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Abstract
In recent years, artificial intelligence (AI) technology has been used in most if not all domains and has greatly benefited our 
lives. While AI can accurately extract critical features and valuable information from large amounts of data to help people 
complete tasks faster, there are growing concerns about the non-transparency of AI in the decision-making process. The 
emergence of explainable AI (XAI) has allowed humans to better understand and control AI systems, which is motivated 
to provide transparent explanations for the decisions made by AI. This article aims to present a comprehensive overview 
of recent research on XAI approaches from three well-defined taxonomies. We offer an in-depth analysis and summary of 
the status and prospects of XAI applications in several key areas where reliable explanations are urgently needed to avoid 
mistakes in decision-making. We conclude by discussing XAI’s limitations and future research directions.
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EHR  Electronic health records
LEMNA  Local explanation method using nonlinear 

approximation

1 Introduction

Deep learning has been contributing to artificial intel-
ligence (AI) systems to speed up and improve numerous 
tasks, including decision-making, predictions, identifying 
anomalies and patterns, and even recommendations and so 
on. Although the accuracy of deep learning models has dra-
matically improved during the last decade, this improved 
accuracy has often been achieved through increased model 
complexity, which may induce common sense mistakes in 
practice without providing any reasons for the mistakes, 
making it impossible to fully trust its decisions. It’s also 
challenging to achieve targeted model improvement and 
optimisation [1]. Without reliable explanations that accu-
rately represent the current AI system processes, humans 
still consider AI untrustworthy due to a variety of dynam-
ics and uncertainties [2] when deploying AI applications in 
real-world environments. This motivates the inherent need 
and expectation from human users that AI systems should 
be explainable to help confirm decisions.

Explainable AI (explainable artificial intelligence (XAI)) 
is often considered a set of processes and methods that are 
used to describe deep learning models, by characterizing 
model accuracy, transparency, and outcomes in AI systems 
[3]. XAI methods aim to provide human-readable explana-
tions to help users comprehend and trust the outputs created 
by deep learning algorithms. Additionally, some regula-
tions such as European General Data Protection Regulation 
(general data protection regulation (GDPR))[4] have been 
introduced to drive further XAI research, demanding the 
important ethics [5], justifications [6], trust [7] and bias [8] 
to explore reliable XAI solutions.

The need for XAI is multi-factorial and depends on the 
concerned people (Table 1), whether they are end users, AI 
developers or product engineers. End-users need to trust the 
decisions and be reassured based on the explainable pro-
cess and feedback. On the other hand, AI developers need 
to understand the limitations of current models to validate 
and improve future versions. Besides, regarding product 

engineers in different domains, they need to access and opti-
mise explanations of the decision process for the deployment 
of AI systems, especially in real-world environments.

In a more detailed manner, XAI should consider differ-
ent cultural and contextual factors. For example, in different 
contexts and cultural backgrounds, XAI may need to provide 
different interpretations for the same objects and phenomena. 
To address this, scholars have proposed the Contextual Util-
ity Theory [9], which explains the final decision outcome by 
assessing the importance and influence of different factors. 
Additionally, tailoring explanations based on user expertise 
is another crucial aspect of designing effective explainable 
artificial intelligence (XAI) systems. By considering the 
varying levels of technical knowledge and expertise among 
users, XAI systems can provide explanations that are better 
suited to their individual needs. For example, in healthcare, 
patients often have varying levels of medical knowledge and 
technical understanding. When presenting AI-driven diag-
noses or treatment recommendations to patients, explana-
tions should be tailored to their level of health literacy. For 
patients with limited medical expertise, explanations should 
use plain language and visual aids to help them comprehend 
the reasoning behind the AI-generated recommendations. 
On the other hand, for healthcare professionals who have a 
deeper understanding of medical concepts, explanations can 
delve into more technical details and provide insights into 
the model’s decision-making process [10].

From a long-term perspective, more focus should be done 
on usability and maintainability, which requires improved 
personalisation, evolution with time, and data management 
[11]. These aspects are essential for ensuring the continued 
effectiveness and relevance of XAI approaches. One area 
that requires attention is improved personalization, where 
XAI systems can be tailored to individual users or specific 
application domains [12]. Also, as AI models and data 
evolve over time, XAI systems need to adapt and evolve 
as well. Data management is another critical aspect for the 
long-term usability and maintainability of XAI systems. As 
data volumes increase and data distributions change, XAI 
methods should be able to handle shifting data characteris-
tics and adapt accordingly [13].

At present, XAI has gained a great deal of attention across 
different application domains. Accordingly, an increasing 
number of XAI tools and approaches are being introduced 

Table 1  Explainable AI: who 
need it? Why? For what?

Who? Why? For what?

End user Understand decisions Persuasive explanation
AI developer Understand limitations; improve future visions; 

debug algorithms
Intrinsic explanation; 

training and valida-
tion

Product engineer System design, integration, and deployment Complete explanation
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both in industry and academia. These advancements aim 
to address the ongoing trade-off between interpretability 
and predictive power.There is a growing recognition that 
highly interpretable models might encounter limitations in 
capturing complex relationships, which can lead to reduced 
accuracy. On the other hand, complex models often achieve 
superior accuracy but at the expense of interpretability. 
Balancing these considerations becomes crucial and is con-
tingent upon the specific requirements of the application 
domain. In certain contexts, such as healthcare or finance, 
interpretability and transparency play pivotal roles in ensur-
ing regulatory compliance and addressing ethical considera-
tions [14, 15]. In other domains, such as medical image or 
signal recognition, where accuracy is paramount, the focus 
may be more on predictive power than interpretability [16].

The current XAI methods exhibit various dimensions and 
descriptions to understand deep learning models and some 
survey papers [3, 17, 18] have summarized the methods and 
basic differences among different XAI approaches. How-
ever, the state-of-the-art analysis with respect to existing 
approaches and limitations for different XAI-enabled appli-
cation domains still lacks investigation.

The field of explainable artificial intelligence (XAI) has 
witnessed the emergence of numerous methods and tech-
niques aimed at comprehending the intricate workings of 
deep learning models. Currently, some survey papers have 
made efforts to summarize these methods and offer a fun-
damental understanding of the distinctions among various 
XAI approaches [3, 17, 18]. However, while certain sur-
vey papers have focused on specific domains like health-
care [19] or medical applications [20], there still exists a 
substantial gap in the state-of-the-art analysis pertaining 
to the existing approaches and their limitations across all 
XAI-enabled application domains. This gap necessitates a 
comprehensive investigation encompassing various aspects 

such as different requirements, suitable XAI approaches, and 
domain-specific limitations. Conducting such an analysis is 
crucial as it allows us to gain a deeper understanding of 
the performance of XAI techniques in real-world scenarios. 
Additionally, it helps us identify the challenges and opportu-
nities that arise when applying these approaches to different 
application domains. By bridging this gap, we can make 
significant strides towards developing more effective and 
reliable XAI systems tailored to specific domains and their 
unique characteristics.

In this survey, our primary objective is to provide a com-
prehensive overview of explainable artificial intelligence 
(XAI) approaches across various application domains by 
exploring and analysing the different methods and tech-
niques employed in XAI and their application-specific con-
siderations. We achieve this by utilizing three well-defined 
taxonomies, as depicted in Fig. 1. Unlike many existing sur-
veys that solely focus on reviewing and comparing meth-
ods, we go beyond that by providing domain mapping. This 
mapping provides insights into how XAI methods are inter-
connected and utilized across various application domains, 
and even in cases where domains intersect. Additionally, 
we delve into a detailed discussion on the limitations of the 
existing methods, acknowledging the areas where further 
improvements are necessary. Lastly, we summarize the 
future directions in XAI research, highlighting potential 
avenues for advancements and breakthroughs. Our contri-
butions in this survey can be summarized as follows:

• Develop a new taxonomy for the description of XAI 
approaches based on three well-defined orientations with 
a wider range of explanation options;

• Investigate and examine various XAI-enabled applica-
tions to identify the available XAI techniques and domain 
insights through case studies;

Fig. 1  The proposed organiza-
tion to discuss the approaches, 
limitations and future directions 
in XAI
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• Discuss the limitations and gaps in the design of XAI 
methods for the future directions of research and devel-
opment.

In order to comprehensively analyze XAI approaches, limi-
tations, and future directions from application perspectives, 
our survey is structured around two main themes, as depicted 
in Fig. 1. The first theme focuses on general approaches and 
limitations in XAI, while the second theme aims to analyze 
the available XAI approaches and domain-specific insights.

Under each domain, we explore four main sub-themes: 
problem definition, available XAI approaches, case studies, 
and domain insights. Before delving into each application 
domain, it is important to review the general taxonomies 
of XAI approaches. This provides a foundation for under-
standing and categorizing the various XAI techniques. In 
each domain, we discuss the available and suitable XAI 
approaches that align with the proposed general taxonomies 
of XAI approaches. Additionally, we examine the domain-
specific limitations and considerations, taking into account 
the unique challenges and requirements of each application 
area. We also explore cross-disciplinary techniques that con-
tribute to XAI innovations. The findings from these discus-
sions are summarized as limitations and future directions, 
providing valuable insights into current research trends and 
guiding future studies in the field of XAI.

2  Taxonomies of XAI Approaches

2.1  Review Scope and Execution

This work is mainly based on a scope of review refers to 
the specific boundaries and focus of the research being con-
ducted. In the context of an XAI survey, the scope typically 
includes the following aspects:

• XAI approaches: The review will focus on examining 
and analyzing different XAI approaches and methods that 
have been proposed in the literature. This include visu-
alization techniques, symbolic explanations, ante-hoc 
explanations, post-hoc explanations, local explanations, 
global explanations and any other relevant techniques.

• Application domains: The review may consider various 
application domains where XAI techniques have been 
applied, including medical and biomedical, healthcare, 
finance, law, cyber security, education and training, civil 
engineering. The scope involve exploring the usage of 
XAI techniques in these domains and analyzing their 
effectiveness and limitations across multiple domains.

• Research papers: The review will involve studying and 
synthesizing research papers that are relevant to the cho-
sen scope. These papers may include original research 

articles, survey papers and scholarly publications that 
contribute to the understanding of XAI approaches and 
their application in the selected domains through case 
studies.

• Limitations and challenges: The scope also encompass 
examining the limitations and challenges of existing XAI 
methods and approaches. This could involve identify-
ing common issues, gaps in the literature, and areas that 
require further research or improvement.

Having the scope of review established, the selected data-
bases and a search engine include Scopus, Web of Science 
and Google Scholar (Search engine) and arXiv between 
2013 and 2023. The search terms based on the scopes are:

• XAI keywords: explainable, XAI, interpretable.
• Review keywords: survey, review, overview, literature, 

bibliometric, challenge, prospect, trend, insight, oppor-
tunity, future direction.

