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Abstract
Feature selection with the highest performance accuracy is the biggest win for multidimensional data. The Chimpanzee 
Optimization Algorithm (ChOA) serves as a crucial technique for dealing with multidimensional global optimization issues. 
However, ChOA often lacks fast convergence and good selection of sensitive attributes leading to poor performance. To 
address these issues, most significant features were selected using two variants of ChOA called BChimp1 and BChimp2 
(BChimp1 and BChimp are available at : https://​www.​mathw​orks.​com/​matla​bcent​ral/​filee​xchan​ge/​133267-​binary-​chimp​optim​
izati​on-​algor​ithm-​forfe​atures-​selec​tion. September 22, 202). BChimp1 selects the optimal solution from the four best possible 
solutions and it applies a stochastic crossover on four moving solutions to deeply speed-up convergence level. BChimp2 uses 
the sigmoid function to select the significant features. Then, these features were trained using six-well known classifiers. The 
proposed techniques tend to select the most significant features, speed up the convergence rate and decrease training time 
for high-dimensional data. 23 standard datasets with six well-known classifiers were employed to assess the performance 
of BChimp1 and BChimp2. Experimental results validate the efficiency of BChimp1 and BChimp2 in enhancing accuracy 
by 83.83% and 82.02%, and reducing dimensionality by 42.77% and 72.54%, respectively. However, time-evaluation results 
of BChimp1 and BChimp2 in all datasets showed fast convergence and surpassed current optimization algorithms such as 
PSO, GWA, GOA, and GA.
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PSO	� Particle Swarm Optimization
QDA	� Quadratic Discriminant Analysis
RF	� Random Forest
SVM	� Support Vector Machine
SD	� Standard Deviation
WOA	� Whale Optimization Algorithm

1  Introduction

Data mining serves as a crucial approach for extracting 
meaningful information and knowledge. This would help 
in making the right decisions based on high-quality infor-
mation models. As soon as the database models lead to an 
increased number of features (relevant, irrelevant, redundant, 
and noisy information) [1], essential concerns arise regard-
ing the degradation of machine learning performance [2]. 
A huge number of attributes can result in increased com-
putational complexity, high execution time and low preci-
sion. Here, we have faced a phenomenon called the curse of 
dimensionality. To deal with all these challenges, Feature 
Selection (FS) is considered the most effective solution. In 
recent times, feature selection has attracted considerable 
attention, because of its capability in selecting the most rel-
evant features from higher-dimension [3]. Feature selection 
includes two categories of techniques, filtering, and wrap-
ping [4–6]. The filtering technique [5] is simple and less 
expensive numerical computations based on statistical analy-
sis and mutual information. The filtering technique is inde-
pendent of learning algorithms and only requires relation-
ships between inputs and outputs. The wrapper technique 
related to learning algorithms when it comes to determining 
significant features but requires a high computational cost 
compared to filtering techniques [6]. However, the more 
accurate results of this technique can result in high interest 
to academics and practitioners [7].

Feature selection is NP-hard problem derived from the 
exponential increase in the number of attributes. The com-
plex nature of relations between features should not be 
neglected, especially with the growth of features. Although 
this parameter must be applied in the realm of feature selec-
tion applications [8]. It is noted that these applications often 
rely heavily on metaheuristic optimization techniques [9–15] 
to achieve higher classification accuracy based on genetic 
and chimp optimization algorithms. Such methods have 
been applied to increase performance. Unfortunately, they 
present a serious weakness, especially in terms of getting an 
optimum consensus between classification accuracy, opti-
mal number of features, and fast computational time. To 
fill these gaps, we look for another solution that provides 
efficient optimization techniques with a high accuracy rate 
and acceptable execution time for various domain applica-
tions. We believe that machine learning can fill these gaps.

This paper proposes an efficient feature selection tech-
nique for reducing dimensionality and improving classifi-
cation accuracy with acceptable execution time by using 
two variants of Binary Chimp optimization algorithms 
(BChimp1 and BChimp2) and six well-known classifiers 
(KNN, DT, SVM, RF, QDA, and MLP). All tests are applied 
on 23 different datasets [47] to evaluate the classification 
accuracy and execution time. Overall, we make the follow-
ing contributions:

•	 Two variants of binary chimp optimization algorithms 
named BChimp1 and BChimp2 are proposed to select 
optimal features in multidimensional datasets and 
machine learning models are established both for train-
ing and testing steps.

•	 To enhance the quality of the classified features with 
acceptable execution time, a machine learning model 
is developed. The selected features have been validated 
using the most known classifiers such as KNN, DT, 
SVM, RF, QDA, and MLP.

•	 An evaluation of the proposed methods (BChimp1-ML 
and BChimp1-ML) on 23 datasets [47] of different fea-
tures in various domains (19 of which are high-dimen-
sional) to ensure optimal feature selection and acceptable 
execution time. However, the two proposed methods have 
been compared with GWO, WOA, GA, and PSO.

The rest of the paper is organized as follows. Section 2 
discusses the related work of this study. Section 3 presents 
an overview of feature selection and Chimp Optimization 
Algorithm (ChOA). Section 4 specifies the proposed hybrid 
approach. Section 5 provides an experimental demonstration 
of the proposed framework. Section 6 provides a summary 
of the paper.

2 � Related Works

There are two manners for selecting features: filtering and 
wrapping. The filtering approach directly extracts relevant 
features based on their correlation with the dependent vari-
able. The wrapper approach determines optimal features 
based on classifier models. Our work is based on the wrap-
per feature selection approach.

2.1 � Filtering Based Approaches

This section discusses some recent and relevant filtering-
based techniques presented in the literature [7, 16–18]. Peng 
et al. [7] integrate mutual criteria such as maximum depend-
encies, maximum relevancies, and minimum redundancies 
(MRMR). Wang et al. [16] proposed a feature selection 
approach based on statistical tests. Gao et al. [17] designed 
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a feature selection algorithm combining significant features. 
Labani et al. [18] proposed a new multiple-feature filtering 
method based on text classification algorithms.

2.2 � Wrapper Based Approaches

Wrapper approaches are divided into 1) evolutionary algo-
rithms that rely on evolution mechanisms such as mutation 
and crossing, 2) swarm intelligence that relies on the prin-
ciple and effects of some animals or insects, and 3) physics-
based algorithms are physical phenomena highly sensitive 
to initial conditions and natural behaviors [19] and 4) deep 
learning-based algorithms.

2.2.1 � Evolutionary Algorithms

Genetic Algorithm (GA) is an efficient and useful 
metaheuristic optimization approach based on the evolu-
tion of genetic theory. They are coded using a problem-spe-
cific fitness function [20]. GA allows for exploring high-
dimensional search space efficiently [21]. But still, there is 
a drawback in the GA that it suffers from high computational 
complexity and random selection of mutation and selection 
processes, which greatly affect the feature selection process 
[22]. In [23], Siedlecki et al. apply GA for selecting optimal 
features for the first time. Subsequently, Huang et al. [21] 
used the GA in feature selection to improve the overall effec-
tiveness of SVM. Nemati et al. [24] proposed an optimiza-
tion technique based on genetic and ant colony algorithms 
to enhance accuracy. The optimization is done by adopting 
the protein-based function. Stefano et al. [25] used genetic 
feature optimization algorithm in large text data. Rejer et al. 
[26] introduced a powerful GA algorithm based on mutation 
to optimize features for brain-machine interfaces. Jingwei 
et al. [27] employed a combination of the selection and the 
crossover operators to optimize the features in the multidi-
mensional databases.

