functionality objectively. The majority 
of predictive models use these indicators for both training 
and prediction. The most used indicator was the Western 
Aphasia Battery-Revised (WAB-R) which is responsible for 
the evaluation of linguistic skills, mainly affected by aphasia. 
In Table 1, indicators used in the papers we studied with 
corresponding abbreviations are presented.

2  Materials and Methods

The 22-item Preferred Reporting Items for Systematic 
reviews and Meta-Analyses extension for Scoping Reviews 
(PRISMA-ScR) was used for the present scoping review 
[31]. Our study’s methods were designed a priori.

2.1  Research Strategy

Structured literature research in two well-known and rela-
tive databases (PubMed and Science Direct) was conducted 
by two investigators up to 30 August 2023 using five crite-
ria, to ensure a comprehensive coverage of the literature. 
The first includes the keywords “aphasia” or “cognitive” or 
“language”, the second the keywords “prediction” or “prog-
nosis”, the third the keywords “rehabilitation” or “therapy” 
or “physiotherapy” or “speech”, the fourth the keywords 
“machine learning” or “deep learning” or “artificial intel-
ligence” while the fifth contains “stroke” or “brain ischemia” 
or “cerebral ischemi*” or “post stroke” or poststroke. The 

Table 1  Abbreviations and Acronyms of indicators

Abbreviation Acronyms Description

WAB-R [23] Western Aphasia Battery-Revised WAB-R assesses language skills after aphasia
MMSE [24] Mini-Mental State Examination MMSE tests cognitive function including concentration, orientation, verbal memory, naming, 

attention, and visuospatial skills
BI [25] Barthel Index BI measures the ability of a subject to function independently
FIM [25] Functional Independence Measure FIM assesses independence for self-care
LRS [7] Language Recovery Score LRS is an indicator that represents the overall language impairments
LUQ [26] Language Use Questionnaire LUQ provides information about the history of language exposure. (For multilingual subjects)
BNT [27] Boston Naming Tests BNT is a psychometric tool that aims to assess if a patient can retrieve from his memory the 

naming of objects in pictures
PAPT [28] Pyramids and Palms Trees test PAPT is similar to BNT and it has the same goal
PNT [29] Philadelphia Naming Test PNT is a test of 175 pictures that should be named by patients
fALLF [30] Fractional amplitude of low-

frequency fluctuations
fALLF is a neuroimaging method that evaluate brain activity and function
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retrieved articles were further screened for potentially rel-
evant articles.

2.2  Selection Criteria

The present study includes only full-text original articles 
which published in English. Also, conferences, analyses, 
reviews, case reports, meeting summaries, or unpublished 
abstracts were excluded. There was no restriction on study 
design or sample characteristics. The retrieved articles were 
screened in depth to ensure that all relevant articles were 
included.

2.3  Eligibility Criteria

The applied criteria were the following: (i) papers that pre-
dict language or cognitive outcomes after stroke; (ii) studies 
that applied AI algorithms, including ML or DL algorithms.

2.4  Data Extraction

A custom predefined data form was created in Microsoft to 
record key variables from each study, aiming to minimize 
error and standardize our approach. We recorded authors, 
year of publication, category of patients, application domain 
(aphasia or cognition), intervention applied on patients, 
data used for training the algorithms, number and age of 
participants, indicators used to quantify impairments, AI 
algorithms along with feature engineering and validation 

techniques and the results. To enhance the reliability of our 
data extraction process, two independent reviewers (K.A. 
and C.K.) assessed the extracted data. In case of disagree-
ment, a third reviewer (S.M.) was consulted to resolve the 
discrepancies.

2.5  Data Analysis

To evaluate the effectiveness of the proposed methods, we 
employed a variety of metrics, including Accuracy, Recall, 
RMSE, and MSE, which are elaborated upon in Sect. 1.1. 
Additionally, we have incorporated an analysis of model 
complexity into our survey to facilitate a more objective 
comparison. In Sect. 3, we provide a comprehensive over-
view of each study, presenting all relevant metrics along-
side the number of subjects and outcome assessments. This 
approach aims to offer a holistic understanding while simul-
taneously minimizing potential biases.

3  Results

In total, 95 studies were retrieved: 47 from PubMed and 45 
from Science Direct. After excluding duplicated, and irrele-
vant studies, 16 papers were selected. Finally, after screening 
the full text of the papers, 9 articles were included. Figure 1 
presents the PRISMA flowchart.