• Domain keywords: medical, biomedical, healthcare, 
wellness, civil, urban, transportation, cyber security, 
information security, education, training, learning and 
teaching, coaching, finance, economics, law, legal sys-
tem.

With the selected search terms, the two-round search strings 
were designed to effectively retrieve relevant information 
and narrow down the search results.

The first round, focusing on general research papers, con-
sisted of the following search string: (explainable OR XAI 
OR interpretable) AND (survey OR review OR overview 
OR literature OR bibliometric OR challenge OR prospect 
OR trend OR opportunity OR "future direction").

The second round, aimed at selecting specific applica-
tion domains, utilized the following search string: (explain-
able OR XAI OR interpretable) AND (medical, biomedical 
OR healthcare OR wellness OR civil OR urban OR trans-
portation OR “cyber security” OR “information security” 
OR education OR training OR “learning and teaching” OR 
coaching OR finance OR economics OR law OR “legal 
system”).

Publications that did not clearly align with the scopes 
based on their title or abstract were excluded from this 
review. While not all literature explicitly stated this infor-
mation, the extracted data was organized and served as the 
foundation for our analysis.

2.2  XAI Approaches

The taxonomies in the existing survey papers generally cat-
egorised XAI approaches based on scope (local or global) 
[21], stage (ante-hoc or post-hoc) [17] and output for-
mat (numerical, visual, textual or mixed) [22]. The main 
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difference between the existing study and our survey is 
that this paper focuses on the human perspective involving 
source, representation, and logic reasoning. We summarise 
the taxonomies categorised in this survey in Fig. 2:

Source-oriented (source-oriented (SO)) the sources that 
support building explanations can be either subjective (S) or 
objective (O) cognition, depending on whether the explana-
tions are provided based on the fact or human experience. 
For example, in the medical field, if the explanation of a 
diagnosis is provided based on the patient’s clinical symp-
toms and explains the cause and pathology in detail dur-
ing the AI learning process, this is from objective cognitive 
concern. In contrast, explanations with subjective cognitive 
consider patients’ current physical conditions and doctors’ 
medical knowledge.

Representation-oriented (representation-oriented 
(RO)) core representation among the XAI approaches can 
generally be classified into visualisation-based (V), sym-
bolic-based (S) or even hybrid (H) methods. Visual-based 
methods are the most common representation ways includ-
ing input visualisation and model visualisation. Input visu-
alisation methods provide an accessible way to view and 
understand how input data affect model outputs, while model 
visualisation methods provide analysis based on the aspect 
of layers or features inside the model.

Besides visualization-based methods, other formats of 
explanations, including numerical, graphical, rules, and 
textual explanations, are covered in symbolic-based meth-
ods. Symbolic-based methods tend to describe the process 
of deep learning models by extracting insightful informa-
tion, such as meaning and context, and representing them 
in different formats. The coding symbolic-based explana-
tion is provided directly from the factual features, includ-
ing numerical, graphical and textual explanations. For 
instance, a numerical method [23] monitors the features at 

every layer of a neural network model and measures their 
suitability for classification, which is beneficial to provide 
a better understanding of the roles and dynamics of the 
intermediate layers. Zhang et al. [24] used an explanatory 
graph to reveal the knowledge hierarchy hidden inside a 
pre-trained convolutional neural network (CNN) model. 
In the graph, each node represents a part pattern, and 
each edge encodes co-activation relationships and spatial 
relationships between patterns. A phase-critic model is 
developed to generate a candidate textual explanation for 
the input image [25].

By contrast, qualifying symbolic explanations, such as 
rules and graphical explanations, are provided under human 
knowledge. Rules explanations are usually in the form of 
“If-Then" rules to obtain the inferential process of neural 
networks. Rule extraction techniques include neural network 
knowledge extraction (neural network knowledge extrac-
tion (NNKX)) [26], rule extraction from neural network 
ensemble (rule extraction from neural network ensemble 
(REFNE)) [27], and Electric Rule Extraction (electric rule 
extraction (ERE)) [28]. Moreover, knowledge graphs can 
also help AI models be more explainable and interpretable 
and are widely used in explainable methods. Andriy and 
Mathieu [29] applied rule mining using knowledge graph 
(KG)s to reveal semantic bias in neural network models. 
Visualisation-based methods and coding symbolic explana-
tions generally belong to objective cognitive, while qualify-
ing symbolic explanations are always subjective cognitive 
by adding human knowledge and opinions.

Hybrid methods can generate mixed explanations, con-
sisting of visualization explanations and symbolic informa-
tion, which can be either subjective or objective cognitive. 
In [30], visual and textual explanations are employed in the 
visual question answering task. Both subjective and objec-
tive cognitive explanations are provided in this work. We 

Fig. 2  Taxonomies of XAI 
approaches in this survey

XAI principles

Representation-
oriented

Logic-
oriented

Source-
oriented

End-end 
relationshipSubjective cognitive

Objective cognitive

Visualization-based

Symbolic-based

Hybrid-based

Middle-end 
relationship

Correlation 
relationship
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summarise the above-mentioned XAI representations with 
surveyed related work in Table 2.

Logic-oriented (logic-oriented (LO)) a well-developed 
XAI method with a specific representation can be integrated 
logic reasoning into deep learning models, including end-
end (E-E) relationship, middle-end (M-E) relationship, and 
correlation (Corr) relationship shown in Table 3. The end-
end explanations focus on providing how the AI system 
processes from the first input stage to the final output result. 
The middle-end performs explanations by considering the 
internal AI system structure. The correlation is used to rep-
resent the correlations among sequence inputs or consecu-
tive outputs of deep learning models. Most XAI approaches 
target to clarify the relationship between input features and 
output results, and very few research relates to middle-end 
and correlation relationships.

3  Applications Using XAI Approaches

Nowadays, applications using XAI approaches have been 
covered in various domains. This section provides details for 
different XAI techniques used for each application. Some of 
the main applications are summarised in Table 4.

3.1  Medical and Biomedical

3.1.1  Problem Definition

The use of AI systems in medical and biomedical research 
has increasing influences on medical advice and therapeutic 
decision-making processes, especially in one of the most 
common areas that apply deep learning techniques, the med-
ical and biomedical image analysis, such as image registra-
tion and localisation, detection of anatomical and cellular 
structures, tissue segmentation, and computer-aided disease 
diagnosis.

Medical and biomedical image analysis refers to the 
extraction of meaningful information from digital images, 
which utilised a variety of medical imaging techniques, 
including computed tomography (computed tomogra-
phy (CT)), magnetic resonance imaging (Magnetic reso-
nance imaging (MRI)), ultrasound (ultrasound (US)), and 
X-rays, covering important body parts such as the brain, 
heart, breast, lung and kidney [153]. Due to the advantages 
of deep learning in the field of medical image analysis, in 
recent years, more and more researchers have adopted deep 
learning to solve problems of medical image analysis and 
achieved good performances. Although medical image anal-
ysis based on deep learning has made great progress, it still 
faces some urgent problems in medical practice.

Deep learning methods now can automatically extract 
abstract features by end-to-end prediction processing, which 
can obtain direct results, but this is insufficient to provide 
diagnostic evidence and pathology, and the features can-
not be completely trusted or accepted. For example, for 
glaucoma screening, doctors can use intraocular pressure 
testing, visual field testing, and manual inspection of the 
optic disc to diagnose the disease and give the cause and 
pathology based on the patient’s symptoms and pathological 
reports [154]. However, the deep learning model is difficult 
to explain the correlation or causality between its input and 
output in different contexts, lacking an explanation of the 
process, which is difficult to support reasoning in medical 
diagnosis and research.

Additionally, due to the data-driven nature of deep learn-
ing, models can easily learn the deviations in the training 
[155]. This phenomenon is common in medical image pro-
cessing. For example, a deep learning model identifies cer-
tain diseases from images during training while the actual 
diagnosis could be another disease, and this should not occur 
at all. If users intend to to improve a model, the explanation 
of the model is a prerequisite, because before being able 
to solve a problem, its existence and causality need to be 
identified.

3.1.2  XAI Based Proposals

The research on explainable deep learning can enhance the 
capabilities for AI-assisted diagnosis by integrating with 
large-scale medical systems, providing an effective and 
interactive way to promote medical intelligence. Different 
from common explainable deep learning methods, the deep 
learning explanation research of medical image analysis is 
not only affected by the data, but also related to medical 
experts’ knowledge.

In terms of source-oriented, the objective cogitative 
explanation is provided based on visible, measurable find-
ings obtained by medical examinations, tests, or images, 
while the subjective cogitative explanation needs to consider 
the medical experts’ knowledge and patient situations. The 
existing XAI proposals cover both objective and subjective 
cognitive aspects. For example, the gradient-weighted class 
activation mapping [gradient-weighted class activation map-
ping (Grad-CAM)] method proposed in [36] performs expla-
nation by highlighting the important regions in the image, 
which refers to objective cogitative. Some researchers also 
consider using subjective sources, such as in [85], authors 
presented the explanation by combining time series, histo-
pathological images, knowledge databases as well as patient 
histories.

In terms of representation-oriented, visualisation methods 
emphasise the visualisation of training data rules and the vis-
ualisation inside the model, which is the most popular XAI 
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approaches used in medical image analysis. Some typical 
examples include attributed-based and perturbation-based 
methods for model-agnostic explanations as well as CAM-
based and concept attribution for model-specific explana-
tions. Locally-interpretable model-agnostic explanations 
(locally-interpretable model-agnostic explanations (LIME)) 
[86] is utilised to generate explanations for the classification 
of medical image patches. Zhu et al. [87] used rule-based 
segmentation and perturbation-based analysis to generate the 
explanation for visualising the importance of each feature 
in the image. The concept attribution [37] is introduced by 
quantifying the contribution of features of interest to the 
CNN network’s decision-making. Symbolic methods focus 
on the symbolic information representations that simulate 
the doctor’s decision-making process with natural language, 
along with the generated decision results, such as primary 
diagnosis reports, etc. For example, Kim et al.[66] intro-
duced concept activation vectors (CAVs), which provided 
textual interpretation of neural network internal state with 
user-friendly concepts. Lee et al. [73] provided explainable 
computer-aided diagnoses by combining a visual point-
ing map and diagnostic sentences based on the predefined 
knowledge base.