2.2.2 � Swarm Intelligence Algorithms

Kennedy et al. [28] proposed simple and effective algorithms 
called Particle Swarm Optimization (PSO) for the problem 
of feature optimization. However, it is noted that PSO suf-
fers from staying in the local minima. To address this issue, 
various variants of PSO are proposed. A binarization of 
PSO (BPSO) is applied by Chuang et al. [29] to genes in 
order to attain the ultimate performance. The proposed algo-
rithm focused on achieving early convergence of PSO by 
changing the local search space if it did not find the optimal 
solution after three iterations. Unler et al. [30] proposed a 
novel DPSO based on probability-weighted estimation to 
improve selection. Moreover, to enhance effectiveness and 
solution quality, Ayeche et al. [31] proposed micro-GA for 

facial expression recognition based on swarm optimization 
algorithms. Tan et al. [32] designed a novel efficient attribute 
selection algorithm using PSO to improve skin cancer detec-
tion. Too et al. [33] proposed BPSO to select significant 
attributes. First, the population is divided according to the 
weight-based segmentation strategies and some important 
individuals are incorporated into the new population in order 
to enhance the diversity. Moreover, to enhance effectiveness 
and adaptability, Xue et al. [34] proposed an adaptive aver-
age parameter PSO approach for complex applications for 
attribute selection with multiple classifiers. Al-Tashi et al. 
[12] designed attributes selection scheme based on multi-
objectives function and grey wolf optimization. Too et al. 
[35] also proposed a new quadratic binary Harris Hawk 
Optimization (HHO) for feature selection. Moghaddam et al. 
[36] presented a novel multi-objective forest optimization 
for attribute selection.

Too et al. [13], introduced Hyper Learning Binary Drag-
onfly Algorithm (HLBDA) capable of determining sig-
nificant features in COVID-19 datasets. Hegazy et al. [37] 
developed the Chaotic Salp Swarm Algorithm (CSSA) that 
enhances the performance of the data classification, which 
significantly reduces the high number of attributes. Niu et al. 
[38] proposed a multi-objective fitness selection approach 
based on bacterial foraging optimization. In addition, Piri 
et al. [39] used a multi-objective retrieval approach based 
on Ant Lion optimization to enhance efficiency.

Recently Jayashree et al. [49] proposed an efficient selec-
tion method utilizing Binary Multi-Objective ChOA (BMO-
ChOA) and KNN classifier. BMOChOA and KNN allow the 
selection of relevant features from medical data. They evalu-
ated their approach with four multi-objective performance 
evaluators and 14 medical databases of different sizes. The 
significant gain in this approach is a reduced number of 
features and enhanced classification accuracy. However, 
the authors did not achieve optimization of features and not 
evaluate execution time.

In [50], ChoA is subjected to binarization and transfer 
functions. They are applied with a crossover operator to 
yield the excellent exploratory behavior of the ChOA. This 
approach ensures efficient and direct selection of significant 
features. However, the work presents some weaknesses ver-
sus multidimensional data and consumes much execution 
time.

2.2.3 � Physics‑Based Algorithms

Numerous algorithms are proposed such as Henry's law-
based algorithm for optimizing solubility [40]. Kaveh et al. 
[41] employed the physical law of Newton and Coulomb to 
select significant attributes. Desuky et al. [42] recently intro-
duced a new Archimedes optimization algorithm to select 
critical features for data classification.
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2.2.4 � Deep Learning Algorithms

Khishe et al. [51] proposed an improved ChOA to automati-
cally discover optimal DCNN architectures. The proposed 
model introduced three enhancements namely, digitized-
based coding for easier encoding, variable-length DCNNs, 
and using only part of the dataset for fitness assessment. The 
proposed model outperformed 23 classifiers on 9 benchmark 
datasets. It achieved the best performance in the Fashion 
dataset (5.08%) and ranked second in terms of size (750k 
parameters). In 87 out of 95 investigations, it surpassed 
other benchmarks, making it the first ChOA-based effort to 
autonomously evolve DCNN architectures.

Cai et al. [52] introduce deep neural networks based 
ChOA capable of diagnosing COVID-19 through X-ray 
images. The proposed approach can ensure fast training and 
parallel implementation. A COVID-Xray-5K and COVIDe-
tectioNet databases are chosen to enhance its effectiveness. 
This approach resulted in superior performance with 99.11% 
of accuracy, in contrast with other standard DCNN, DCNN-
GA, and MSAD models. In addition, the work identified 
infected areas by activation map with high accuracy values.

In [53], authors designed a features-reducing algorithm 
combining Chimp Optimization Algorithm (ChOA), Greedy 
Search (GS), and Opposition-Based Learning (OBL) to 
select the most significant features. The GSOBL-ChOA 
approach was evaluated in different benchmark datasets for 
various engineering fields. The authors demonstrate poten-
tial for GSOBL-ChOA approach for applications in attrib-
utes selection, it is outperformed other existing benchmarks 
in most experimental cases.

Khishe et al. [54] proposed a new variation of ChOA 
namely the Multi-Objective ChOA (MO-ChOA) address-
ing multidimensional data optimization challenges in engi-
neering problems. This work maintains a leader selection 
by applying distributed mechanism to efficiently explore the 
search space and keep non-dominated results. The authors 
show that the obtained results can achieve better perfor-
mance by light-weighting structure compared to some exist-
ing algorithms.

Saffari et  al. [55] use ChOA as an artificial trainer 
model to identify and classify mammals which is a 

high-dimensional task. The approach is based on Fuzzy-
ChOA with controlled parameters to balance exploration and 
exploitation. Experimental datasets of underwater marine 
mammal sounds are collected, pre-processed, and used for 
ANN classification. The proposed approach yields remark-
able results regarding the convergence speed and recognition 
performance compared with various benchmark algorithms.

3 � Background Techniques

3.1 � Feature Selection

In feature selection, important features are filtered and 
selected. It is based on the reduction and/or elimination of 
redundant, unnecessary, and irrelevant features. This tech-
nique is necessary to ensure better data understanding and 
reduce processing time. As opposed to other approaches, 
the feature selection approach is predictable. This approach 
involved four-phase process as shown in Fig. 1: 1) genera-
tion of subsets, 2) evaluation of subsets, 3) stopping criteria 
and 4) validation of results [3]. The first phase consists of 
adopting a search strategy to select a list of candidates. The 
second phase consists of assessing a list of candidates using 
an evaluation criterion. Depending on the stopping criterion 
(phase 3), phases 1 and 2 will be repeated until the best 
combination of feature subsets is determined. Finally, the 
selected subset is validated with an independent data set 
or using prior domain-specific knowledge according to the 
task performed.

3.2 � Chimp Optimization Algorithm (ChOA)

The ChOA was proposed by Khishe et al. [14] in 2020 
which is based on the chimp's hunting behavior that is 
guided and controlled by their intelligence and sexual 
motivations as shown in Fig. 2. ChOA plays a significant 
role in choosing important features is that it has excellent 
global and local discovery [14] used for optimization in 
the opposite of the other existing algorithms. Since they're 
easier to implement, they may prove to be more useful 
with higher stability and low feature assessment than PSO 

Fig. 1   Feature selection process
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or GA, moreover, as an optimization approach, it does not 
need many initial parameters to ensure optimal conver-
gence. In a chimpanzee colony, individuals are not all of 
the same capacity. It can use its appropriate strategy to 
predict the location of prey. Such diversity and difference 
are very essential to the success of the hunting process. 
Chimpanzees live in groups that consist of Attackers, Bar-
riers, Chasers, and Drivers. Drivers follow and surround 
prey without attacking it. They drive it toward the barri-
ers. The barriers on their side build a dam along the path 
of the prey, eventually trapping it in a tree. The chaser's 
mission is to move quickly after pouncing on the prey to 
cause panic and catch up. Finally, the attackers predict the 
prey’s escape way, either catching it or pushing it toward 
the hunters.

The ChOA technique represents driving and chasing 
the prey as follows:

where

t  : current iteration;
X : current position of chimp;

(1)X(t + 1) = Xp(t) − A.D

(2)WithD =
|||C.Xp(t) −M.X(t)

|||

Xp : vector of prey position;
A : coefficient of prey;
D : travel distance that separates the prey and the chimp.
C,M are vectors of coefficients.

The vectors of coefficients A,C, and f are calculated using 
equations (3)–(5):

where f  decreases nonlinearly from 2 to 0 , as computed by 
equation (6):

r1, r2 are random numbers in [0, 1] which are calculated 
as follows:

(3)

A1 = 2.f .r11 − f

A2 = 2.f .r21 − f

A3 = 2.f .r31 − f

A4 = 2.f .r41 − f

(4)

C1 = 2.r12

C2 = 2.r22

C3 = 2.r32

C4 = 2.r42

(5)f = 2 − 2

(
t

T

)

Fig. 2   The hunting process of chimps (exploration and exploitation)
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where rand() is the standard function distribution with a 
scale of 0 to 1.

