
Vol:.(1234567890)

Human-Centric Intelligent Systems (2023) 3:366–380
https://doi.org/10.1007/s44230-023-00034-2

1 3

RESEARCH ARTICLE

Hybrid Defect Prediction Model Based on Counterfactual Feature
Optimization

Wei Zheng1,2 · Teng Fei Chen1,2 · Mei Ting Hu1,2 · Feng Yu Yang1,2 · Xin Fan1,2 · Peng Xiao1,2

Received: 22 March 2023 / Accepted: 20 June 2023 / Published online: 4 July 2023
© The Author(s) 2023

Abstract
Software defect prediction is critical to ensuring software quality. Researchers have worked on building various defect pre-
diction models to improve the performance of defect prediction. Existing defect prediction models are mainly divided into
two categories: models constructed based on artificial statistical features and models constructed based on semantic features.
DP-CNN [Li J, He P, Zhu J, et al. Software defect prediction via convolutional neural network. In: 2017 IEEE international
conference on software quality, reliability and security (QRS). IEEE, 2017; 318–328.] is one of the best defect prediction
models, because it combines both artificial statistical features and semantic features, so its performance is greatly improved
compared to traditional defect prediction models. This paper is based on the DP-CNN model and makes the following two
improvements: first, using a new Struc2vec network representation technique to mine existing information between software
modules, which specializes in learning node representations from structural identity and can further extract structural features
associated with defects. Let the DP-CNN model once again incorporate the newly mined structural features. Then, this paper
proposes a feature selection method based on counterfactual explanations, which can determine the importance score of
each feature by the feature change rate of counterfactual samples. The origin of these feature importance scores is interpret-
able. Under the guidance of these interpretable feature importance scores, better feature subsets can be obtained and used
to optimize artificial statistical features within the DP-CNN model. Based on the above methods, this paper proposes a new
hybrid defect prediction model DPS-CNN-STR. Evaluating our model on six open source projects in terms of F1 score in
defect prediction. Experimental results show that DPS-CNN-STR improves the state-of-the-art method by an average of 3.3%.

Keywords Software defect prediction · Hybrid defect prediction model · Counterfactual explanations · Network
representation technique

1 Introduction

As the software system grows in size, there are more and
more defects in the software. The presence of defects may
lead to severe economic losses or even endanger people’s
lives [1–3]. It has been found that nearly four-fifths of the
cost is spent on defect repair throughout the development
cycle [4–6], and If the above defects can be identified and
changed in a timely manner at an early stage of software

development, the cost of fixing them will be significantly
reduced. Therefore, related researchers have devoted them-
selves to building various defect prediction models [7–9],
to help developers identify potential defects in the software
as early as possible to reduce the losses caused by defects.

Software defect prediction can be divided into intra-
project and cross-project based on data sources. Within a
project, it is based on historical data from a single project,
while cross-projects use historical data from multiple differ-
ent projects, and most research focuses on the binary clas-
sification problem of file defect propensity [10]. In early
research work, machine learning methods were widely used
to construct defect prediction models. Researchers first
design artificial statistical features (code metrics, process
metrics) related to defects based on source code, and then
obtain labels for each source file based on software history
information. Finally, prediction models are constructed

 * Teng Fei Chen
 2656090080@qq.com

1 School of Software, Nanchang Hangkong University,
Nanchang 330063, People’s Republic of China

2 Software Testing and Evaluation Center, Nanchang
Hangkong University, Nanchang 330063,
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s44230-023-00034-2&domain=pdf

367Human-Centric Intelligent Systems (2023) 3:366–380

1 3

based on the obtained features and labels using relevant
algorithms. Most existing software defect metrics fall into
two main categories: software code metrics and software
process metrics [11]. Software code metrics (such as LOC
[12], Halstead [13], and McCabe [14]) represent the code
program’ complexity, and software process metrics (such
as CK [15], Martin [16], and MOOD [17]) represent the
development process’ complexity.

By definition, the process of defect prediction is com-
plex, and in some cases artificial statistical features are not
sufficient for defect prediction tasks. Previous research has
focused on manually designing defect metrics closely related
to the source program. However, manual feature extraction
has the problem of low efficiency, and the defect information
contained in artificial statistical features is extremely limited.
With the widespread application of deep learning [18, 19], it
can automatically capture highly complex nonlinear features
and has strong feature extraction capabilities. Deep learning
techniques are gradually being applied to defect prediction,
and satisfactory results have been obtained. Wang et al. [20]
proposed a model called DBN, which can learn semantic
information existing in software programs end-to-end, and
then construct a model with better prediction performance
based on the extracted semantic information. Experimental
results show that the semantic feature-based model has bet-
ter prediction performance than existing artificial statistical
feature-based models. Li et al. [21] use CNN's local feature
extraction capability to automatically extract semantic infor-
mation from software code, and combine it with artificial
statistical features to construct a prediction model called DP-
CNN. Experimental results show that the predictive perfor-
mance of the DP-CNN model is superior to that of the DBN
model, which proves that CNN has good feature extraction
ability and the effectiveness of feature combination. Xia et al.
proposed a deep learning method called DeepFL, which can
automatically learn the most effective existing or potential
features and be used for precise fault localization [22].

The researchers extracted artificial statistical and seman-
tic features from the code, but these two types of features
only reflect the internal information of each code file and
lack the structural information that exists between code
files, and the single source of features leads to unsatisfac-
tory defect prediction results.