The selected studies focus on aphasia severity or predic-
tion and on cognitive functionality prediction.

Fig. 1  PRISMA flowchart
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3.1  Statistics

In this section, are presented figures with statistics that 
extracted from the above studies and the Table 2 which 
summarizes the most useful information of them. Figure 2 
shows the trend of AI in prediction of cognitive function-
ality while Figs. 3 and 4 show the distribution of models 
and data respectively.

As depicted in Fig. 2, there is a growing interest in 
the use of ML for predicting cognitive rehabilitation out-
comes following stroke. The figure shows that one paper 
was published in each of the years 2010, 2017, 2018, and 
2020, whereas in 2021 and 2022, three and two papers 
were published, respectively. These findings suggest a 
recent surge in research efforts focused on utilizing ML 
to enhance stroke rehabilitation outcomes, which may be 
attributed to the increased availability of large datasets and 
advanced computational tools.

Figures 3 and 4 display the various models and types 
of data utilized in the 9 studies included in our review. It 
is worth noting that most studies employ multiple models 
and data types, which is why multiple models are depicted 
in the figures. For example, one study [32] used 10 differ-
ent models to provide a comprehensive analysis of cogni-
tive rehabilitation prediction. Additionally, we observed 
certain patterns among the models and types of data used. 
All studies that utilized SVMs also used neuroimaging 
data, and two out of three of these studies also included 
demographic data. Similarly, RF was commonly used in 
conjunction with these data types, suggesting that they 
provide valuable information that these models are well-
suited to capture. These observations provide insights into 
the most effective combinations of models and data types 
for predicting cognitive rehabilitation outcomes following 
stroke.

Table 2 presents the results from the studies included in 
current review. The Table 2 is split into three parts depend-
ing on the complexity of models. The first category, “Low 
Complexity” contains studies that use simple ML models, 
while the second and the third part contains studies with 
“Intermediate” and “High” complexity respectively. Studies 
where, experienced with several ML models, were included 
in the part that their best model belongs. In the “Low Com-
plexity” category belong K-Nearest Neighbors (KNN) which 
is a relatively simple algorithm, the ElasticNet which is a 
linear regression method that combines L1 and L2 regu-
larization techniques and SOM that is an unsupervised and 
dimensionality reduction method. The “Intermediate Com-
plexity” category includes classical ML models such as 
SVM, RF that are more complex than simple linear models. 
In the last category, included complex models like DNNs 
which consist of multiple layers and nodes. Finally, in each 
part of the table, studies were sorted by year.

3.2  Aphasia

Sigfus Kristinsson et al. [33] studied the prediction of lan-
guage outcomes in chronic aphasia using multiple neuro-
imaging modalities in order to analyze further the neuro-
biological substrates of aphasia. 116 subjects with chronic 
left-hemisphere stroke took place in this study. Neuroimag-
ing data were acquired on the Siemens 3 T MRI scanner 
and consisted of cerebral blood flow (CBF), diffusion-based 
fractional anisotropy (FA) values, functional magnetic reso-
nance imaging (fMRI), and lesion-load data. Western Apha-
sia Battery (WAB) was used for the evaluation of language 
out-comes and aphasia severity using specific sub-scores 
such as Auditory Comprehension, Naming, Spontaneous 
Speech, Speech Repetition, Fluency, and Aphasia Quotient. 
They applied univariate regression analysis to reduce the 
features in the data and then fed it into a Support Vector 
Regression (SVR) model to predict language measures. ten-
fold cross-validation (CV) was implemented for the evalu-
ation of the model. Experiments were performed with three 
different combinations of data: (i) lesion volume alone, (ii) 
each neuroimaging modality alone, and (iii) a blend of all 
modalities. The latter per-formed the best accuracy with 
Pearson’s correlation 0.53–0.67.

Pustina et al. [6] developed a multimodal framework 
named STAMP, which is based on three neuroimaging 
modalities (structural connectivity, lesion maps, and func-
tional connectivity) and aims to predict four aphasia scores. 
The study consists of 53 left hemispheric chronic post-stroke 
patients. The proposed framework can be de-scribed by two 
main elements: Random Forest (RF) and prediction stack-
ing. STAMP achieved high accuracy in all aphasia scores 
and ranges from 79 to 88%. Moreover, Recursive Feature 
Elimination (RFE) was applied aiming to remove irrelevant 
features and identify useful topological information in the 
brain. Finally, authors concluded that the multimodal per-
spective could play a significant role in translating neuroim-
aging research into clinical tools.