In terms of logical-oriented, explanations focused on end-
end logic reasoning, such as the above-mentioned LIME, 
perturbation-based methods are utilised to explain the rela-
tionship between input medical images and predicted results. 
For example, a linear regression model is embedded into 
LIME [86] to identify relevant regions by plotting heat maps 
with varying color scales. Zhang et al. [56] provided a diag-
nostic reasoning process and translate gigapixels directly to 
a series of interpretable predictions. Shen et al. [58] used a 
hierarchical architecture to present a concept learning-based 
correlation model. The prediction’s interpretability is aided 
by the model’s intermediate outputs, which anticipate diag-
nostic elements connected to the final classification. A cor-
relation-XAI approach proposed by [59] is used for feature 
selection merging generalised feature importance obtained 

with shapley additive explanations (shapley additive expla-
nations (SHAP)) and correlation analysis to achieve the opti-
mal feature vector for classification.

3.1.3  Cases Studies

Explainable AI applications in the medical field assist 
healthcare providers in making accurate diagnoses, treat-
ment decisions, risk assessments, and recommendations. 
The transparency and interpretability of these AI models 
ensure that clinicians can trust and validate the outputs, lead-
ing to improved patient care and outcomes [92].

Lesion classification: The visualisation of lesion areas 
mainly refers to heat maps [88], attention mechanisms [89, 
90], and associated with other diagnostic means such as 
structural remodeling [91] and language models to repre-
sent report text [156] to find out lesion areas. These meth-
ods provide visual evidence to explore the basis for medi-
cal decision-making. For example, Biffi et al. [91] used a 
visualisation method on the original images to measure the 
specificity of pathology, using interpretable characteristics 
of specific tasks to distinguish clinical conditions and make 
the decision-making process transparent. Garcia-Peraza-
Herrera et al. [92] used embedded activation charts to detect 
early squamous cell tumors, showing the focus on the inter-
pretability of the results and use it as a constraint to provide 
a more detailed attention map. Paschali et al. [88] used a 
model to activate the fine-grained Logit heat map to explain 
the medical imaging decision-making process. Lee et al. 
[90] used head CT scan images to detect acute intracranial 
hemorrhage, and proposed an interpretable deep learning 
framework. Liao et al. [89] provided a visual explanation 
basis for the automatic detection of glaucoma based on the 
attention mechanism, and in the process of automatic glau-
coma detection, the system provides three types of output: 
prediction result, attention map, and prediction basis, which 
enhances the result interpretability.

Table 3  Summarising the XAI approaches from logic-oriented

Type Typical examples Pros Cons References

E-E relationship Regression-based partitioned 
method; Importance estimation 
network, etc.

Better applicability with no limita-
tions for various models

Still has challenging to understand 
the internal logic that how to gen-
erate outputs and how to forecast 
the model behaviour in a variety 
of situations

[52–54]

M-E relationship Feature-wise relevance; Layer-wise 
relevance; etc.

The procedure is quite straightfor-
ward, and it is easy to identify 
internal structure or any bias in the 
middle

The explanation may be partial 
just covering particularly part of 
interesting areas

[55–57]

Corr relationship Input-level correlation (feature, 
label, image, etc.)

It has high benefits to understand 
why the model produces a given 
result during the entire learning

The explanation may be complex by 
considering different dimensions 
of relationships

[58, 59]
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Disease diagnosis and treatment: Research on XAI in 
disease diagnosis and treatment has recently gained much 
attention. Amoroso et al.[93] applied clustering and dimen-
sion reduction to outline the most important clinical feature 
for patients and designed oncological therapies in the pro-
posed XAI framework. In the context of high-risk diagno-
ses, explainable AI techniques have been applied to provide 
visual cues and explanations to clinicians. For example, 
Sarp et al. [94] utilized LIME (local interpretable model-
agnostic explanations) to generate visual explanations for 
a CNN-based chronic wound classification model. These 
visual cues help clinicians understand the model’s decision-
making process and provide transparency in the diagnosis. 
Moreover, Wu et al. [95] proposed a counterfactual multi-
granularity graph supporting fact extraction (counterfactual 
multi-granularity graph supporting fact extraction (CMGE)) 
for lymphedema diagnosis. CMGE is a graph-based neural 
network that extracts facts from electronic medical records, 
providing explanations and causal relationships among fea-
tures. These explanations assist clinicians in comprehending 
the reasoning behind the diagnosis and identifying relevant 
factors contributing to the condition.

In the domain of relatively low-risk screenings, explain-
able AI research has explored the integration of medical 
records and natural language processing methods to provide 
interpretable diagnostic evidence. For instance, Wang et al. 
[96] and Lucieri et al. [97] have integrated medical records 
into map and image processing, creating diagnostic reports 
directly from medical images using multi-modal medical 
information. This integration enables the generation of inter-
pretable evidence and explanations for clinicians during the 
screening process.

Additionally, hybrid XAI approaches have been explored, 
such as Mimir proposed by Hicks et al. [84]. Mimir learns 
intermediate analysis steps in deep learning models and 
incorporates these explanations to produce structured and 
semantically correct reports that include both textual and 
visual elements. These explanations aid in understanding 
the screening results and provide insights into the features 
contributing to the risk assessment, assisting clinicians in 
making informed decisions and recommendations for further 
screenings or preventive measures.

3.1.4  Domain‑Specific Insights

In terms of biomedical field, the end-users of XAI are mostly 
pharmaceutical companies and biomedical researchers. 
With the use of AI and XAI, they can understand the rea-
soning behind predictions made for disease diagnosis and 
diagnostic evidence. This insight into the decision-making 
process can enhance the transparency and trustworthiness 
of AI-based predictions, leading to more accurate, reliable 
and efficient disease diagnosis. Nonetheless, XAI techniques Ta
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have their limitations. For example, due to the inherent com-
plexity of disease diagnosis and treatment, XAI may strug-
gle to provide full and concise explanations of all factors 
influencing a prediction. Further, if a situation is novel or 
significantly different from past scenarios used in training 
the AI, the explanations offered by XAI may be insufficient 
or not entirely accurate. Moreover, given the dynamic and 
multifaceted nature of public health and disease spread, XAI 
might struggle to provide real-time explanations or take into 
account every single factor influencing disease spread. This 
includes factors like socioeconomic conditions, behavior 
changes, and environmental changes. Additionally, if the 
situation changes rapidly, as in the case of a new disease out-
break, the explanations provided by XAI might be outdated 
or not entirely accurate. Therefore, XAI provides significant 
advantages in the biomedical field by enhancing transpar-
ency and trust in AI predictions, it also faces challenges 
related to the complexity and dynamic nature of biomedi-
cal data and scenarios. More research and advancements 
are needed to improve the capability of XAI in handling 
these challenges and providing clear, concise, and real-time 
explanations.

3.2  Healthcare

3.2.1  Problem Definition

AI-assisted exploration has broad applications in healthcare 
including drug discovery [104, 105] and disease diagnosis 
[103, 106]. Deep learning techniques achieved high accu-
racy on classification problems—e.g., using MRI images 
to identify different stages of dementia [157]. The Health-
care industry can now examine data at extraordinary rates 
without sacrificing accuracy due to the development of deep 
learning. Healthcare offers unique challenges, with typically 
much higher requirements for interpretability, model fidel-
ity, and performance than most other fields. More interpret-
able solutions are in demand apart from the binary clas-
sification of positive-negative testing, and they can benefit 
clinicians, allowing them to have an understanding of the 
results. In healthcare, critical applications like predicting a 
patient’s end-of-life may have more stringent conditions on 
the fidelity of interpretation than just predicting the cost of 
a procedure[158]. Researchers have analysed the interpret-
ability of deep-learning algorithm for the detection of acute 
intracranial haemorrhage from small datasets [90]. More-
over, some studies focus on explaining how AI improves 
health-associated records of individual patients’ electronic 
health records (electronic health records (EHR))[159]. This 
is because AI models for treating and diagnosing patients 
might be complex as these tools are not always sufficient on 
their own to support the medical community and medical 
staff may not be exposed to these technologies before[159].

3.2.2  XAI Based Proposals

Adding to the numerous research of SARS-CoV-2 mutations, 
Garvin et al. [160] used a method called iRF-LOOP [161], 
an XAI algorithm, in combination with Random Intersection 
Trees (RIT) [162] for the matrix of variable site mutations 
analysis. The network as the output of the iRF-LOOP model 
includes a score of the ability to predict the absence or pres-
ence of another variable site mutation for each variable site 
mutation. Ikemura et al. [163] used an unsupervised XAI 
method BLSOM (batch-learning self-organizing map) for 
oligonucleotide compositions of SARS-Cov-2 genomes that 
reveals new noval characteristics of genome sequences and 
drivers of species-specific clustering. This BLSOM method 
presented the contribution levels of the variables at each 
node by visualising the explanation with a heat map.

In terms of source-oriented, XAI in healthcare is mainly 
visible, measurable findings, medical histories, numeri-
cal records and reports. This information conducts from 
a series of medical examinations, which is not subjective 
to the explanation methods or requirements. For example, 
SHAP is an explainer that helps to visualise the output of 
the machine learning model and compute the contribution 
of each feature to the prediction [164].

In terms of representation-oriented, in the healthcare 
field, explanations of AI models are more realistically appli-
cable to overall AI processes, but individual decisions need 
to be carefully considered. XAI in the healthcare field mainly 
includes causality, which is the capacity to identify haphaz-
ard connections among the system’s many components, and 
transferability, which is the capacity to apply the information 
the XAI provides to different issue domains[107].

In terms of logical-oriented, explanations in healthcare 
mainly focus on correlation analysis. For example, SHAP 
has been widely used in the healthcare industry to provide 
explanations for hospital admission [108], quality of life 
[109], surgery complication [110], Oncology [111] and risk 
factor analysis of in-hospital mortality [112].

3.2.3  Cases Studies

Pain detection based on facial expressions: Understand-
ing the choices and restrictions of various pain recognition 
models is essential for the technology’s acceptability in 
high-risk industries like healthcare. Researchers have pro-
vided a method for examining the variances in learned rep-
resentations of models trained on experimental pain (BioVid 
heat pain dataset) and clinical pain (UNBC shoulder pain 
dataset). To do this, they first train two convolutional neural 
networks, one for each dataset, to recognise pain and the 
absence of pain automatically. The performance of the heat 
pain model is then assessed using pictures from the shoulder 
pain dataset, and vice versa. This is known as a cross-dataset 
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evaluation. Then, to determine which areas of the photo-
graphs in the database are most relevant, they employed a 
Layer-wise Relevance Propagation [165]. In this study, they 
showed that the experimental pain model is paying more 
attention to facial expression.