In Equation (2), the variable M represents a chaotic value 
ranging from 0 to 1, which is obtained from one of the cha-
otic maps listed below:

where t  , T  are the current iteration, and the maximum 
number of iterations, respectively.

To ensure a hybrid efficient search system, the ChOA 
uses four independent groups, and two main strategies have 
been proposed named ChOA1 and ChOA2 to achieve supe-
rior performance in the classification accuracy, irrespective 
of the optimization problem. In ChOA, the first task of the 
attacker is to inform the driver, barrier, and chaser about the 
location of prey. Then the best leaders guide other chimps 
toward the prey using the best four locations. The new posi-
tion of the chimp can be expressed as:

Where X1,X2,X3andX4 are the positions calculated using 
Eq. (9)–(12) respectively.

(6)

c1g1 = 1.95 − 2.

(
t
1

3

T
1

3

)
, r11 = c1g1. rand()

c2g1 = 2.

(
t
1

3

T
1

3

)
+ 0.5, r12 = c2g1. rand()

c1g2 = 1.95 − 2.

(
t
1

3

T
1

3

)
, r21 = c1g2. rand()

c2g2 = 2.

(
t
1

3

T
1

3

)
+ 0.5, r22 = c2g1. rand()

c1g3 = −2.

(
t3

T3

)
+ 2.5, r31 = c1g3. rand()

c2g3 = 2.

(
t
1

3

T
1

3

)
+ 0.5, r32 = c2g3. rand()

c1g4 = −2.

(
t3

T3

)
+ 2.5, r41 = c1g4. rand()

c2g4 = 2.

(
t
1

3

T
1

3

)
+ 0.5, r42 = c2g4. rand()

(7)

Quadratic ∶ M = x(i+1) = x2
i
− c, c = 1

Gaussian ∶ M = x(i+1) =

⎧⎪⎨⎪⎩

1, ifxi = 0

1

mod
�
xi, 1

� else

Logistic ∶ M = x(i+1) = �xi(1 − xi), � = 4

Bernoulli ∶ M = x(i+1) = 2ximod1

(8)X(t + 1) =
X1 + X2 + X3 + X4

4

where

Xa, Xb, Xc and Xd are the positions of chimps respectively 
at iteration t;
A1 , A2 , A3 and A4 are the coefficient vectors calculated 
by equations (3).
Da , Db , Dc and Dd calculated using Eq. (13)–(16).

where

C1 , C2 , C3 and C4 are calculated using equation (4).
M1 , M2 , M3 and M4 are the coating functions.

According to equations (7) to (15), chimpanzees con-
stantly update their positions based on the locations of their 
group leaders, which represent the best positions across the 
population. The distance D between a chimpanzee and its 
prey determines the area of exploration, and parameters A 
and C determine its search areas. This variable m refers to 
chimpanzee behavior during the final stages of the hunt-
ing process. Sexual motivations drive them to temporarily 
ignore their hunting tasks to concentrate solely on obtaining 
meat, symbolizing their dominance. This erratic and impul-
sive behavior helps them to explore new approaches and 
overcome challenges related to finding prey, putting their 
ingenuity to the test. A vital phase of the ChOA (Chimpan-
zee Optimization Algorithm) involves chimpanzees utilizing 
their chaotic behavior to overcome optimization problems. 
Their position update method is highly flexible, providing a 
significant advantage over local optima traps and resolving 
otherwise insurmountable complex problems. In this innova-
tive approach, chimpanzees demonstrate how they optimize 
their path toward more promising solutions by incorporating 
a controlled chaotic dimension into their optimization pro-
cess. By harnessing this clever strategy, they offer valuable 

(9)X1 = |Xa − A1.Da|

(10)X2 = |Xb − A2.Db|

(11)X3 = |Xc − A3.Dc|

(12)X4 = |Xd − A4.Dd|

(13)Da = |C1.Xa −M1.X|

(14)Db = |C2.Xb −M2.X|

(15)Dc = |C3.Xc −M3.X|

(16)Dd = |C4.Xd −M4.X|
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perspectives for resolving complex problems across various 
scientific and engineering domains.

Algorithm 1 is an illustration of the steps of ChOA to 
compute the optimal position of the attacker. In this algo-
rithm, a population is used to initialize the positions of the 
first four chimpanzees: XAttacker , XBarrier , Xchaser , and the 
XDriver as well as their scores to zero. It was evaluated based 
on the fitness function. To find the optimal solution, the 
location positions and scores of the four main chimps are 
updated. Also, coefficients f  , r1 and r2 are updated using 
Eq. 6 and the coefficients A and C are computed based on 
f  , r1 and r2 using Eq. 3 and Eq. 4 respectively. The chim-
panzee's new positions are updated using Eq. 6. Finally, the 
optimal binary solution of Xbest is returned.

Generally, the Chimp Optimization Algorithm is used 
to solve so-called continuous optimization problems, in 
which chimpanzees change their positions at any point 
in space. However, there are some optimization issues in 
which the solutions are bit sequences of 0 or 1 such as fea-
ture selections. We then need a binary version of ChOA. 
In this work, two novel binary wolf optimizations named 
BChimp1 and BChimp2 are proposed to improve selection 
accuracy and convergence rate. The updating of the positions 

of the chimpanzees is done using the positions of the first 
four chimpanzees. The goal is to attract each chimpanzee 
in the flock to the first four leaders. At any time, the set of 
solutions is binary, located at a hypercube’s corner. In other 
words, change the locations of a particular chimpanzee with 
respect of BChoA’s principles, while maintaining the binary 
constraints established by equation (7).

In the following subsections, we will describe the two 
approaches proposed to achieve the binary aspect of the 
chimpanzee optimization algorithm.

4 � Our Proposal

The proposed system can select important features based on 
enhanced binary Chimp optimization algorithms and machine-
learning classifiers. To develop our proposal, we used several 
classifiers, objective functions, and optimization methods to 
choose the optimal features. We have combined two variants of 
ChoA as well as six standard classifiers to ensure a good bal-
ance between relevance, convergence level, and training time. 
Figure 3 describes in detail the suggested system, which con-
sists of two key stages: dimensionality reduction and machine 

Algorithm 1: Pseudo-code of original ChOA
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learning. The first stage consists of applying two enhanced 
binary chimp optimization algorithms to ensure dimensional-
ity reduction. The second phase consists of applying six well-
known classifiers to achieve high level of accuracy.

4.1 � BChimp1: First Binary Chimp Optimization 
Algorithm

We propose BChimp1, a novel binary approach that builds on 
the principle of ChoA [14]. It investigates traces of movements 
of an Attacker, Driver, Barrier, and Chaser. They are jointly 
collaborated during the hunting phase to find potential prey.

4.1.1 � Mathematical Formalization of BChimp1

The position of chimpanzee in BChimp1 is updated using the 
crossover operator expressed as:

where Y1, Y2, Y3 and Y4 are the binary vectors represent-
ing the traces of movements of the first four chimpanzees. 
Crossover(Y1, Y2, Y3, Y4) is the crossover operation between 
solutions. The vectors Y1, Y2, Y3 and Y4 are the binary vectors 
affected by the movement of the first four champs, respec-
tively, which can be calculated as:

where Xd
A
 is the position vector of an attacker and the search 

space has the dimension d and bstepd
A
 is the binary step that is 

calculated by equation (19) as follows:

where r3 is a random vector with values between 0 and 1 
and cstepd

A
 is continuous-valued step size, as defined by equa-

tion (20) as follows:

where Ad
1
 and Dd

A
 are calculated by equations (3) and (12).