Another study that investigated the response to a lan-
guage treatment was done by Billot et al. [15]. This research 
includes 55 patients with chronic poststroke aphasia who 
received 12 weeks of language treatment. Several assess-
ments were implemented on patients, such as the WAB-
Revised etc., in order to collect language measurements. 
They trained two ML models, Support Vector Macnine 
(SVM) and RF; however, SVM trained on demograph-
ics, measures of anatomic integrity, aphasia severity, and 
resting-state functional connectivity was the most effective 
achieving 94% F1 score. This study concluded that training 
a model with a subset of multimodal neuroimaging, behav-
ioral, and demographic data is the most effective method. 
In addition, the authors stated that resting-state functional 
connectivity (e.g., rsfMRI), aphasia severity, and anatomical 
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integrity were consistently critical predictors of language 
therapy prognosis.

Saur et al. [5] examined the utility of functional MRI 
(fMRI) scans to predict language recovery six months after 
stroke in 21 stroke patients with aphasia. Patients’ assess-
ment was held with the Aachen Aphasia Bedside Test and 
the subtests: naming, repetition, writing, and auditory/speak-
ing from the Aachen Aphasia Test (AAT), An SVM was 
deployed in order to predict if a patient would have a good 
or bad language outcome after six months. Experiments 
performed with fMRIs and fMRIs along with LRS and age. 
LRS corresponds to a univariate indicator of the overall level 
of language impairment and allows the separation of patients 
into a wide range of impairments at all stages after stroke. 
Additionally, the authors introduced a novel methodology 
for visualizing the critical points of an fMRI. This helps the 
model pay attention to points that are most significant for 
the predicted outcome. The model with fMRIs achieved 76% 
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Fig. 2  The trend of AI in cognitive functionality prediction. The 
x-axis represents the year, while the y-axis displays the number of 
published studies on this topic over time

Fig. 3  The prevalence of 
machine learning models in the 
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that employed each model

0

1

2

Nu
m

be
r o

f p
ap

er
s

Models

Aphasia Cogni�on

Fig. 4  Bar graph depicting the 
frequency of data types used in 
the papers reviewed. The x-axis 
represents the different types of 
data, while the y-axis shows the 
number of papers that utilized 
each type of data

0

1

2

3

4

5

Nu
m

be
r o

f p
ap

er
s

Types of data

Aphasia Cogni�on



156 Human-Centric Intelligent Systems (2024) 4:147–160

1 3

accuracy, while the model with fMRI + LRS + age achieved 
86%.

Graseman et al. [34] investigated the phenomenon of 
predicting language therapy outcomes in bilingual aphasic 
people, which is complicated because of manifold pre- and 
post-stroke factors. A BiLex model, which consisted of Self 
Organizing Maps (SOM), was deployed in order to simu-
late language deficits and treatment. The study included 13 
bilingual aphasic subjects with native English and Spanish. 
The model aimed to predict the naming ability after rehabili-
tation therapy in one of the above languages. Results were 
encouraging achieving  R2 = 0.989 and  R2 = 0.974 in English 
naming and Spanish naming respectively.

Iorga et al. [35] attempted to predict language outcomes 
after language and speech rehabilitation treatment in one 
of three aphasia impairments: dysgraphia, agrammatism, or 
anomia. The study involved 57 chronic aphasic patients who 
received a three-month therapy in one of the above impair-
ments. The performance of language outcomes was modeled 
using Elastic Net regression. The data they used were resting 
state fMRI (rsfMRI) and behavioral language measures. And 
then they obtained fALFF from rsfMRIs. The results showed 
that behavioral measures provide high performance in ano-
mia  (R2 = 0.948), while fALLF provided high performance 
in agrammatism  (R2 = 0.876) and dysgraphia  (R2 = 0.822).

3.3  Cognitive Function

Kaoru Sakatani et al. [14] developed a Deep Neural Network 
(DNN) in order to predict cognitive function based on blood 
tests and age. The study included 202 subjects, 65 of whom 
were patients, who were hospitalized for rehabilitation after 
a stroke, while 37 and 165 sub-jects were included in the 
healthy group and health examination group, respectively. 
All patients were assessed with MMSE. The DNN had two 
hidden layers with 400 neurons for each layer, and the output 
vector predict-ed the MMSE score. The model was validated 
with the LOOCV method. The DNN achieved 75% sensitiv-
ity and 85% specificity in a binary classification problem 
(normal, MMSE score ≥ 24; cognitive impairment, MMSE 
scores ≤ 23).