Prediction of caregiver quality of life: The caregiver’s 
quality of life may be impacted by the patient’s depression 
and employment status before the onset of symptoms. Some 
researchers analysed the quality of life of caregivers, using 
SHAP to visualize the overall impact of all features and then 
selecting a subset of the seven most predictive features to 
establish a simpler model (M7) for a global explanation. 
Simpler models may be easier to comprehend, less likely 
to be influenced by unimportant or noisy aspects, more 
accurate, and more useful. In this study, SHAP was used to 
provide post-hoc explanations. Studies explored the most 
predictive features that impact the quality of caregivers’ life, 
including the weekly caregiving duties, age and health of the 
caregiver, as well as the patient’s physical functioning and 
age of onset [109].

3.2.4  Domain‑Specific Insights

In healthcare, the end-users of XAI systems range from cli-
nicians and healthcare professionals to patients and their 
families. Given the high-stakes nature of many medical deci-
sions, explainability is often crucial to ensuring these stake-
holders understand and trust AI-assisted decisions or diag-
noses. One of the primary benefits of XAI in the healthcare 
domain is the potential to make complex medical decisions 
more transparent and interpretable, leading to improved 
patient care. By providing clear explanations for AI-driven 
predictions, such as identifying risk factors for a particu-
lar disease, XAI can help clinicians make more informed 
decisions about a patient’s treatment plan. Patients, too, can 
benefit from clearer explanations about their health status 
and prognosis, which can lead to better communication with 
their healthcare providers and a greater sense of agency in 
their care. For instance, in the context of disease diagnosis, 
AI models equipped with XAI can interpret complex medi-
cal imaging data, such as MRI scans, to accurately diagnose 
a disease like dementia or cancer. Not only can these models 
highlight which features are most important in reaching a 
diagnosis, but they can also provide a visual explanation 
that assists clinicians in understanding the model’s reason-
ing. Similarly, in drug discovery, XAI can assist in identify-
ing novel therapeutic targets and predicting the efficacy of 
potential drugs, improving the speed and accuracy of drug 
development. The transparency provided by XAI in this pro-
cess can improve trust and confidence in the AI model’s sug-
gestions, and potentially speed up the regulatory approval 
process. However, the implementation of XAI in the health-
care domain is not without challenges. Privacy and data 

security are significant concerns when dealing with sensitive 
health data. Additionally, the ability of XAI to provide clear, 
comprehensible explanations in cases where the underlying 
AI model is extremely complex remains a challenge. Moreo-
ver, the healthcare field is inherently dynamic and complex, 
with countless interacting variables, so the explainability 
provided by current XAI methods might not be complete or 
fully accurate. Finally, there are also significant regulatory 
and ethical considerations that come with the application of 
AI and XAI in healthcare. Regulators will need to establish 
clear guidelines for the use of these technologies to ensure 
that they are used responsibly and ethically.

3.3  Cybersecurity

3.3.1  Problem Definition

Cybersecurity is the use of procedures, protections, and 
technologies to defend against potential online threats to 
data, applications, networks, and systems [166]. Maintain-
ing cybersecurity is becoming more and more challenging 
because of the complexity and huge amount of cyber threats, 
including viruses, intrusions, and spam [167].

In recent years, intelligent network security services and 
management have benefited from the use of AI technology, 
such as ML and DL algorithms.

There has been a variety of AI methods and tools devel-
oped to defend against threats to network systems and appli-
cations that may be present inside an organisation or outside 
of it. However, it is challenging for humans to comprehend 
how these outcomes are produced since the developed net-
work security-related decision-making model based on arti-
ficial intelligence lacks reasons and rational explanations 
[168]. This is due to the black-box nature of AI models. As 
a result of the network vulnerability, the network defence 
mechanism in this situation transforms into a black box sys-
tem that is susceptible to information leakage and the effects 
of AI [169]. In order to combat cyber security that takes 
advantage of AI’s flaws, XAI is a solution to the growing 
issue of the black box in AI. Due to XAI’s logical interpreta-
tion and key data proof interoperability, experts and general 
users can comprehend AI-based models [170].

Zhang et al. [171] divided these applications into three 
categories: defensive network threats applications using 
XAI, network security XAI applications in different indus-
tries, and defence methods against network threats in XAI 
applications. This section mainly analyses the defensive 
applications of XAI against network attacks.

3.3.2  XAI Based Proposals

In terms of source-oriented, the objective explanation is 
based on the detected system or network data, while the 
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subjective explanation depends on the analysts’ expertise 
and backgrounds. The existing XAI proposals cover both 
objective and subjective aspects. For example, Hong et al. 
[113] proposed a framework to provide explanations from 
the model and also combine with the analysts’ knowledge 
to eliminate the false positive errors of the decision made by 
the AI Models. Amarasinghe and Manic [114] proposed the 
method to give the most relevant input features align with 
the domain experts’ knowledge for each concept learned 
from the system.

In terms of representation-oriented, embedding with 
human understandable texts to interpret the results of the 
decision-making process is a common way. For example, 
Amarasinghe et al.[115] used text summary to interpret the 
reason to the end user of an explainable DNNs-based DoS 
anomaly detection in process monitoring. Besides, to present 
the explanation logic, DENAS [116] is a rule-generation 
approach that extracts knowledge from software-based 
DNNs. It approximates the nonlinear decision boundary 
of DNNs, iteratively superimposing a linearized optimiza-
tion function. Moreover, an image visualisation method was 
also used to explain, as Gulmezoglu [117] generated LIME 
and used saliency maps to examine the most dominant fea-
tures of the website fingerprinting attack after the trained 
DL model. Feichtner et al. [118] used LIME to calculate a 
score for each word, showing the importance of output, and 
used the heat map visualisation method to interpret the text 
description and application request permissions based on 
samples of the correlation between groups. Another interpre-
tation proposal [119] used the image to represent a mobile 
application and localise the useful salient parts of the model 
by the Grad-CAM algorithm. In this way, the analyst can 
gain knowledge by using the image symptom region for a 
specific prediction.

In terms of logic-oriented, explanations focus on 
end-end logic reasoning similar to LIME used in other 
areas, while local explanation method using nonlinear 
approximation (LEMNA) (Local explanation method 
using nonlinear approximation) is optimised for security 
applications based on deep learning, such as PDF mal-
ware recognition and binary reverse [120]. In contrast to 
the strong assumption that the model made by LIME is 
locally linear, the LEMNA scheme can deal with local 
nonlinearities and takes into account the dependencies 
between features. LEMNA can be used for the interpreta-
tion of a function starting position detection model in a 
scene in binary reverse. Yan et al. [121] proposed a tech-
nique for extracting a rule tree merged from generated 
rule tree of the hidden layer and the output layer of the 
DNN, which shows the more important input feature in 
the prediction task. Also, the middle-to-end explanation is 
used in this area. Amarasinghe et al. [115] used the layer-
wiser relevance propagation (LRP) method [122] to find 

the relevance features between the input layer and the last 
layer to explain what input feature contributes to making 
that decision.

3.3.3  Cases Studies

Intrusion detection systems XAI studies in intrusion 
detection systems are normally used to provide expla-
nations regarding different user perspectives. Most 
approaches use already-developed methods to make the 
results interpretable, with SHAP being the most adopted. 
LIME, on the other hand, has been adopted in only a few 
cases. Shraddha et al. [123] proposed a framework with 
a DNN at its base and apply an XAI method to add trans-
parency at every stage of the deep learning pipeline in 
intrusion detection system (IDS). Explanations give users 
measurable factors as to what features influence the pre-
diction of a cyber-attack and to what degree. Research-
ers create XAI mechanisms depending on who benefits 
from them. For data scientists, SHAP and BRCG [124] are 
proposed, while for analysts Protodash is used. For end-
users where an explanation of a single instance is required, 
researchers suggest SHAP, LIME, and CEM. Hong et al. 
[113] proposed a network intrusion detection framework 
called FAIXID making use of XAI and data cleaning tech-
niques to enhance the explainability and understandability 
of intrusion detection alerts. The proposed XAI algorithms 
included exploratory data analysis (EDA), Boolean Rule 
column generation (BRCG), and contrastive explanations 
method (CEM) that deployed in different explainability 
modules respectively to provide cybersecurity analysts 
with comprehensive and high-quality explanations about 
the detection decisions made by the framework. On the 
other hand, collecting analysts’ feedback through the eval-
uation module to enhance the explanation models by data 
cleaning also proved effective in this work as well.

Malware detection The effectiveness of malware detec-
tion increases when AI models are applied to signature-
based and anomaly-based detection systems. Heuristic-
based [172] methods were proposed to understand the 
behavior of an executable file using data mining and deep 
learning approaches. The development of interpretable 
techniques for malware detection in mobile environments-
particularly on Android platforms-has received a lot of 
attention. The adversarial attack method is also used to 
improve interpretability. Bose et  al. [125] provided a 
framework for interpolating between various classes of 
samples at various levels to look at many levels of weights 
and gradients as well as the raw binary bytes to understand 
how the MalConv architecture [126] learns in an effort to 
understand the mechanisms at work.
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3.3.4  Domain‑Specific Insights

AI-based cybersecurity systems carry two different kinds 
of secondary risks. The possibility of generating mislead-
ing negative results that result in erroneous conclusions is 
present in the first category. The second is the chance of 
receiving inaccurate notifications or erroneous warnings 
due to false positive results [173]. In such circumstances, 
it is imperative to take the required mitigating action to 
ensure that violations or unique events are handled more 
accurately, keeping the decision-making process’s ability 
to be understood and supported [174]. Additionally, the 
use of AI by hackers makes it possible for them to cir-
cumvent security measures so that data tampering goes 
unnoticed. This makes it challenging for businesses to 
correct the data supplied into AI-based security systems. 
As a result, compared to conventional model-based algo-
rithms, the current difficulty with AI-based systems is 
that they make decisions that lack reason [167]. Hence, 
XAI is required to enhance trust and confidence in AI-
based security systems.

In cybersecurity, XAI requires a more structured 
approach, utilizing various integrated techniques from 
diverse fields, guided by a dedicated research community 
focusing on increasing formalism. In particular, for areas 
like malware detection, there is a need for unified and 
clearly explained methods, ensuring a coherent under-
standing for all stakeholders, including users, analysts, 
and developers, to enhance the analysis and prevention of 
cyber-attacks. Moreover, currently, there’s no recognized 
system for gauging whether one XAI system is more user-
intelligent than another. A well-defined evaluation system 
to select the most effective explainability technique is 
needed. XAI also needs to grapple with substantial secu-
rity and privacy issues. Current XAI models are still vul-
nerable to adversarial attacks, leading to public concerns 
about XAI security.