(17)X(t + 1) = Crossover(Y1, Y2, Y3, Y4)

(18)Yd
1
=

{
1, if

(
Xd
A
+ bstepd

A

)
≥ 1

0, otherwise

(19)b stepdA =
{

1, if cstepdA ≥ r3
0, otherwise

(20)c stepdA = 1
1 + exp(−10(Ad

1.D
d
A − 0.5))

Where Xd
B
 is the position vector of the barrier and the 

search space has the dimension d and bstepd
B
 is the binary 

step that is calculated by equation (22) as follows:

Where r4 is a random vector with values between 0 and 
1 and cstepd

B
 is continuous-valued step size, as defined by 

equation (23) as follows:

where Ad
2
 and Dd

B
 are calculated by equations (3) and 

(13).

where Xd
C
 is the chaser's position vector and the search 

space has the dimension d and bstepd
C

 is the binary step 
that is calculated by equation (25) as follows:

where r5 is a random vector with values between 0 and 
1; cstepd

C
 is continuous-valued step size, as defined by 

equation (26) as follows:

where Ad
3
 and Dd

C
 are calculated by equations (3) and 

(14).

where Xd
D

 is the driver's position vector and the search 
space has the dimension d and bstepd

D
 is the binary step 

that is calculated by equation (28) as follows:

(21)Yd
2
=

{
1, if

(
Xd
B
+ bstepd

B

)
≥ 1

0, otherwise

(22)bstepd
B
=

{
1, if cstepd

B
≥ r4

0, otherwise

(23)cstepd
B
=

1

1 + exp(−10(Ad
2
.Dd

B
− 0.5))

(24)Yd
3
=

{
1, if

(
Xd
C
+ bstepd

C

)
≥ 1

0, otherwise

(25)b stepdc =
{

1, if cstepdC ≥ r5
0, otherwise

(26)c stepdC = 1
1 + exp(−10(Ad

3.D
d
C − 0.5))

(27)Yd
4
=

{
1, if

(
Xd
D
+ bstepd

D

)
≥ 1

0, otherwise

Fig. 3   Overall process of binary 
Chimp feature selection and 
machine learning approach
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where r6 is a random vector with values between 0 and 
1 and cstepd

D
 is continuous-valued step size, as defined by 

equation (29) as follows:

where Ad
D

 and Dd
D

 are calculated by applying equations 
(3) and (15).

4.1.2 � Position Updating Mechanism in BChimp1

The Chimp updating position is the crossing function of four 
vectors Yd

1
, Yd

2
, Yd

3
 and Yd

4
.The mathematical formula of the 

new Chimp position is expressed by

(28)bstepd
D
=

{
1, if cstepd

D
≥ r6

0, otherwise

(29)cstepd
D
=

1

1 + exp(−10(Ad
4
.Dd

D
− 0.5))

Where r7 is a random vector with values between 0 and 1.

4.1.3 � Algorithm of BChimp1

The BChimp1 approach consists mainly of reducing a 
dimension D by choosing relevant features. The binary 
representation method has come up with the solution by 
translating the continuous value to a binary value of 0 or 1. 
Each dimension d corresponds to the index of a represented 
feature. The feature i is selected if the position of the chimp 
is greater than 0.5 , which can be expressed as:

(30)Xd(t + 1) =

⎧
⎪⎪⎨⎪⎪⎩

Yd
1
, r7 <

1

4

Yd
2
,
1

4
≤ r7 <

1

2

Yd
3
,
1

2
≤ r7 <

3

4

Yd
4
, otherwise

Algorithm 2: First Binary Chimp Optimization Algorithm
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Where Xd
i
 denotes the solution i of the dimension d.

Algorithm 2 shows the steps of BChimp1 and Fig. 4 
presents the associated. Each solution (selected features) is 
defined by a vector of n attributes with a binary value of 1 
(selected) or 0 (not selected). First, we randomly initialize 
the chimps’ positions ( Xii = 1..N ) in the group of individu-
als. The computation of the fitness score for each chimp's 
position is done to obtain the four best solutions Xd

Attacker

, Xd
Barrier

, Xd
Chaser

 , and Xd
Driver

. Then the initialization of the 
parameters f  , m , a, and c are performed. During each itera-
tion, the binary solution Y1, Y2, Y3 and Y4 of each chimpanzee 

(31)
{

Xd
i
> 0.5, if Feautre is selected

else, Fautre is not selected

are calculated by equations (18), (21), (24), and (26), respec-
tively. For each iteration, a crossover operation between the 
binary solution is performed to update the chimpanzee’s 
current solution. The calculated new fitness values is car-
ried out using current results. Moreover, the positions of the 
four chimps and parameters f  , m , a, and c are updated. This 
process is repeated until the stop criterion is met. Finally, the 
optimal binary solution of Xbest is returned.

4.2 � BChimp2: Second Binary Chimp Optimization 
Algorithm

4.2.1 � Positions Updating Mechanism in BChimp2

In this section, we propose BChimp2. In this approach, 
the binary vector is used to update the chimps’ position, as 
shown in equation (31):

Where r8 is a random vector in the range of [0, 1], d is 
a dimension of search space, and s(x) is sigmoid function 
calculated as follows:

The output of the sigmoid function in BChimp2 is inter-
preted as the selection attribute to the relevant class when 
the probability is greater than a threshold (e.g., 0.5) and 
with iterated computation in BChimp2 within the objective 
functions that leads to an optimal.

4.2.2 � Algorithm of BChimp2

Algorithm 3 depicts the pseudo-code of BChimp2. First, we 
randomly initialize the positions of chimps in the popula-
tion (either bit 1 or bit 0). Second, we evaluate the fitness of 
chimpanzees. The algorithm keeps the four best solutions. 
For each iteration, we calculate Y1, Y2, Y  and Y4 , using equa-
tions (17), (20), (23), and (26) respectively. During each 
iteration, the new position of the chimpanzee is updated 
using equation (31). Then, we evaluate the fitness of each 
chimpanzee, and we update the different parameters (f  , m , 
a, and c) . This process is repeated for each chimp of the 
population until the desired criterion is met.

4.3 � Feature Selection Using BChimp 1 and BChimp 
2

The aim of our work is to come up with an intelligent selec-
tion of the most important features for achieving the best 

(32)Xd(t + 1) =

{
1, ifs

(
Xd
1
+Xd

2
+Xd

3
+Xd

4

4

)

0, otherwise
≥ r8

(33)s(x) =
1

1 + exp(−10(x − 0.5))

Fig. 4   Flowchart of BChimp1



568	 Human-Centric Intelligent Systems (2023) 3:558–587

1 3

accuracy rates and fast processing time for large dataset 
classification. BChimp1 and BChimp2 are applied to select 
a small list of attributes from a large dataset. Although, 
BChimp1 and BChimp2 must keep a high degree of predic-
tion in the description of target attributes [43]. However, 
when the dimension of the dataset is high, the traditional 
exhaustive search cannot select relevant features accurately 
and therefore not practical. Indeed, if the dimension of 
the dataset is N  then the dimension of search space is 2N
(N = 1000 , the search space is 21000!!!). Therefore, we opt 

for our proposed binary chimp algorithms due to their ability 
to solve such hard problems.

4.3.1 � Solution Representation

The search space of the proposed BChimp 1 and BChimp 2 
is composed of a set of binary solutions for selecting a set 
of significant features. Each chimpanzee defines a solution. 
The solution is a vector of d elements, where d represents 
number of attributes in the original database. If the ith feature 
in the original database is selected, the element i takes 1 else 
it takes 0 where 0 ≤ i ≤ d − 1 . Figure 5 illustrates the binary 
representation of each solution.

4.3.2 � Selection Criteria

BChimp1 and BChimp2 optimize classification accuracy 
rates by selecting relevant features. They explore the search 

 Second Binary Chimp Optimization Algorithm

Fig. 5   Solution representation example
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space effectively and select the ideal solution, BChimp1 
selects the ideal solution from the four best possible solu-
tions and applies a stochastic crossover on four moving solu-
tions to deeply speed-up convergence level while BChimp2 
uses the sigmoid function to select the optimal relevant 
features.