Sale et al. [36] collected functional and clinical data from 
55 stroke patients who underwent inpatient rehabilitation, so 
that to investigate these parameters as prognostic indicators 
of treatment response. The treatment concerned motor and 
cognitive improvements, which were measured with several 
techniques such as FIM and T1 BI. Thereafter, the authors 
employed the Mutual Information criterion for feature selec-
tion and then fed them into a linear SVM regression algo-
rithm. Results showed that BI was not highly predictable 
with a 22.6 RMSE, while Cognitive FIM presented a 4.28 
RMSE.

Martinez et al. [32] tried to understand and predict the 
cognitive improvement of stroke patients after rehabilitation 
therapy. This research recruited 201 ischemic stroke patients 
with their demographic information and applied 24 neu-
ropsychology tests in several cognitive domains at admis-
sion. The patient’s improvement was recorded with the same 
tests, whenever they were about to leave the rehabilitation 
center. Twenty ML models were trained aiming to predict 
the global patient’s improvement, which was extracted from 
the indicators of improvement from the admission and dis-
charge cognitive assessments. The most effective model was 
the RF classifier, which achieved 70% Recall. Furthermore, 
the authors emphasized the importance of interpretability in 
such models, and therefore they applied the SHAP method 
to translate the significance of each feature. Results revealed 
that time since injury and admission compliance were the 
most crucial features.

4  Discussion

This scoping review summarizes the use of AI in predicting 
language outcomes after stroke using various types of data, 
with a focus on the significance of AI in cognitive func-
tion prediction. It provides an overview of current research 
on using machine learning algorithms for predicting lan-
guage and cognition rehabilitation outcomes in post-stroke 
patients, highlights the most effective algorithms and data, 
and identifies key factors that influence rehabilitation out-
comes. The aim is to help healthcare professionals under-
stand the potential benefits and limitations of using these 
algorithms and tailor re-habilitation programs to individual 
patients.

The trend of AI in cognitive functionality prediction over 
time is illustrated in Fig. 2. It can be observed that the first 
paper that used AI to predict language outcomes was pub-
lished in 2010. However, there was a gap of several years 
before a systematic publication of related studies began in 
2017. This suggests that while the idea of using AI for cog-
nitive functionality prediction was present early on, it took 
some time for the field to gain momentum and for more 
studies to be conducted and published. The increase in the 
number of publications on this topic in recent years indicates 
a growing interest and investment in the use of AI for cogni-
tive functionality prediction.

The vast majority of studies used traditional ML, while 
only one paper used Deep Neural Networks. The most used 
ML models in both regression and classification tasks, were 
SVM and RF and used in six out of nine studies. These two 
models can explore non-linear patterns, which is a major 
advantage when dealing with multiple datasets. Further-
more, the most prevalent validation strategies for param-
eter optimization were LOOCV and k-fold CV. Most of the 
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studies have few patients (13–57); therefore, LOOCV is 
widely used because it is suitable for small datasets. Fig-
ure 3 shows the distribution of AI models. However, accord-
ing to [37] these validation strategies must be avoided in 
order to reduce over-optimistic results. A reason for the 
small population in studies is the exclusion/inclusion crite-
ria were applied. Five studies used regression models, while 
the rest used classification models. Regression models pre-
dict a continuous value for a specific indicator for cogni-
tive functionality. These studies show encouraging results 
in some tasks presenting a low error. For example, in [10], 
the com-prehension task achieved a 0.9 RMSE using RF 
model. Classification models usually predict if the cogni-
tive improvement will be poor or sufficient. In this task, the 
SVM was the prominent model and it obtained the highest 
performance by achieving 97% Recall.

Different validation techniques, such as hold out, k-fold 
cross-validation, and leave-one-out cross-validation, have 
been used to evaluate the performance of the re-ported 
machine learning models. These techniques help to ensure 
that the model generalizes well to new unseen data, and to 
avoid overfitting. However, the choice of validation tech-
nique can also impact the existence of bias in the model. 
Hold-out was employed in one study [30], that is the most 
common method of validation but it can be prone to bias if 
the dataset is imbalanced or if the test set is not representa-
tive of the population. In contrast, k-fold cross-validation 
was employed in four papers [10, 25, 30, 31] and leave-
one-out cross-validation in another five papers [7, 26–29], 
which split the data into k subsets and use each subset as 
a test set in turn. Cross validation can help to reduce bias 
by ensuring that all data points are used for both training 
and testing. However, these methods may not be suitable 
for small datasets, as they can lead to a high variance in the 
results. Therefore, it is important to consider the size of the 
dataset and the characteristics of the data when choosing a 
validation technique, in order to minimize bias and ensure 
accurate model evaluation.