3.4  Finance

3.4.1  Problem Definition

In the finance domain, XAI is mainly applied in finan-
cial forecasting [175] and credit risk management [176]. 
Financial forecasting is the problem of predicting dif-
ferent financial-related metrics, such as profit, financial 
healthy ratios, etc. Credit risk management is the problem 
of how to manage credit risks from different subjects. For 
instance, from a bank perspective, when a model predicts 
a client to be at high risk of default, it should give a rea-
son for different stakeholders to understand.

3.4.2  XAI Based Proposals

XAI in finance is mainly in the form of explaining which 
features are more important and which features are less 
important in the AI model. Under this form, different sta-
tistical-based techniques can be applied to find the features’ 
importance. In the legal domain, information is represented 
as natural language texts, so the objective of XAI models is 
to identify the important words that contribute to the final 
prediction.

In terms of source-oriented, most XAI models in the 
finance domain are objective and cognitive-based, as they 
are based on fact, not on the human experience. In the legal 
domain, those XAI models are objective cognitive since the 
highlighted words are from the input data. As CNNs have 
been proven useful in text input data, general XAI methods 
(e.g. Grad-CAM, LIME, SHAP) for CNNs have been used to 
explain the AI model trained for legal text [134]. To demon-
strate the contribution of each word in the given sentence on 
the final prediction, XAI models, like LIME, can indicate the 
contribution of the word “awesome" on the positive senti-
ment prediction result.

In terms of representation-oriented, XAI models in the 
finance domain vary among visualization-based, symbolic-
based and hybrid. For visualisation-based, some tree XAI 
models [177] can give tree-shape visualisations. For sym-
bolic-based, SHAP and LIME models can give numerical 
forms. In this case, XAI models try to give the explanation 
or contribution of different features in making the predic-
tion. Symbolic-based XAI in the financial domain empha-
sises giving the explanation in a quantitative manner. This 
is more applied in credit risk management. For hybrid, it is 
symbolic-based and basically a combination of visualisation. 
Visualisation in the representation-oriented category has 
been adopted to the legal domain to visualize the explain-
ability [132].

3.4.3  Cases Studies

Financial data forecasting AI models are being used to pre-
dict financial-related figures, such as stocking price, profit 
of the company, etc. However, sophisticated AI models can 
only give predictions rather than how these predictions are 
being made. In a typical application of XAI in financial 
forecasting cases, Local interpretable model-agnostic expla-
nations (LIME) are used to explain the model predictions 
locally around each example. LIME is an agnostic-based 
XAI model which is to simplify the complex model by using 
a linear regression model locally. For instance, Agarwal 
et al. [178] applied LIME on a stock price AI prediction 
model (the AdaBoost model) to explain the prediction. The 
AI (AdaBoost model) model used 20 previous days’ stock 
prices as the feature to predict the next day’s stock price. The 



174 Human-Centric Intelligent Systems (2023) 3:161–188

1 3

output of LIME is a 2-dimensional bar chart, with the Y-axis 
showing features and the X-axis showing the importance of 
features. In this way, the bar chart clearly shows how the AI 
prediction model makes the prediction (i.e., which features 
play dominant roles in the prediction model). Similarly, the 
SHAP XAI model can also be used to explain the financial 
forecasting model. The principle of the SHAP model is to 
compute the contribution level of each feature to the predic-
tion based on game theory. In the same work of Agarwal 
et al. [178], SHAP is used to explain the AdaBoost and ran-
dom forest-based stock price prediction model. The output 
of the SHAP model is a 2-dimensional chart, with the X-axis 
showing the contribution of features to the model and the 
Y-axis showing each feature used in the prediction model.

Credit risk management In addition to the financial 
foresting case, XAI has also been applied in the case of 
credit risk management. Credit risk may happen to a finan-
cial institution due to an expected financial loss. In [177], a 
SHAP model and a minimal spanning tree model were used 
to explain an extreme gradient boosting (XGBoost) based 
credit default risk default probability estimation model. 
Features used in the estimation model include financial 
information from the balance sheet. The minimal spanning 
tree model presents a clustering tree based on financial data, 
and the SHAP model presents the contribution level of each 
feature. The principle of the minimal spanning tree model 
is to present the credit risk prediction in a clustered-based 
visualisation, while the principle of the SHAP model is to 
present the explainability at a contribution level.

3.4.4  Domain‑Specific Insights

In terms of credit risk management, the end-users of XAI 
are mostly financial institutions like banks and insurance 
companies. XAI provides transparency and explanations for 
AI-driven decisions, allowing these institutions to under-
stand and validate the factors influencing risk assessments 
and fraud detection. This empowers financial institutions to 
make more informed and accountable decisions. XAI tech-
niques may struggle to provide clear and concise explana-
tions for every aspect of the decision, potentially leading 
to incomplete or partial explanations. In addition, credit 
risk is a dynamic and evolving field, influenced by vari-
ous economic, regulatory, and market factors, so the XAI 
may not be able to provide real-time explanations of the 
risk management decisions. XAI techniques may struggle 
to provide clear and concise explanations for every aspect 
of the decision, potentially leading to incomplete or partial 
explanations. In addition, credit risk is a dynamic and evolv-
ing field, influenced by various economic, regulatory, and 
market factors, so the XAI may not be able to provide real-
time explanations of the risk management decisions.

In terms of financial data forecasting, the end-users of 
XAI are mostly financial institutions like fund manage-
ment companies and asset management companies. With 
explanations provided by AI models, financial professionals 
gain insights into the reasoning behind investment recom-
mendations, risk assessments, and other financial decisions. 
This helps them validate the suggestions and communicate 
the rationale more effectively to their clients. One limita-
tion of XAI techniques is that they cannot explain events 
that never happened in the past. When faced with new and 
unprecedented circumstances, the explanations provided by 
XAI may not adequately account for these events, leading 
to potentially inaccurate forecasts. There is limited current 
research analyzing the specific computational cost in XAI 
models in finance. The computational cost of XAI used in 
the finance domain depends on the complexity of the under-
lying AI model, feature dimensions, and hardware level. If 
the underlying AI model is a regression or tree-based model 
and does not include many factors, the computational cost 
will be relatively low. However, if the underlying AI model 
is based on complex neural networks and includes tons of 
factors in the model, the computational cost will be high.

3.5  Law

3.5.1  Problem Definition

In the legal domain, one of the major concerns of XAI is 
whether the legal decisions are made fairly towards cer-
tain individuals or groups [133], since it is the high-stake 
domain, and decisions have real significant impacts on real 
human beings. The explainability of AI models provides 
transparency on how the decisions are made. It is the desired 
feature for decisions, commendations, and predictions made 
in the legal domain by AI algorithms. However, there are 
few works that have been done in the legal domain apart 
from general XAI methods [17].

3.5.2  XAI Based Proposals

In the legal domain, information is represented as natural 
language texts, so the objective of XAI models is to identify 
the important words that contribute to the final prediction.

In the legal domain, those XAI models are objective cog-
nitive since the highlighted words are from the input data. 
As CNNs have been proven useful in text input data, general 
XAI methods (e.g. Grad-CAM, LIME, SHAP) for CNNs 
have been used to explain the AI model trained for legal 
text [134]. To demonstrate the contribution of each word in 
the given sentence on the final prediction, XAI models, like 
LIME, can indicate the contribution of the word “awesome" 
on the positive sentiment prediction result.
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In terms of logic-oriented, there are few XAI models in 
the finance domain falling into this end. As in the finance 
domain, the cases are about the prediction of a probability 
or a numeric value, and the demand for the explanation of 
AI models tends to be about which factors contribute more 
to the final prediction. For the legal domain, the XAI models 
are end-end relationships, since the explanation has been 
expressed as the relationship between input words and out-
put predictions.

3.5.3  Cases Studies

Legal text classification Authors in [132] provided a case 
study from a lawyer’s perspective to utilise Grad-CAM, 
LIME, and SHAP to explain the legal text classification out-
comes. The AI model consists of DistiBERT for embedding 
and CNN for classification. The method used to represent 
the explainability is the heatmap visualisation, i.e., high-
lighted words with different intensities corresponding to dif-
ferent contributions to the final prediction. Apart from two 
evaluation metrics, the responses of lawyers on the given 
explanation have also been collected. The scores on visuali-
sations for the selected six correctly classified sentences are 
from 4.2 to 6.66 with 0 for worst and 10 for best. The key 
point made by lawyers is that the explanations made by XAI 
should be understandable for users who have no professional 
knowledge of the legal domain.

3.5.4  Domain‑Specific Insights

Explainability not only is necessary for AI applications in 
Law, but also is required by law (e.g., GDPR) for AI applica-
tions. In this subsection, we address the necessity of explain-
ability in AI applications in law. The decisions made in law 
require explainability by nature [179] as it forms the impor-
tant part of outputs. All judgements need reasons. Lawyers 
need to explain to the clients, judges need reference to rel-
evant articles or cases to support the decision[132]. For 
the AI-empowered legal consultation or recommender sys-
tems, the more important information is why this is relevant 
instead of just listing the relevant articles or similar cases. 
For judge results prediction, it is only helpful to profession-
als like lawyers when explainability is provided.

Although the necessity of explainability in AI appli-
cations in Law, its adoption is faced with challenges and 
difficulties. The explainability can be the relevant articles 
or similar case, but more importantly, the analysis to link 
them to the target case. The heatmap, mentioned above as 
an example, may provide certain extend of explainability by 
highlighting the key words used to make decisions. How-
ever, the explainability in law applications requires more 
descriptions in natural language as the most inputs of AI 
systems in law are texts written in natural language. This 

explainability requires certain level of reasoning capabilities 
to have the explain make sense to the users.

Another challenge is the linking of the evidences. Many 
legal decisions made by AI systems involve multiple parts of 
the input text or documents. Explains using only one piece 
of the information are incomplete. The advent of the large 
language models (LLMs), such as GPT series models, may 
facilitate the reasoning and explaining of decisions made in 
AI applications in law. The LLMs can be instructed to give 
reference for the outputs generated. This provides opportuni-
ties for explainable use of AI in law, but the models involve 
extra resources.

3.6  Education and Training

3.6.1  Problem Definition

As one of the essential methods to improve and optimise 
learning, AI is now widely applied in the field of educational 
research [180, 181]. The applications of AI in education 
(AIED) have shown great benefits in several ways, includ-
ing support instructions, personalised learning systems, 
and automated assessment systems [182]. At the same time, 
there are some risks associated with the use of AI, given the 
specific nature of education. For example, bias is a promi-
nent issue in discussions on AI ethics in education. When 
using AI techniques for student performance prediction or 
risk identification, they are likely to produce more biased 
results for a particular group of students based only on the 
different demographic variables (such as gender) of the stu-
dents [183]. Consequently, concerns about AI in relation 
to fairness, accountability, transparency, and ethics (FATE) 
have sparked a growing debate [135].