4.3.3 � Objective Function

It plays a crucial role in selecting the best attribute with 
wrapper-based algorithms. In general, the choice of objec-
tive function for feature selection can be varied depending 
on the classification problem. The main aim is to maximize 
the number of relevant features or minimize the number of 
irrelevant features. The evaluation of BChimp 1 and BChimp 
2 is done using the Classification Error Rate (CEE) met-
ric [44] defined as fitness function ( Fitness ), which can be 
expressed as:

(34)

Fitness = CEE =
Number of incorrectly classified instances

Total number of instances
Fig. 6   Different classifiers rates in solving feature selection problems

Fig. 7   A general model for 
proposed work using binary 
Chimp-machine learning 
approach
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If CEE is close to 1, it will lead to the best classifier, if it 
is too close to 0, it will lead to a poor classifier.

4.3.4 � Choice of an Efficient Classification Model

The important factor of the feature selection problem is 
how to choose the best classifiers that will be considered 
for cross-validation while maintaining high accuracy. 
Machine learning approaches can be used for validating 
feature selection algorithms, including various types of 
classifiers, such as KNN, SVM, NB, ANN, RF, KLM, FR, 
OPF, ID3, C4.5. Figure 6 illustrates the rate at which dif-
ferent classifiers are used in the feature selection problem. 

The KNN is used data classifier in the field of attribute 
selection despite its higher efficiency, especially for large 
databases compared to existing classifiers. The proposed 
work is based on a widely-accepted metric of KNN algo-
rithm: Classification Error Rate (CEE) with (k = 5) [45]. 
The KNN algorithm used the Euclidean Distance (ED) 
defined in [46] as follows:

where X and Y  : define the particular features and the 
total number of features, respectively.

•	 K-Nearest Neighbor (KNN): The key idea of KNN is to 
find the closest neighbors based on Euclidean distance. 
KNN is an easy-to-implement and easily understood-
algorithm, making it suitable for basic classification 
tasks. However, it requires a high computation time on 
large datasets and suffers from the selection of the correct 
value of K which is crucial for its performance.

•	 Decision Tree (DT): is an intuitive model for clas-
sification and regression, it is popular and widely used 
in machine learning. Based on the input features, the 
model builds a tree. A decision tree is easy to under-

(35)ED(X, Y) =

√√√√ D∑
d=1

(
Xd − Yd

)2

Table 1   Experimental Parameter settings

Parameter Value

# executions 10
# research agents 10
# maximum iterations T 100
Dimension of problem Features size
BGA Parameters cr = 0.8; mr = 0.2
BPSO Parameters c1 = 2; c2 = 2
BChimp Chaotic Function Logistic function [14]

Table 2   Experimental 
databases.

Category N. Dataset name #Instances # Features # Classes

General 1 Iris 150 4 3
2 Breast EW 569 30 2
3 Clean 1 476 168 2

Face Images 4 Yale 165 1024 15
5 warpPIE10P 210 2420 10
6 warpAR10P 130 2400 10
7 orlraws10P 100 10304 10
8 ORL 400 1024 40
9 COIL20 1440 1024 20

Biological 10 Lung Discrete 73 325 7
11 Colon 62 2000 2
12 Lung 203 3312 5
13 Lymphoma 96 4026 9
14 GLIOMA 50 4434 4
15 TOX 171 171 5748 4
16 Prostate G 102 5966 2
17 Leukemia 72 7070 2
18 ALLAML 72 7129 2
19 nci9 600 9712 9
20 CLL SUB 111 111 11340 3
21 SMK CAN 187 187 19993 2
22 GLI 85 85 22283 2
23 Coil 1440 1025 20
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stand as it handles both numerical and categorical 
data and captures non-linear relationships. However, 
they can over fit, especially when the tree becomes too 
complex. Random Forest and Gradient Boosting can be 
efficient for systems with non-linear relationships.

•	 Support Vector Machine (SVM): is used to separate 
different class data points by a hyperplane. The maxi-
mum margin between classes makes it robust to outliers 
and noise. The kernel trick handles non-linear relation-
ships between features and classes. However, SVM may 
not scale well with large datasets, and choosing the right 
kernel and tuning parameters is important for optimal 
performance. Still, SVM remains a popular and powerful 
choice for many classification tasks in machine learning.

•	 Random Forest (RF): is an efficient model that com-
bines a group of decision trees to ensure accurate pre-
dictions. Random Forest is robust and resists overfitting 
problems. Random Forest is a versatile and powerful 
classifier that excels in treating multidimensional data-
bases and generating accurate results. It is acceptable 
to use in various realm applications. It is suitable when 
robustness and generalization are essential.

•	 Quadratic Discriminant Analysis (QDA): is useful 
when the data does not follow a linear separation pat-
tern. It leverages probability density functions to create 
quadratic decision boundaries, which allows it to handle 
more complex datasets.

•	 Multi-Layer Perceptron (MLP): is a powerful and 
versatile algorithm capable of handling complex rela-
tionships between attributes and target classes. How-
ever, MLP is a is a fundamental building block of mod-
ern commonly used in various fields and deep learning 
models.

To assess the performance of the proposed approach, we 
separate the database into 70% training set and 30% testing 
set. Evaluation of feature selection is conducted on the training 
and testing sets. The cross-validation technique minimizes the 
overfitting rate with K = 10. The cross-validation technique 
consists of dividing the training set into 10 times with the same 
set size. Training occurs with K-1 folds, and validation occurs 
with the remaining folds. The evaluation process will have 
been repeated 10 times, each time replacing the training and 
validation folds. Finally, the average results of different data 
series will be recorded.

5 � Experimental Setup and Evaluation 
Criteria

We begin this section with an overview of the experimen-
tal setup and parameter settings. Then, we present different 
performance metrics and descriptions of multidimensional 

databases. The flow diagram of the proposed system is 
shown in Fig. 7.

5.1 � Experimental Setup

In this section, the experiments aim to visualize the effi-
ciency of the proposed optimization technique compared 
with existing optimization algorithms based on accuracy 
rates and convergence levels. All techniques are developed 
using MATLAB 2020 with the same objective function 
through a PC Intel(R) Core (TM) i5-2410M CPU 2.30 GHz, 
4 GB of RAM, and 64-bit operating system.

5.2 � Parameter Settings

The parameters for carrying out our experiments are 
shown in Table 1. In the experiments, the size of popula-
tion is 10. The maximum iteration T  is defined as 100. The 
feature selection process is iterated 10 times for each data 
set. Finally, the average values of metrics are computed 
for 10 experiments. In our experiments, the optimizers of 
BGA are employed and the crossover rate is set to 0.8. A 
mutation rate is set to 0.2. In terms of discrete optimiza-
tion, our experiments employ BPSO with coefficients c1 
and c1 both equal to 2.

5.3 � Databases Description

To better test and evaluate the effectiveness of our techniques, 
it is necessary to use large databases. Many features in large 
databases represent real-world scenarios. All tests are applied 
to 23 large databases collected from the University of Ari-
zona [47], of 23 databases, 18 databases have more than 1000 
features. A description of the datasets used in experiments 
is given in Table 2. All databases are high-dimensional and 
defined by a high number of attributes (18/23 are greater than 
1000 attributes).

5.4 � Performance Metrics

To verify the performance of proposed algorithms, four main 
metrics are measured:

1) The mean fitness ( � ) and standard deviation ( SD ) of the 
fitness values for each technique after 100 runs are computed 
to show outperformed method. The standard deviation is 
defined by the following formula:

where xi indicates the fitness of each of the candidate 
solutions, � indicates the mean fitness, calculated as 

(36)SD =

√√√√1

n

n∑
1

(xi − �)2
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Table 3   Fitness assessment by 
different methods

Bold represents the best results obtained through optimization method, for each database