All studies recruited post-stroke patients, and 6 out of 9 
studies’ patients were chronically aphasic. Each study pro-
vided us with the mean age of subjects, which ranged from 
49.5 to 73.5. Moreover, there were studies with a large popu-
lation, such as [22], which involved 202 subjects, but there 
were also studies with a few patients (13) [20]. Even though 
more data add computational complexity, they offer higher 
accuracy at the same time [38] which is crucial in medi-
cine. The same conclusions were drawn in [39], where it was 
found that the use of larger samples leads to a more accurate 
representation of the population value due to their reduced 
susceptibility to deviation compared to smaller samples, 
which may deviate from the population value in either direc-
tion. On the other hand, it is worth noting that extremely 
large samples may exaggerate the detection of differences, 

highlighting statistical differences that may not be clinically 
significant. [40]. For these reasons, we believe that the use 
of relatively large but representative data sets that include 
patients with a range of severity levels, combined with the 
implementation of appropriate goodness cut-offs to ensure 
reliable results and explainability tools to enhance the trust-
worthiness of the proposed methods [41], will significantly 
advance precision medicine.

Every paper in this scoping review collected data from 
patients through various examinations in order to depict the 
impairments after a stroke. These tests were used to obtain a 
multifaceted picture of the patient's condition because rely-
ing on only one type of data was not sufficient to predict 
language outcomes. The data used by the papers studied in 
this review were a combination of neuroimaging, clinical, 
demographic, behavioral, and blood and neuropsychology 
tests. Almost all studies used multi-modal neuroimaging 
data because it contains rich information about the condition 
of the brain. These neuroimaging data included fMRI, lesion 
maps, and structural and functional connectivity. Figure 4 
presents the distribution of data used in the studies reviewed. 
It is important to note that using a combination of differ-
ent types of data is essential to provide a comprehensive 
understanding of a patient's condition, and to improve the 
accuracy of predictions of language outcomes. Furthermore, 
the use of multimodal neuroimaging data, such as fMRI and 
lesion maps, in particular, provides valuable information 
about the brain's structure and function, which can aid in 
the prediction of language outcomes.

Artificial intelligence models are significant for preci-
sion medicine as they are superior to traditional statistical 
models and they allowed clinicians to develop new therapies 
tailor-made for individuals. This is due to the models’ abil-
ity to discover non-linear patterns for optimized solutions. 
However, ML and DL models are treated as black boxes 
as no one is able to explain why they perform so well. At 
the same time, surveys have questioned the robustness of 
AI models [42]. The combination of the above statements 
has led clinicians to mistrust the ΑΙ models. According to 
Tonekaboni et al. [43], it is important for clinicians to show 
which features are most informative and help the models 
make the right decision. In this way, they can compare their 
pre-diction procedure with that of the model. In this context, 
Martinez et al. [24] was the only study that used an Explain-
ability tool named SHAP (SHapley Additive exPlana-tions) 
[44]. They used SHAP to interpret the performance of the 
model by computing every feature contribution. By provid-
ing more diverse and comprehensive data sets, along with 
the ability to understand and interpret [45] the decisions 
made by machine learning algorithms will lead to the safe 
use of AI.

Almost all studies presented good results, which is 
encouraging for the implementation of AI in medicine. 
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However, there are some contradictions. For instance, 
the study [26] that consists of 55 subjects presents a high 
recall value (97%) while the study [31], which consists of 
201 subjects, presents a significantly lower recall value 
(70.1%). Another similar case are the studies [27, 28], 
where the first achieved almost perfect results  (R2 = 0.989) 
with only 13 subjects while the latter achieved  R2 = 0.876 
with 57 subjects. The only study that utilized deep learn-
ing [29] presented moderate results, with a sensitivity of 
75%. Despite having the largest subject population of 202 
individuals, this study suggests that deep learning algo-
rithms may require a larger sample size to achieve more 
effective results. Although the methods cannot be com-
pared because they use different data and outcome assess-
ments, the fact that methods with small datasets perform 
better raises questions. An explanation may come from the 
study [10, 41] where they argue that small datasets could 
lead to overoptimistic results. Additionally, the majority 
of studies used cross validation strategies. Moreover, all 
studies used one dataset, while one rule for realistic results 
is the consideration of several datasets [32].