XAI contributes to making the decision-making process 
of an AI model more transparent and fair by explaining the 
internal processes and providing a logical chain for generat-
ing outcomes. This is essential for human users to build trust 
and confidence in AIED. Recently, there has been a growing 
body of research showing the opportunities and demands of 
applying advanced XAI for education [135].

3.6.2  XAI Based Proposals

In terms of source-oriented, there are different objective fac-
tors that can be used to analyse and evaluate the performance 
of students in the education domain. Also, since each student 
comes from a different family environment and has a very 
distinct personality, subjective perceptions and feelings in 
learning have significant impacts on educational outcomes 
due to the different circumstances of each student. Alonso 
and Casalino [136] proposed a method that uses an XAI 
tool, named ExpliClas, to analyse objective attributes of 
students’ learning processes. Their method provides both 
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global and local explanations. There are also many studies 
that use objective characteristics, such as age, gender, and 
study hours, to predict and explain students’ performance in 
teaching activities [137].

In terms of representation-oriented, the XAI approaches 
in education mainly include visualization-based and sym-
bolic-based explanations. In [138], a deep learning-based 
method was proposed to achieve the automatic classifica-
tion of online discussion texts in the educational context. 
Particularly, the authors used gradient-based sensitivity 
analysis (SA) to visualise the significance of words in con-
versation texts for recognising the phases of cognitive pres-
ence, thus providing the explanation for the deep learning 
model. Recently, some researchers have also applied the 
symbolic approach in education, expecting to adopt sym-
bolic knowledge extraction to provide logical reasoning for 
the AI interpretation. Hooshyar and Yang [139] provided 
a framework that integrates neural-symbolic computing to 
address the interpretability of AI models. The framework 
considered using prior knowledge, such as logic rules and 
knowledge graphs.

In terms of logical-oriented, XAI in education is primar-
ily required to provide explanations for machine learning 
black-box and rule-based models. SHAP was employed in 
[140] to explain the black-box student dropout classifica-
tion model in relation to Shapley values. Explanation from 
the rule-based algorithms specialises in showing clear logic 
from the input data to the output results. For example, in 
[141], global explanations were provided to train nursing 
students by analysing the temporal logic between actions.

3.6.3  Cases Studies

Feedback providing For students, getting timely and forma-
tive feedback from educators about performance and assign-
ments is an important way of improving the efficiency and 
quality of learning. Feedback should include not only the stu-
dent’s marks and evaluation but also, and more importantly, 
an explanation of the problems with the assignment and learn-
ing. XAI has been applied in this area, the relevant techniques 
include sequence mining, natural language processing, logic 
analysis and machine learning approaches. Take writing ana-
lytics as an example, which aims to provide feedback for stu-
dents to improve their writing. Knight et al. [142] introduced 
an open-source tool, AcaWriter, which provides informative 
feedback to fit different learning contexts. AcaWriter employs 
the Stanford CoreNLP to process each input sentence, and 
then it uses a rule-based model to extract the matched patterns. 
Their research demonstrates the great application of XAI in 
education by explaining to students about their writing.

Intelligent tutoring systems In addition to providing 
feedback to students, XAI can also help give personalised 

tutoring instructions based on the student’s learning 
activity performance. Conati et al. [143] attempted to 
integrate multiple machine learning algorithms into 
an interactive simulation environment so as to provide 
hints to students regarding their learning behaviours and 
needs. The proposed XAI mechanism consists of behav-
iour discovery, user classification, and hint selection. In 
the behaviour discovery phase, the authors first apply 
an unsupervised clustering algorithm to group students 
and then use association rule mining to analyse student 
behaviour further. In the user classification phase, they 
build a supervised classifier to predict students’ learning. 
In the hint selection phase, the previous classification 
result and association rules will be used to trigger the 
corresponding hints.

3.6.4  Domain‑Specific Insights

The end-users of XAI in education and training mainly 
include students and educators. XAI can help students 
understand and interpret the outcomes of AI-driven sys-
tems, such as automated grading or recommendation algo-
rithms, providing them with transparency and insights into 
the feedback. Additionally, XAI provides educators with 
a great opportunity to gain a deeper understanding of the 
AI-powered educational tools they employ in their class-
rooms. By using XAI, educators can acquire insights into 
the underlying reasons behind specific recommendations 
or suggestions generated by these systems. Consequently, 
they can adapt and customize their teaching strategies 
based on this understanding.

While XAI holds great potential and prospects for 
application in the field of education, there are currently 
challenges and limitations that need to be addressed. 
Many AI algorithms, such as deep learning neural net-
works, can be complex and difficult to interpret. XAI 
techniques still have limitations to provide clear and com-
prehensive explanations for the decisions made by these 
complex models, which can hinder their adoption in edu-
cational settings. Also, there is a Lack of standardization 
for XAI. We need standardized metrics and a framework 
to evaluate and assess the explanations provided by XAI, 
particularly when comparing different XAI techniques 
and approaches. The absence of standardized practices 
and guidelines can lead to inconsistency and confusion in 
implementing XAI solutions. Addressing trade-offs is an 
essential step in developing machine learning models, and 
XAI is no exception. Finding the right balance between 
explainability and performance is crucial, especially in 
educational contexts where accurate feedback and predic-
tions are necessary.
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3.7  Civil Engineering

3.7.1  Problem Definition

AI systems used in civil engineering research have a sig-
nificant impact on the decision-making processes in road 
transport and power systems. In particular, autonomous driv-
ing techniques in road transport and power system analysis 
and power systems are the common areas used deep learn-
ing techniques, such as navigation and path planning, scene 
recognition, lane and obstacle detection, as well as planning, 
monitoring, and controlling the power system [150, 184].

In the field of autonomous driving, deep learning tech-
niques are normally utilised to recognize scenes for digi-
tal images [184, 185]. While in the field of power system 
analysis, deep learning techniques are used to extract fea-
tures from the underlying data for power system manage-
ment, such as power grid synthesis, state estimation, and 
photovoltaic (PV) power prediction [150, 186]. Deep learn-
ing explainable techniques are used to automatically extract 
abstract features of images or depth non-linear features of 
underlying data through end-to-end predictive processing 
to obtain results, which is not sufficient to provide the evi-
dence to trust and accept the result of autonomous driving 
and power system management. For example, one can use 
traffic lights and signal recognition for driving planning, in 
which the traffic lights at crosswalks and intersections are 
an essential function in following traffic rules and prevent-
ing traffic accidents. Deep learning methods have achieved 
prominence in traffic sign and light recognition, but they 
are hard to explain the correlation between inputs and out-
puts and lack an explanation to support reasoning in driving 
planning studies [187]. In power system management, deep 
learning methods may mislead the output explanations of 
power stability to provide unreliable recommendations, so 
explanations can increase user trust [150].

3.7.2  XAI Based Proposals

XAI can improve the management of autonomous driving 
and power system, providing an effective interaction to pro-
mote smart civil engineering. Deep learning interpretation 
research in autonomous driving and power systems is a com-
mon interpretable deep learning method because it is not 
only influenced by data, but also relates to expert knowledge 
and ethical principles.

In terms of source-oriented, objective interpretability 
obtains visible or measurable results from 2D and 3D images 
or underlying datasets, while subjective interpretability 
requires consideration of the knowledge from automotive 
or electrical experts and the ethical standards of their fields. 
Currently, XAI proposals include objective and subjec-
tive cognitive aspects. For example, CAM, as an objective 

cognition method, is used to explain the highlight of impor-
tant regions in 2D or 3D images. Time series, 2D images, 
3D images, Lidar images, knowledge databases and ethical 
criteria are utilised as subject sources to explain the model 
[147, 185, 187].

In terms of representation-oriented, visual interpretation 
is the highest level semantics to understand which parts of 
the image impact the model, emphasing on visual structure 
of data and model, which is the primary XAI method used in 
autonomous driving. These XAI methods can be divided into 
gradient-based and back propagation-based. Gradient-based 
interpretation methods include CAM, and its enhanced vari-
ants such as Guided Grad-CAM, Grad-CAM, Grad-CAM++ 
and Smooth Grad CAM++. CAM can highlight the discrim-
inative regions of a scene image used for scene detection 
[147]. Backpropagation-based methods contain guided back-
propagation, layered relevance propagation, visual backprop 
and deep lift. Visual Backprop shows which input pixels 
set contributes to steering self-driving cars [144]. Symbolic 
interpretation uses understandable language to provide evi-
dence for result recommendations in autonomous driving 
and power system management. In autonomous driving, 
proposed AI methods make decisions according to traffic 
rules. For example, “the traffic light ahead turned red,” thus 
“the car stopped” [185]. In power system management, it 
uses the data gathered from occupant actions for resources 
such as room lighting to forecast patterns of energy resource 
usage [188]. Hybrid interpretation combines visual inter-
pretation and symbolic interpretation to provide steering 
determination in autonomous driving. For example, Berke-
ley Deep Drive-X (BDD-X) is introduced in autonomous 
driving which includes the description of driving pictures 
and annotations for textual interpretation [49].

In terms of logical-oriented, the end-end explanations are 
used to explain the relationship between input images includ-
ing obstacle and scene images and the prediction. For exam-
ple, LIME is utilised to explain the relationship between 
input radar image and prediction results [189]. Middle-end 
explanations reveal reasons behind the autoencoder-based 
assessment model and how they can help drivers reach a bet-
ter understanding and trust in the model and its results. For 
example, a rule-based local surrogate interpretable method 
is proposed, namely MuRLoS, which focuses on the interac-
tion between features [149]. Correlation expatriation is used 
in the risk management of self-driving and power systems. 
For example, SHAP is used to assess and explain collision 
risk using real-world driving data for self-driving [190].

3.7.3  Cases Studies

Decisive vehicle actions Decisive vehicle actions in autono-
mous driving are based on multiple tasks, such as scene 
recognition, obstacle detection, lane recognition, and path 
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planning. It can use attention mechanisms, heat maps, diag-
nostic models and texture descriptions to recognise obsta-
cles, scenes and lanes and steer the car operation [147, 185, 
187]. As mentioned before, CAM is used to highlight the 
main area for recognition [63]. Visual Backprop, unlike 
CAM-based, emphases highlighting pixel-level to filter 
features of scene images [144]. Grad-CAM is combined 
with existing fine-grained visualisations to provide a high-
resolution class-discriminative visualisation [36]. Visual 
attention heat maps are used to explain the vehicle control-
ler behaviour through segmenting and filtering simpler and 
more accurate maps while not degrading control accuracy 
[145]. A neural motion planner uses 3D detection instances 
with descriptive information for safe driving [146]. An 
interpretable tree-based representation as hybrid presenta-
tions combines rules, actions, and observation to generate 
multiple explanations for self-driving [147]. An architecture 
is used for joint scene prediction to explain object-induced 
actions [149]. An auto-discern system utilises surroundings 
observations and common-sense reasoning with answers for 
driving decisions [148].