No. Dataset name BChimp1 BChimp2 GWO WOA GA PSO

1 Iris 0.0200 0.0100 0.0133 0.0133 – 0.0167
2 Yale 0.3061 0.2697 0.3091 0.3000 0.3455 0.3242
3 warpPIE10P 0.0929 0.0429 0.0667 0.0714 0.0690 0.0643
4 WarpAR10P 0.4038 0.3115 0.4154 0.3346 0.3846 0.3731
5 Orlraws10P 0.0450 0.0450 0.0550 0.0250 0.0750 0.0750
6 ORL 0.1025 0.0813 0.0800 0.0950 0.0825 0.0738
7 COIL20 0.0122 0.0073 0.0069 0.0094 0.0094 0.0087
8 Lung Discrete 0.0357 0.0286 0.0786 0.0714 0.0571 0.0643
9 Colon 0.1167 0.0667 0.1167 0.0583 0.0917 0.1167
10 Lung 0.0175 0.0225 0.0225 0.0175 0.0075 0.0175
11 Lymphoma 0.1211 0.1211 0.1263 0.1316 0.1158 0.1105
12 GLIOMA 0.1800 0.1000 0.1700 0.0800 0.0800 0.1500
13 TOX 171 0.2000 0.1000 0.1941 0.1500 0.1294 0.1588
14 Prostate_G 0.1300 0.0950 0.1050 0.0600 0.1250 0.0850
15 Leukemia 0.0357 0.0286 0.0714 0.0357 0.0357 0.0643
16 ALLAML 0.1357 0.0571 0.0929 0.0571 0.1143 0.1286
17 nci9 0.5417 0.4667 0.5417 0.4917 0.5083 0.5083
18 CLL_SUB_111 0.2545 0.1682 0.3090 0.2682 0.2227 0.2818
19 SMK CAN 187 0.2703 0.1946 0.2487 0.2351 0.2730 0.2757
20 GLI 85 0.0353 0.0353 0.0588 0.0235 0.0647 0.0353
21 Breast_EW 0.0150 0.0168 0.0257 0.0301 0.0150 0.0115
22 Clean 1 0.0716 0.0463 0.0558 0.0884 0.0484 0.0484
23 COIL 0.0073 0.0073 0.0122 0.0104 0.0083 0.0125

Table 4   The standard deviation 
assessment by different methods

Bold represents the best results obtained through optimization method, for each database

No. Dataset name BChimp1 BChimp2 GWO WOA GA PSO

1 Iris 0.0000 0.0000 0.0000 0.0000 – 0.0115
2 Yale 0.0127 0.0176 0.0057 0.0066 0.0136 0.0025
3 warpPIE10P 0.0019 0.0034 0.0025 0.0019 0.0024 0.0151
4 WarpAR10P 0.0119 0.0229 0.0070 0.0241 0.0134 0.0018
5 Orlraws10P 0.0012 0.0025 0.0000 0.0140 0.0019 0.0066
6 ORL 0.0038 0.0098 0.0064 0.0030 0.0069 0.0021
7 COIL20 0.0015 0.0022 0.0013 0.0011 0.0016 0.0040
8 Lung discrete 0.0115 0.0090 0.0046 0.0143 0.0087 0.0138
9 Colon 0.0108 0.0128 0.0146 0.0232 0.0110 0.0016
10 Lung 0.0009 0.0010 0.0029 0.0015 0.0011 0.0031
11 Lymphoma 0.0000 0.0018 0.0050 0.0026 0.0019 0.0039
12 GLIOMA 0.0049 0.0000 0.0020 0.0134 0.0086 0.0187
13 TOX_171 0.0100 0.0222 0.0102 0.0140 0.0259 0.0027
14 Prostate_GE 0.0026 0.0022 0.0020 0.0061 0.0060 0.0072
15 Leukemia 0.0058 0.0061 0.0047 0.0090 0.0079 0.0063
16 ALLAML 0.0036 0.0078 0.0045 0.0111 0.0147 0.0094
17 nci9 0.0118 0.0117 0.0051 0.0283 0.0137 0.0148
18 CLL_SUB_111 0.0142 0.0249 0.0156 0.0244 0.0188 0.0067
19 SMK CAN 187 0.0078 0.0121 0.0050 0.0174 0.0086 0.0150
20 GLI 85 0.0088 0.0085 0.0042 0.0273 0.0124 0.0039
21 Breast_EW 0.0024 0.0070 0.0016 0.0019 0.0036 0.0087
22 Clean1 0.0054 0.0125 0.0066 0.0043 0.0099 0.0022
23 COIL 0.0010 0.0021 0.0012 0.0006 0.0015 0.0115
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Fig. 8   Comparison of convergence of the proposed techniques with other techniques
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� = Σ(xi)∕n and n indicates the number of the candidate 
solutions.

2) The dataset size difference before and after the 
attribute selection process is computed to show how much 
features are reduced. The dataset difference is defined as 
follows:

where F_size and O_size represent dataset size before and 
after the feature selection respectively.

3) The average accuracy rate is computed after 10 runs to 
show the outperformed method. For quality evaluation, our 
experiments employ accuracy (Ac), precision (Pre), recall, 
specificity, and F-score as the metrics to assess the level of 
security achieved, as shown in Eq. (37).

(37)D_size = F_size − O_size

(38)Ac =
TP + TN

TP + TN + FP + FN

Pre =
TP

TP + FP

where

•	 TP is True Positive,
•	 TN is True Negative,
•	 FP is False Positive,
•	 FN is False Negative.

The average accuracy value is defined as follows:

where Aci represents the accuracy value for each run.

Recall =
TP

TP + FN

Specificity =
TN

TN + FP

F_score = 2 ∗
Prec ∗ Recall

Prec + Recall

(39)Ac =

∑n

i=1
Aci

n

Fig. 8   (continued)
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4) The convergence rate of each method is defined to 
study the convergence speed of each method. The conver-
gence rate is defined as follows:

where It represents the number of steps required for 
achieving the optimal attributes.

6 � Performance Comparison

6.1 � Comparison of the Average Fitness Values

To demonstrate the efficiency of the proposed algorithms, 
the average fitness values of BChimp1 and BChimp2 
were compared with PSO [28], GWO [13], WOA [48], 
and GA [9] after 10 executions using 23 multidimensional 
databases.

Table 3 presents the comparison results, which reveal 
that all the mean fitness values of BChimp1 and BChimp2 
are very good and achieved the exact minimum. From the 

(40)Cr = It → f ∗

mean fitness values, we can confirm that BChimp 2 is 
more efficient.

6.2 � Comparison of the Standard Deviation 
of Fitness Values

The standard deviation of fitness values between the pro-
posed selection techniques and PSO [28], GWO [13], 
WOA [48], and GA [9] is compared in Table 4. This fur-
ther confirms that the fitness values of different selection 
algorithms are very close to each other. However, the 
GWO algorithm outperforms other algorithms in several 
cases.

6.3 � Comparison of Convergence of Features 
Selection Algorithms

Through this section, a comparison of the proposed 
BChimp1 and BChimp2 with relevant optimization tech-
niques has been conducted in terms of convergence, 

Fig. 9   Dimensionality reduction before and after features selection
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represented by the level of convergence in solving high-
dimensional feature optimizations. All feature selection 
algorithms are evaluated for 10 runs. The graph of their 
convergences is shown in Fig. 8. The obtained conver-
gence behavior and speed of BChimp1 and BChimp2 are 
very encouraging compared to other techniques presented 
in [13, 28, 48], and [9]. However, BChimp1 and BChimp2 
can converge quickly and deeply to find the exact mini-
mum compared to PSO [28], GWO [13], WOA [48], and 
GA [9]. Because the two proposed algorithms have suc-
ceeded in combining the good quality of exploration and 
exploitation of the chimpanzee hunting process on the 
one hand and the other hand, the two algorithms provide 
an optimal binary solution. From the convergence levels, 
we can confirm that BChimp 2 offers a high convergence 
compared to BChimp1 and other algorithms for all experi-
mented datasets.

6.4 � Comparison of Dimensionality Reduction 
Before and After Feature Selection

This section presents the experimental results of dimen-
sionality reduction before and after selection using the two 
proposed techniques (BChimp 1 and BChimp 2) applied 
to 23 datasets. Features are reduced during the selection 
process to a set of the most relevant features. Figure 9 
and Table 5 illustrate the comparison of dimensionality 
reduction before and after binary feature selection on 23 
datasets. It is noted that the proposed optimization tech-
niques (BChimp 1 and BChimp 2) offer good dimensional-
ity reduction as shown in all datasets of Table 5. The pro-
posed technique BChimp 2 has an average reduction rate 
of 72.54% and almost the lowest dimensionality reduction 
rate among the 23 datasets used and presented particu-
larly a reduction rate of 0.0037 with the COIL dataset. The 
dimensionality reduction rate for BChimp1 is 42.77%, and 
the lowest dimensionality reduction rate can be seen with 
GLIOMA of 0.01.