The majority of studies that conclude this scoping 
review share a common limitation concerning the popu-
lation of patients. All surveys involve a relatively small 
number of subjects, which means that the results may be 
over-optimistic [10, 46] as mentioned above. In addition 
to that, no study used an external, independent dataset to 
test the performance of its model, leading to doubts about 
the models’ robustness. Another limitation is the fact that 
most of the studies applied feature selection methodolo-
gies, and the majority of them were looking for linear cor-
relation among the features to keep. However, as above 
mentioned, cognitive functionality prediction may require 
non-linear correlations, and as a consequence, the authors 
removed features that may enhance the performance of 
models. Also, Martinez et al. [26] dealt with the limitation 
of sparse data due to the different levels of completeness 
of the cognitive assessment features.

Post-stroke language rehabilitation is a complex issue, 
with several factors that can influence the therapy outcome. 
Among the most frequently studied factors are the patient's 
educational level, premorbid intelligence, and infarct lesions. 
According to Connor et al. [47] educational level may affect 
the severity of aphasia, but not the effectiveness of language 
rehabilitation. However, a later study by Hillis and Tippet 
[48] showed a correlation between educational level and 
post-stroke language rehabilitation indicating that better lan-
guage recovery is associated with a higher educational level. 
In the same study, the extent of the infarct lesion also seems 
to play a role. Moreover, a study by Withall et al. [49] indi-
cated that patients with higher premorbid intelligence quo-
tient (IQ) responded better to treatment. Nonetheless, almost 
all studies included in this review do not take into account 

these factors in their results. Only one study [28] reported 
that their patients had at least a high school education.

Bias is a common issue in all types of research and can 
have a significant impact on the validity of the findings. If 
not managed properly, bias can lead to incomplete or inaccu-
rate representation of the existing literature, which can have 
negative implications for evidence-based decision-making. 
To minimize bias in scoping reviews, we followed a rig-
orous and transparent methodology, including clear inclu-
sion and exclusion criteria, multiple reviewers to validate 
the results, and explicit reporting of any sources of bias or 
limitations. However, it is important to acknowledge that 
the current study is limited in scope, focusing only on a 
very specific field that is the ML-enhanced prediction of lan-
guage and cognition rehabilitation outcomes after a stroke. 
In future work, we plan to expand the scope of our findings 
by conducting a wider study on cognitive functionality after 
a stroke, which will further enhance the readability of the 
findings thus providing a more balanced representation of 
the state of the evidence in the field.

5  Conclusions

This scoping review focuses on the prediction of cogni-
tive functionality after a stroke using ML and DL models. 
Our review found a limited number of studies in this field, 
with only six studies addressing aphasic patients and three 
addressing cognitive functionality impairments. Our findings 
revealed that of the 9 reviewed studies, only one utilized DL 
algorithms, while the rest employed ML models, including 
SVM and Random Forest for both classification and regres-
sion tasks. SVM achieved high recall rates in language reha-
bilitation assessment and Random Forest achieved low root 
mean square error in predicting the severity of aphasia after 
a stroke. These models achieved promising results, with up 
to 97% recall in the classification task and up to 0.9 RMSE 
in the regression task. These results indicate that the use of 
AI in cognitive prediction can be beneficial for clinicians, as 
it can help them to apply custom therapy to patients based 
on their predicted conditions.

However, it is important to note that implementation of 
this AI in clinical practice involves a process of validation 
and integration with existing clinical systems. This process 
should include steps such as evaluating the performance 
of the models on re-al-world data, addressing any explain-
ability and transparency concerns, and ensuring the models 
align with existing clinical workflows and regulations. Addi-
tionally, it may require collaboration between AI experts 
and healthcare professionals to ensure the safe and effec-
tive use of the models in patient care. With these steps in 
place, AI models have the potential to significantly improve 
the speed and accuracy of patient as-assessments and drive 
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advancements in precision medicine. Furthermore, future 
work should also focus on improving the trustworthiness of 
these models to facilitate their adoption and implementation 
in clinical practice.
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