Power system management Power system manage-
ment normally consists of stability assessment, emergency 
control, power quality disturbance, and energy forecasting. 
CNN classifier, combined with non-intrusive load monitor-
ing (NILM), is utilised to estimate the activation state and 
provide feedback for the consumer-user [150]. The shape 
method is firstly used in emergency control for reinforce-
ment learning for grid control (RLGC) under three differ-
ent outputs analysis [151]. Deep-SHAP is proposed for the 
under-voltage load shedding of power systems, and it adds 
feature classification of the inputs and probabilistic analysis 
of the outputs to increase clarity [152].

3.7.4  Domain‑Specific Insights

In terms of transportation systems, operators, such as driv-
ers and passengers, are the primary end-users in scenarios 
involving decisive vehicle actions, because they may want 
to comprehend the reasoning behind the decisions made 
by the autonomous system. It is very important in high-
stake domains which human lives are risk. XAI can provide 
explanations for AI decisions to enhance the system more 
transparent and fostering trust. Real-time explanations pose 
a significant challenge for XAI in decisive vehicle actions, 
because decisions need to be made with fractions of a sec-
ond. Rapidly changing environments such as weather con-
ditions, pedestrian movement and other vehicles actions 
promote XAI should ideally make quick and accurate deci-
sions. Moreover, every driving situation can be unique. XAI 
needs suitable for diversity situation and adapt its expla-
nations which based on context-aware interoperability. As 
previously mentioned, XAI demands more computational 

resources because of real-time explanations based on timely 
response. Moreover, deceive vehicle actions require high 
dimensional sensor data, such as the inputs from LiDAR 
and stereo cameras, which lead the methods, like LIME and 
SHAP, which adopts approximate local decision bounda-
ries, are expensive for computation and especially for 
high-dimensional inputs. The requirements in XAI that can 
generate real-time, informative explanations without over-
burdening the computational resources of the system.

In terms of infrastructure system management, such as 
power or water system management, general public, includ-
ing governments and residents, are the key end-users in 
power system management. Government bodies want to 
oversee the safe and fair use of AI in power system man-
agement. Meanwhile, residents may be curious about the 
mechanics of AI used to manage power systems in the city. 
XAI can be used to evaluate AI systems for safety, fairness, 
transparency, and adherence to regulatory requirements. 
Interpretation complexity is a primary challenge for XAI in 
infrastructure system management due to the multidimen-
sional nature of the data, which includes factors from power 
generators, transmission lines, and power consumers. More-
over, unlike the case of autonomous driving, power system 
operations demand more technical expertise and need to 
adhere to various regulatory requirements. Consequently, 
XAI is not only to provide coherent and insightful interpre-
tations of the system’s operations but also to demonstrate 
that these operations comply with all relevant regulations. 
The entire process in infrastructure system management is 
starting from generation and distribution to monitor con-
sumer usage patterns. The complexity is future amplified by 
the demands for load balancing and power outages, which 
influences the public life and the city operation. Moreover, 
it also need to fix the various regulations and standers. To 
evidence such compliance, XAI may need to generate more 
complex or detailed explanations, thus increasing the com-
putational cost.

3.8  Cross‑Disciplinary Techniques for XAI 
Innovations

XAI innovations for cross-disciplinary refers to the advance-
ments and developments in explainable AI (XAI) that span 
multiple domains and disciplines. It involves the integra-
tion and adaptation of XAI techniques and methodologies 
to address complex problems and challenges that arise in 
diverse fields.

One aspect of XAI Innovations for cross-disciplinary 
is the exploration and utilization of common XAI tech-
niques across different domains. These techniques, such as 
attention-based models, model-agnostic methods, and rule-
based methods, can be applied to various fields to provide 
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transparent and interpretable explanations for AI models. 
Below are some examples of common XAI techniques: 

1. Regression-based partitioned methods:can be applied 
to any black-box model. For example, LIME approxi-
mates the decision boundaries of the model locally and 
generates explanations by highlighting the features that 
contribute most to the prediction for a specific instance. 
LIME can be used in domains such as healthcare, cyber 
security, finance, or education to provide instance-level 
interpretability and explainability. SHAP is another 
common technique based on cooperative game theory, 
which can be applied to different domains to explain the 
importance of features in the decision-making process. 
For example, in medical diagnostics, SHAP can help 
understand which medical parameters or biomarkers 
have the most impact on a particular diagnosis.

2. Feature importance: Feature importance techniques 
assess the relevance and contribution of each feature 
in the model’s predictions. Methods like permutation 
importance, Gini importance, or gain-based importance 
are commonly used. Feature importance can be useful in 
various domains to identify the factors that drive specific 
outcomes or decisions. For instance, in finance, feature 
importance can help understand which financial indica-
tors or market factors play a crucial role in investment 
decisions.

3. Partial dependence plots: Partial dependence plots visu-
alize the relationship between a feature and the model’s 
output while holding other features constant. These plots 
show how changing the value of a specific feature affects 
the model’s predictions. Partial dependence plots can 
be employed in domains such as healthcare, where they 
can provide insights into the impact of certain medical 
treatments or interventions on patient outcomes.

4. Rule-based models: Rule-based models provide trans-
parent and interpretable decision-making processes by 
expressing decision rules in the form of “if-then” state-
ments. These models can be used in various domains to 
generate explanations that are easily understandable by 
humans. In legal applications, rule-based models can 
help explain legal reasoning by mapping legal principles 
and regulations to decision rules.

These are just a few examples of common XAI techniques 
that can be applied across different domains. The choice of 
technique depends on the specific requirements and charac-
teristics of each domain. We summarise some typeical suit-
able XAI approaches for each domain shown in Table 5. By 
leveraging these techniques, domain experts and practition-
ers can gain insights into the inner workings of AI models 
and make informed decisions based on understandable and 
interpretable explanations.

Another aspect of XAI innovations for cross-disci-
plinary involves the development of domain-specific 
XAI approaches. In Table 5, we summarize some typi-
cal suitable XAI approaches for different domains. These 
approaches can be tailored to the unique characteristics 
and requirements of specific domains, taking into account 
the specific challenges and complexities of each field. 
Domain-specific XAI approaches consider various fac-
tors, including domain knowledge, regulations, and ethi-
cal considerations, to create an XAI framework that is 
specifically designed for a particular domain. By incor-
porating domain expertise and contextual information, 
these approaches provide explanations that are not only 
interpretable but also relevant and meaningful within their 
respective domains.

By tailoring XAI approaches to specific domains, prac-
titioners can gain deeper insights into the behavior of AI 
models within the context of their field. This not only 
enhances transparency and trust in AI systems but also ena-
bles domain-specific considerations to be incorporated into 
the decision-making process, ensuring the explanations are 
relevant and aligned with the requirements and constraints 
of each domain.

Furthermore, XAI innovations for cross-disciplinary 
emphasize the importance of collaboration and the integra-
tion of expertise from different fields. This approach recog-
nizes that the challenges and complexities of XAI extend 
beyond individual domains and require a multidisciplinary 
perspective. Collaboration and integration of expertise ena-
ble a holistic approach to XAI, where insights from different 
disciplines can inform the development of innovative and 
effective solutions. For example, in the field of healthcare, 
collaboration between medical practitioners, data scientists, 
and AI researchers can lead to the development of XAI tech-
niques that not only provide interpretable explanations but 
also align with medical guidelines and regulations. This 
integration of expertise ensures that the explanations gener-
ated by XAI systems are not only technically sound but also 
relevant and meaningful in the specific healthcare context.

Similarly, in the domain of cybersecurity, collaboration 
between cybersecurity experts, AI specialists, and legal pro-
fessionals can lead to the development of XAI techniques 
that address the unique challenges of cybersecurity threats. 
By combining knowledge from these different fields, XAI 
systems can provide interpretable explanations that enhance 
the understanding of AI-based security measures, assist in 
identifying vulnerabilities, and facilitate decision-making 
processes for cybersecurity professionals.

The collaboration and integration of expertise from differ-
ent fields also foster a cross-pollination of ideas and perspec-
tives, driving innovation and the development of novel XAI 
techniques. By leveraging the diverse knowledge and experi-
ences of experts from various domains, XAI can evolve and 
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Table 5  XAI suitability analysis for application domains

Domain Typical approaches Explanation importance

 Medical and biomedical Attention-based explanations It is suitable for medical image analysis tasks, such as identifying regions of interest 
or explaining the predictions of deep learning models by highlighting the important 
areas in an image that contribute to the model’s decision

Model-Agnostic explanations It is suitable for medical applications where feature importance and individual instance 
explanations are required. It quantifies the contribution of each feature to a model’s 
prediction and provides explanations at the individual patient level

Rule extraction It is suitable for medical domains where interpretable decision rules are desired, which 
is used to generate human-readable rules that align with medical guidelines, making 
it suitable for decision support systems and improving trust in AI-driven medical 
applications

 Healthcare Counterfactual explanations It is suitable for healthcare applications where personalized treatment recommenda-
tions or interventions are required which can enable personalized care plans and 
enhancing patient engagement

Attention-based explanations It is suitable to analyse patient records, clinical notes, or time-series data. They enable 
the model to dynamically attend to important features, leading to improve interpret-
ability and the identification of critical factors influencing healthcare outcomes

Case-based reasoning It is suitable to evolving knowledge, integrates expert knowledge, supports decision-
making, and facilitates learning from past experiences. By leveraging historical data 
and real-world examples, it supports healthcare professionals in decision-making, 
diagnosis, treatment planning, and improving patient outcomes

 Cyber security Model-Agnostic explanations It is suitable to identify the key factors or variables that contribute to the likelihood of 
a security breach or attack. By understanding the importance of different features, 
security analysts can prioritize their efforts and focus on mitigating the most critical 
vulnerabilities

Graph-based explanations It is suitable to aid in detecting complex cyber threats and visualizing attack relation-
ships. It enables the identification of patterns, anomalies, and influential factors, 
providing explanations that enhance situational awareness, threat detection, and 
decision-making in cyber security operations

 Finance Model-Agnostic explanations It is suitable to interpret complex deep learning models used for risk assessment, fraud 
detection, or portfolio management. It provides individual feature importance scores 
that help understand the factors contributing to predictions, enabling better decision-
making and risk management

Rule extraction It is suitable for finance to help identify specific conditions or criteria that drive finan-
cial outcomes or decisions, such as loan approvals or investment recommendations

 Law Case-based reasoning It is suitable in the legal domain as it allows for the retrieval and adaptation of past 
legal cases to support current decision-making, which can enhance legal decision-
making by providing context-specific explanations based on past legal experiences

Rule extraction It is suitable in law to uncover the underlying rules and criteria used by legal systems. 
These techniques can help in understanding the decision-making process of legal 
systems and provide explanations for legal outcomes

 Education and training Model-Agnostic explanations It is suitable to identify the key features or factors that contribute to student perfor-
mance, engagement, or learning outcomes by providing localized explanations that 
highlight the importance and influence of specific features, such as demographic 
information, learning activities, or socio-economic factors, on educational outcomes

Rule extraction It is suitable to explain the reasoning behind educational decisions or outcomes by 
explicitly stating the conditions and criteria that influence educational decisions, 
such as grading rubrics or admission criteria

Interactive explanations It is suitable to present complex educational data in an understandable manner, facili-
tating a deeper understanding of student performance, engagement, and progress



181Human-Centric Intelligent Systems (2023) 3:161–188 

1 3

adapt to meet the evolving needs and challenges of different 
industries and societal contexts.