From the dimensionality reduction values, we can con-
clude that BChimp 2 is more effective while achieving the 
lowest dimensionality reduction.

6.4.1 � Accuracy Comparison of KNN Classifier With/Without 
Binary Chimp Methods

Figure  10 depicts the comparison of accuracy values 
for KNN classifier with/without feature selection using 
BChimp1 and BChimp2 on 23 datasets. From Fig. 10, we 
observed that the proposed BChimp2 algorithm with the 
KNN classifier has higher accuracy values than BChimp1 
model with KNN classifier. We also observed that KNN 
classifier with significant relevant feature selection by the 
proposed binary chimpanzee methods improved classifica-
tion accuracy.

6.4.2 � Accuracy Comparison of DT Classifier With/Without 
Binary Chimp Methods

To assess the quality of solutions, the DT machine learning 
model is combined with the proposed algorithms (BChimp1 
and BChimp2) on 23 datasets already described in Sec-
tion 6.1 and compared to the original DT machine learn-
ing model. The accuracy comparison of DT classifier with 
and without binary chimpanzee methods (BChimp1 and 
BChimp2) is depicted in Fig. 11. The accuracy scores are 
very close to each other before and after the selection pro-
cess by BChimp 1 and BChimp 2. However, BChimp1 out-
performed the DT classifier in nine cases, while BChimp2 
outperformed the DT classifier in seven cases.

Table 5   Dimensionality feature reduction before and after selection

Bold represents the best results obtained through optimization 
method, for each database

No. Dataset name Before selection BChimp1 BChimp2

1 Iris 4 2.70 2.20
2 Yale 30 19 11.60
3 warpPIE10P 168 123.60 45.80
4 WarpAR10P 1024 605.90 190.80
5 Orlraws10P 2420 1304.80 527.70
6 ORL 2400 1349.80 484.60
7 COIL20 10304 5279.10 2916.40
8 Lung discrete 1024 658.60 233.60
9 Colon 1024 601.50 144.20
10 Lung 325 171.70 100.70
11 Lymphoma 2000 1077.60 556.80
12 GLIOMA 3312 1755.20 1244.30
13 TOX_171 4026 2125.80 1114
14 Prostate_GE 4434 2231.90 2088.10
15 Leukemia 5748 3481.70 952.90
16 ALLAML 5966 3186.80 2454.60
17 nci9 7070 3769 1820.10
18 CLL_SUB_111 7129 3583.60 2192.70
19 SMK CAN 187 9712 5266 2239.90
20 GLI 85 11340 6582.40 1983.30
21 Breast_EW 19993 11338.80 3480.20
22 Clean1 22283 12883.90 5808.80
23 COIL 1025 625.80 157.70
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6.4.3 � Accuracy Comparison of SVM Classifier With/Without 
Binary Chimp Methods

Furthermore, when compared the SVM classifier to 
BChimp1-SVM and BChimp2-SVM as shown in Fig. 12, the 
recognition rates are very close to each other before and after 
the selection process by BChimp1 and BChimp2, BChimp1 
outperformed it in six cases and BChimp2 outperformed it 
in ten cases.

6.4.4 � Accuracy Comparison of FR Classifier With/Without 
Binary Chimp Methods

The comparison of the FR classifier to BChimp1-FR and 
BChimp2-FR is shown in Fig. 13. The accuracy values are 
very close to each other before and after the selection pro-
cess by BChimp1 and BChimp2, BChimp1 outperformed it 
in eight cases, and BChimp2 outperformed it in six cases.

6.4.5 � Accuracy Comparison of QDA Classifier With/Without 
Binary Chimp Methods

The comparison of the QDA classifier to BChimp1-QDA 
and BChimp2-QDA is showed in Fig. 14. The recogni-
tion rates are very close to each other before and after 
the selection process by BChimp1 and BChimp2, while 
BChimp 1 outperformed it in 4 cases and BChimp2 out-
performed it in 7 cases.

6.4.6 � Accuracy Comparison of MLP Classifier With/Without 
Binary Chimp Methods

Figure 15 depicts the accuracy comparison of MLP clas-
sifier with/without proposed binary Chimp  methods 
(BChimp1 and BChimp2). The recognition rates are very 
close to each other before and after the selection process 

Fig. 10   Accuracy comparison of KNN classifier with/without Binary chimpanzee methods
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by BChimp1 and BChimp2, while BChimp1 outperformed 
it in 7 cases and BChimp2 outperformed it in 3 cases.

6.4.7 � Accuracy Comparison of Six Classifiers With/Without 
Proposed Binary Chimp Methods

Table 6 shows the accuracy comparison of six classifiers 
KNN, DT, SVM, RF, DA, and MLP with/without proposed 
binary chimp techniques over 23 datasets. The accuracy of 
the proposed BChimp2 is 82.02 % and 83.83% for BChimp1 
for all six classifiers over all 23 datasets used in experiences.

6.4.8 � Comparision of Classification Results Across Different 
Datasets

To evaluate the BChimp 2 using different classifiers 
(KNN, DT, SVM, and RF), the accuracy, precision, 
recall, and F-score are considered as the average of 10 
runs across 23 datasets. According to the classifica-
tion results in Figs.  16, 17, 18, and 19, the proposed 

BChimp2 SVM demonstrates the best results compared to 
BChimp2–KNN, BChimp2–DT, and BChimp2–RF for all 
datasets. This indicates that the use of BChimp2 algorithm 
enhances the efficiency of the SVM classifier by increasing 
precision and F-score as the selection is performed within 
the most significant features. This outcome highlights the 
efficiency gained by introducing BChimp2 as the features 
selection step before data classification and the superiority 
of SVM compared to KNN, DT, and KNN, which grantees 
high classification results in terms of accuracy, precision, 
recall, and F-score.

6.4.9 � Discussion and Lessons Learned

Our contribution highlights the importance of selecting opti-
mal and significant features before the classification phase 
as a lesson learned from the above sections. The selection 
should be based on optimization methods that come up with 
high classification accuracy, high convergence level, and 

Fig. 11   Accuracy comparison of DT classifier with/without binary chimpanzee methods
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acceptable execution time which may be important criteria 
in high dimensional data.

As demonstrated in Figs. 10–15, we can conclude that the 
classification accuracy of six learning machines before and 
after feature selection using the two proposed algorithms 
BChimp 1 and BChimp 2 are very close to each other. This 
indicates that the two proposed algorithms BChimp 1 and 
BChimp 2 were capable to select the important attributes 
in all experimented databases. Note that the selection time 
of the proposed BChimp1 and BChimp1 are acceptable 
with an average of 10 times and 4 times respectively more 
than normal datasets before selection which is effective and 
which could be practicable. In addition, note that the accu-
racy is high in all used datasets for all six learning machines, 
which means that the tested machine learning classifiers 
with BChimp 1 or BChimp 2 are worthy to be practical with 
various domain applications. The proposed BChimp1 with 
ML (respectively BChimp2 with ML) method has outper-
formed the capability of classifiers without feature selection 
in achieving high accuracy on 6 cases (respectively 4 cases) 
in all 23 datasets. The comparison study highlighted the 

improved classification average accuracy with 82.02 % for 
BChimp2-ML and 83.83% for BChimp1-ML and reduced 
data size with 72.54% for BChimp2-ML and 42.77% for 
BChimp1-ML for all dataset, which proves the ability and 
the effectiveness of the suggested systems in the area of fea-
ture selection and categorization. Finally, from the detailed 
results and discussion, it is assumed that the QDA with 
90.18% classifier model has ranked first by effectual per-
formance over other classifiers on 23 datasets followed by 
the MLP with 89.98% classifier and RF with 81.19 % in 
the third place. However, the proposed methods suffer from 
some shortcomings such as:

•	 The convergence levels are not perfect in some databases 
for MLP and QDA because we noted when designing 
these classifiers on the MATLAB platform, some errors 
appeared since these classifiers have high computational 
complexity influence outstandingly on relevant features 
selectivity and data of different natures in some databases 
as depicted in Table 6.