4  Discussion

As the concerns on explainability and the attentions for XAI, 
regulations such as GDPR set out the transparency rules 
about the data processing. As most modern AI systems are 
data-driven AI, these requirements are actually applicable to 
all application domains. Not only the explainability is neces-
sary, but also the way of explaining is required.

In this section, we will summarize the limitations of 
existing XAI approaches based on the above review in each 
application domain, and identify future research directions.

4.1  Limitations

Adaptive integration and explanation: many existing 
approaches provide explanations in a generic manner, with-
out considering the diverse backgrounds (culture, context, 
etc.) and knowledge levels of users. This one-size-fits-all 
approach can lead to challenges in effective comprehension 
for both novice and expert users. Novice users may strug-
gle to understand complex technical explanations, while 
expert users may find oversimplified explanations lacking 
in depth. These limitations hinder the ability of XAI tech-
niques to cater to users with different levels of expertise and 
may impact the overall trust and usability of the system. 
Furthermore, the evaluation and assessment of XAI tech-
niques often prioritize objective metrics, such as fidelity or 
faithfulness, which measure how well the explanations align 
with the model’s internal workings. While these metrics are 
important for evaluating the accuracy of the explanations, 
they may not capture the subjective aspects of user under-
standing and interpretation. The perceived quality of expla-
nations can vary among users with different expertise levels, 
as well as under different situations or conditions.

Interactive explanation: in the current landscape of XAI 
research, there is recognition that a single explanation may 
not be sufficient to address all user concerns and questions in 
decision-making scenarios. As a result, the focus has shifted 
towards developing interactive explanations that allow for a 
dynamic and iterative process. However, there are challenges 
that need to be addressed in order to effectively implement 
interactive explanation systems. One of the key challenges is 
the ability to handle a wide range of user queries and adapt 
the explanations accordingly. Users may have diverse infor-
mation needs and may require explanations that go beyond 
superficial or generic responses. In particular, addressing 
queries that involve deep domain knowledge or intricate rea-
soning processes can be complex and requires sophisticated 
techniques. Another challenge is striking a balance between 
providing timely responses to user queries and maintaining 
computational efficiency. Interactive explanation systems 
need to respond quickly to user interactions to facilitate a 
smooth and engaging user experience. However, generat-
ing accurate and informative explanations within a short 
response time can be demanding, and trade-offs may need 
to be made depending on the specific domain and computa-
tional resources available. Moreover, the design and imple-
mentation of interactive explanation systems should also 
consider the context and domain-specific requirements. Dif-
ferent domains may have unique challenges and constraints 
that need to be taken into account when developing interac-
tive explanations. It is important to ensure that the interac-
tive explanation systems are tailored to the specific domain 
and can effectively address the needs of users in that context.

Connection and consistency in hybrid explanation: in 
the context of hybrid explanations in XAI, it is crucial to 
ensure connection and consistency among different sources 
of explanations. Hybrid approaches aim to leverage multiple 
techniques to provide users in various domains with different 
application purposes, achieving robustness and interpretabil-
ity. However, it is necessary to address potential conflicts 
and ensure coordinated integration of different components 

Table 5  (continued)

Domain Typical approaches Explanation importance

 Civil engineering Attention-based explanations It is suitable for image-based tasks such as defect detection, structural damage 
assessment, or material characterization. This can aid in the interpretation of model 
outputs, improve trust in the predictions, and guide subsequent inspection or repair 
actions

Model-Agnostic explanations It is suitable to explain the factors influencing the structural integrity or performance 
of a building or infrastructure. This information can guide engineers in making 
informed decisions regarding maintenance, repairs, or design modifications

Rule extraction It is suitable for models used for tasks such as traffic signal control, behaviour analysis, 
or demand forecasting. By extracting interpretable rules, such as IF-THEN state-
ments transportation planners and policymakers can gain insights into the decision-
making process of the models
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within these hybrid systems. Currently, many works focus 
on combining various explanation techniques to complement 
each other and enhance overall system performance. While 
this integration is valuable, it is important to acknowledge 
that different techniques may have inherent differences in 
their assumptions, methodologies, and outputs. These dif-
ferences can result in conflicts or inconsistencies when com-
bined within a hybrid explanation system. Therefore, careful 
attention should be given to the design of complex hybrid 
explanation systems. The structure and architecture need 
to be thoughtfully planned to ensure seamless connections 
between components. This involves identifying potential 
conflicts early on and developing strategies to resolve them. 
Additionally, efforts should be made to establish a unified 
framework that allows for effective coordination and integra-
tion of the different techniques used in the hybrid system. 
Furthermore, the evaluation and validation of hybrid expla-
nation systems should include assessing the consistency of 
explanations provided by different sources. This evaluation 
process helps identify any discrepancies or inconsistencies 
and guides the refinement of the system to ensure a coherent 
and unified user experience.

Balancing model interpretability with predictive 
accuracy: currently, researchers are developing hybrid 
approaches that aim to strike a better balance between inter-
pretability and accuracy, such as using post-hoc interpret-
ability techniques with complex models or designing new 
model architectures that inherently provide both interpret-
ability and high accuracy.However, they also come with their 
own limitations. Post-hoc interpretability techniques gener-
ate explanations after the model has made its predictions, 
which means they do not directly influence the model’s 
decision-making process. As a result, the explanations may 
not capture the full complexity and nuances of the model’s 
internal workings. Furthermore, post-hoc techniques can be 
computationally expensive and may not scale well to large 
datasets or complex models with high-dimensional inputs. 
Designing new model architectures such as rule-based mod-
els or attention mechanisms in neural networks may struggle 
to capture complex interactions and may require a significant 
amount of manual rule engineering. It is crucial to recog-
nize that there is no universal solution to the interpretability-
accuracy trade-off. The choice of approach depends on the 
specific requirements of the application, available resources, 
and acceptable trade-offs in the given context. Researchers 
and practitioners must carefully consider the limitations and 
benefits of different techniques to strike an appropriate bal-
ance based on their specific use cases.

Long-term usability and maintainability: the current 
XAI methods face several limitations when deployed in 
real-world scenarios. One significant limitation is the need 
for continuous explanation updates. XAI systems generate 
explanations based on training data, and as the underlying 

AI models or data evolve, the explanations may become 
outdated or less accurate. To ensure relevance and use-
fulness, XAI systems should be designed to incorporate 
mechanisms for updating explanations to reflect the latest 
model updates or data changes. Another limitation is the 
assumption of stationary data distributions. XAI methods 
are typically trained on historical data, assuming that the 
future data will follow a similar distribution. However, if 
the data distribution changes over time, the performance of 
the XAI system may deteriorate. Adapting XAI methods to 
handle shifting data distributions is essential for maintain-
ing their effectiveness and ensuring reliable explanations 
in dynamic environments. Scalability is another crucial 
consideration, particularly for large-scale AI systems. XAI 
techniques that work well on small-scale or controlled 
datasets may face challenges when applied to large-scale 
AI systems with complex models and massive amounts 
of data. Efficient algorithms and sufficient computational 
resources are necessary to handle the increased computa-
tional demands of explaining large-scale AI systems with-
out sacrificing performance or usability.

4.2  Future Directions

To address the first limitation, building the context-aware-
ness XAI is important, we need to explore how to generate 
explanations by considering mission contexts (surrounding 
environment, situations, time-series datasets.), mapping user 
roles (end-user, domain expert, business manager, AI devel-
oper, etc.) and targeted goals (refine the model, debugging 
system errors, detecting bias, understand AI learning pro-
cess, etc.) regardless of the type of AI system. So far, most 
of these studies were still conceptual with limited considera-
tion, the more general context-driven systems and practical 
implementations will be an important direction for future 
research.

Secondly, interactive explanations (e.g., conversation 
system Interfaces, games, using audio, visuals, video, etc.) 
should be explored further. This is a promising approach to 
building truly human-centred explanations by identifying 
users’ requirements and providing better human-AI collabo-
ration. These incorporating theories and frameworks allow 
an iterative process from humans, which is a crucial aspect 
of building successful XAI systems.

Finally, the hybrid explanation should be applied by 
concerning fusing heterogeneous knowledge from different 
sources, managing time-sensitive data, inconsistency, uncer-
tainty, etc. Among these conditions, hybrid explanation has 
been an interesting and increasing topic in recent years. This 
will also involve a wide range of criteria and strategies that 
target a clear structure and consensus on what constitutes 
success and trustworthy explanations.
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5  Conclusion

This paper addresses a wide range of explainable AI top-
ics. XAI is a rapidly growing field of research, as it fills 
a gap in current AI approaches, allowing people to better 
understand AI models and therefore trust their outputs. 
By summarising the current literature, we have proposed 
a new taxonomy for XAI from the human perspective. 
The taxonomy considers source-oriented, representation-
oriented aspect, and logic-oriented perspectives.

It is very important that we have elaborated on the 
applications of XAI in multiple areas in the paper, includ-
ing medical, healthcare, cybersecurity, finance and law, 
education and training, and civil engineering. We provide 
a comprehensive review of different XAI approaches and 
identify the key techniques for case studies. Finally, we 
discuss the limitations of existing XAI methods and pre-
sent several corresponding areas for further research: (1) 
context-awareness XAI, (2) interactive explanations, and 
(3) hybrid explanations.

Overall, this paper provides a clear survey of the current 
XAI research and application status from the human per-
spective. We hope this article will provide a valuable ref-
erence for XAI-related researchers and practitioners. We 
believe XAI will build a bridge of trust between humans 
and AI.
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