Fig. 12   Accuracy comparison of SVM classifier with/without binary chimpanzee methods
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Fig. 13   Accuracy comparison of FR classifier with/without binary chimpanzee methods

Fig. 14   Accuracy comparison of QDA classifier with/without binary chimpanzee methods
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Table 6   Accuracy values before 
and after features selection and 
machine learning methods

Dataset name Machine learning methods

KNN DT SVM RF QDA MLP

Iris Before Selection 96.00 92.67 96.00 94.00 98.00 98.00
BChimp1 96.00 96.00 98.00 95.33 97.33 97.33
BChimp2 96.00 94.00 96.67 94.67 98.00 98.00

Yale Before Selection 58.05 50.33 72.83 72.87 78.27 66.58
BChimp1 58.16 52.68 71.62 70.96 81.91 87.21
BChimp2 60.74 52.32 68.38 72.79 60.70 90.96

warpPIE10P Before Selection 91.43 77.14 99.05 98.10 100.00 90.48
BChimp1 90.00 81.43 99.05 98.10 99.52 100.00
BChimp2 92.38 76.67 100 96.19 100.00 100.00

WarpAR10P Before Selection 54.62 74.62 64.62 83.08 100.00 96.15
BChimp1 56.92 73.85 67.69 80.00 100.00 94.61
BChimp2 56.38 74.62 71.54 81.54 100.00 44.62

Orlraws10P Before Selection 56.38 74.62 71.54 81.54 100.00 44.62
BChimp1 90.00 73.00 99.00 95.00 99.00 99.00
BChimp2 91.00 76.00 99.00 94.00 99.00 100.0

ORL Before Selection 88.25 60.00 93.75 92.00 98.50 89.75
BChimp1 87.00 61.75 94.25 92.25 92.25 90.75
BChimp2 88.25 57.50 94.50 90.50 90.50 79.00

COIL20 Before Selection 98.33 90.14 100 99.58 93.96 98.54
BChimp1 98.13 90.56 99.93 99.44 99.44 96.39
BChimp2 98.68 89.79 99.86 99.44 99.46 94.38

Lung Discrete Before Selection 83.99 62.14 79.46 81.96 89.11 93.33
BChimp1 86.43 62.86 79.46 89.11 89.11 97.32
BChimp2 84.82 48.39 79.82 78.04 72.50 96.07

Colon Before Selection 75.24 71.19 78.81 82.83 85.71 –
BChimp1 79.29 74.29 80.71 77.38 85.44 –
BChimp2 73.33 69.29 78.10 81.90 82.33 –

Lung Before Selection 96.07 90.19 92.17 92.12 96.02 –
BChimp1 96.07 88.19 91.17 92.64 97.52 –
BChimp2 95.60 85.74 92.12 92.71 96.05 –

Lymphoma Before Selection 90.78 54.89 78.11 84.56 95.89 –
BChimp1 89.78 60.78 78.00 83.44 95.89 –
BChimp2 90.67 68.89 78.22 83.44 95.89 –

GLIOMA Before Selection 82.00 72.00 80.00 66.00 – 90.00
BChimp1 80.00 88.00 80.00 78.00 – 82.00
BChimp2 86.00 76.00 76.00 72.00 – 68.00

TOX 171 Before Selection 64.31 63.10 79.58 72.45 98.30 98.86
BChimp1 65.42 62.52 78.89 73.63 98.82 95.33
BChimp2 74.35 67.29 81.34 70.78 98.24 98.27

Prostate_GE Before Selection 86.09 75.45 89.09 89.18 – 99.00
BChimp1 86.36 77.18 87.09 88.18 – 97.00
BChimp2 88.18 71.82 88.00 84.55 – 96.09

Leukemia Before Selection 88.75 95.71 87.68 93.21 – –
BChimp1 96.61 91.96 93.21 93.21 – –
BChimp2 87.68 87.50 90.36 84.29 – –

ALLAML Before Selection 82.14 83.39 86.07 91.79 91.14 100
BChimp1 83.39 87.50 86.07 90.54 94.46 98.75
BChimp2 85.00 89.46 86.07 90.18 97.32 95.89
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Fig. 15   Accuracy comparison of MLP classifier with/without Binary chimpanzee methods

Table 6   (continued) Dataset name Machine learning methods

KNN DT SVM RF QDA MLP

nci9 Before Selection 46.67 26.67 38.33 43.33 – –

BChimp1 50.00 25.00 36.67 43.33 – –

BChimp2 45.00 33.33 31.67 43.33 – –
CLL_SUB_111 Before Selection 51.36 58.64 54.92 66.59 83.71 92.73

BChimp1 50.68 56.74 53.18 64.85 79.24 82.27
BChimp2 63.71 66.52 65.68 59.62 74.70 97.27

SMK CAN 187 Before Selection 67.37 62.46 72.31 64.09 70.76 88.22
BChimp1 66.49 61.49 71.55 64.68 73.19 87.57
BChimp2 64.68 64.12 72.28 61.99 71.23 88.10

GLI 85 Before Selection 83.89 74.03 86.11 82.08 89.58 96.36
BChimp1 83.89 82.22 84.31 83.89 89.58 97.64
BChimp2 84.86 75.28 84.86 84.72 89.31 96.53

Breast1_EW Before Selection 95.08 94.20 96.31 94.90 95.07 97.54
BChimp1 95.25 94.02 96.31 95.08 94.54 97.18
BChimp2 91.03 72.79 92.26 93.33 90.51 94.02

Clean 1 Before Selection 87.60 78.79 92.86 90.32 79.02 –
BChimp1 89.09 89.49 92.86 89.49 78.78 –
BChimp2 86.99 79.61 92.44 89.10 80.86 –

COIL Before Selection 97.85 90.07 100.0 99.65 96.26 97.01
BChimp1 97.99 90.21 99.93 99.86 96.32 98.06
BChimp2 98.89 91.60 99.79 99.58 96.74 66.46

Bold represents the best results obtained through optimization method, for each database
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Fig. 16   Average classification results of KNN classifier for 23 datasets

Fig. 17   Average classification results of DT classifier for 23 datasets
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Fig. 18   Average classification results of SVM classifier for 23 datasets

Fig. 19   Average classification metrics of RF classifier for 23 datasets
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•	 The precision is high but not optimal since the used fea-
tures for training and testing phases which is limited by 
the selected features by BChimp 1 and BChimp 2.

•	 No mechanism is investigated too deeply select features 
in unbalanced input datasets, particularly if the positive 
sample becomes highly sparse in high dimensional prob-
lems. during their selection, training, and testing phases. 
This is very important in high-dimensional data.

Future work will address these limitations.

7 � Conclusion

This paper introduces a new hybrid approach in the fea-
ture selection field, which is based on enhanced binary 
chimp optimization algorithms (BChimp1 and BChimp2) 
combined with six standard classifiers. The approach 
was evaluated by using different types of datasets to 
select relevant features that help ensure highly accurate 
results of machine learning classifiers. Additionally, we 
compared the proposed approach to four widely used and 
efficient feature selection algorithms (GA, PSO, GWO, 
and WOA). The evaluation of the obtained results was 
achieved through well-known metrics such as dimension-
ality reduction and convergence rate. The results obtained 
are very encouraging and validate the efficiency of our 
approach. To confirm that the proposed feature selection 
process extracted the most significant and relevant attrib-
utes, we have applied the most standard classifiers, such 
as KNN, DT, SVM, DA, and MLP before and after the 
feature selection process to 23 benchmarks. In almost all 
cases, the classifier's accuracy is very similar before and 
after selecting features. In other cases, the accuracy of the 
classifier after feature selection is higher than the classi-
fier before feature selection which means the relevance 
and significance of the proposed approach. It suffers from 
non-convergence of the recognition process for some data-
sets for both QDA and MLP classifiers. In general, the 
two proposed algorithms BChimp1-ML and BChimp2-ML 
give acceptable convergence time compared to the other 
techniques on 23 databases for all six learning machine 
classifiers. In future research, we aim to test BChimp1 and 
BChimp2 on medical datasets and provide multi-criteria 
dynamic optimization problems.
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