To solve this problem, network representation learning
[23] is formally applied in the field of software defect pre-
diction. The software network diagram is first constructed
based on the dependencies existing between the software
modules, and through representation learning, the graph
information is effectively characterized and more impor-
tant structural features are extracted. Typical methods are
DeepWalk [24], LINE [25], Node2Vec [26], and SDNE
[27], all based on the proximity similarity hypothesis. In
fact, in some scenarios, two vertices that are not nearest

neighbors may also have high similarity, and because of
this type of similarity, the above methods are unable to
capture it. Therefore, this paper uses a new Struc2vec
[28] network representation learning technique, which
specifically constructs node sequences from another per-
spective and focuses more on the structural information of
nodes, overcoming the limitations of traditional network
representation learning methods. In contrast to the most
advanced technologies like as DeepWalk, Node2Vec, and
RolX, Struc2vec [28] exhibits an exceptional ability to
capture node structural features and demonstrates superior
performance in a variety of classification tasks.

Software defect prediction models are mainly constructed
by features, so the selection of features will directly affect
the defect prediction results. There are two main types of
classical feature selection methods, the filter method and
the wrapper method [29–31]. Afzal and Torkar [32] empiri-
cally compared eight feature selection methods on five defect
datasets in the PROMISE repository, and experimental
results showed that the feature selection method can effec-
tively improve the performance of software defect predic-
tion models. Rodriguez et al. [33] conducted a compara-
tive study on three feature selection methods based on the
Filter method and two feature selection methods based on
the Wrapper method on four defect datasets. Experimental
results showed that Wrapper method was overall superior to
Filter method. However, the evaluation indicators of feature
importance scores in the Filter method (such as variance,
frequency, etc.) are largely derived from the prior knowledge
of the decision-maker, and this experience is subjective.
Besides, the feature importance score generated by Wrap-
per is determined by the base model. However, the machine
learning model is a black box, and the unexplainable model
cannot intuitively demonstrate the source of feature impor-
tance scores for learners. Therefore, the feature importance
score generated by traditional feature selection methods
cannot fully explain the contribution rate of features to the
model output.

Therefore, we use the generated counterfactual samples
for feature selection [34–36]. The general idea is that by
minimizing the change in input features to generate differ-
ent model outputs, a set of different counterfactual samples
can be generated for a piece of data in the same algorithm.
Intuitively, the feature that changes more frequently to gener-
ate counterfactual samples is an important feature. The rate
at which a feature is changed in all generated counterfactual
samples is used as the importance score for that feature, so
we can obtain the corresponding importance scores for all
features. These important scores fundamentally explain the
necessity of features for model output. We can generate the
best performing subset of features guided by interpretable
feature importance scores.

368 Human-Centric Intelligent Systems (2023) 3:366–380

1 3

In summary, this paper proposes a new hybrid defect
prediction model DPS-CNN-STR based on artificial sta-
tistical, semantic and structural features. Among them, the
artificial statistical features are optimized by the feature
selection method based on counterfactual explanations,
and the structural features are extracted by Struc2vec. Our
main contributions are as follows:

• As far as we know, we are one of the few to consider
Struc2vec's method for extracting structural features and
applying it to software defect prediction. In addition, we
are the first to propose a feature selection method based
on counterfactual explanations, and have achieved good
results, providing a new idea for the study of feature
selection.

• We present a new model called DPS-CNN-STR, whose
F1 score is improved by 3.3% on average over the optimal
DP-CNN model.

The paper is organized as follows: Sect. 2 presents
the related work, while Sect. 3 outlines the procedure
for constructing the hybrid defect prediction model.
Section 4 details the experimental setup, while Sect. 5
analyses the experimental results. Section 6 provides a
brief description of potential threats to the validity of the
results. Finally, Sect. 7 provides a summary of the work
and outlines directions for future research.

2 Related Work

In this section, we mainly introduce the following: soft-
ware defect prediction technology, Counterfactual gen-
eration framework and Struc2vec’s relevant background.

2.1 Software Defect Prediction

Software defect prediction techniques are primarily used to
identify potential software defects in a timely manner, and to
help testers perform purposeful testing activities [37]. Figure 1
shows the common file-level software defect prediction pro-
cess in literature [38, 39], which mainly includes the following
three steps.

1. First, mark each source file in the project according to
the software history warehouse. The defect is marked as
buggy and the flawless is marked as clean.

2. Then, by analyzing the software source code or histori-
cal data, features related to software defects are extracted
from the source files. The most common features are
artificial statistical features. The obtained features and
labels are trained in various machine learning algorithms
[40] (such as LR, SVM, and RF) to construct the classi-
fier.

3. Finally, features are extracted from the files in the project
to be predicted. After all the features are extracted, the
prediction results of each file can be obtained by putting
the features into the defect prediction model.

2.2 Counterfactual Generation Framework

Machine learning model is a black box, and people can't
explain how it works internally. Due to the unexplainability of
models, it can often lead to irreparable consequences. There-
fore, it is necessary to provide explanations for machine learn-
ing models to reduce the potential threats posed by models.

The most popular explanation is the counterfactual explana-
tion proposed by Wachter et al. [36]:

(1)C = argminYloss(f (c), y) + |x − C|

Fig. 1 Software defect predic-
tion process

Source Files

Features

Software
history

warehouse

Machine
Learning

ClassifierTest Files Feature
Extraction

Labels

Clean

Buggy

......

......

Clean

Buggy

369Human-Centric Intelligent Systems (2023) 3:366–380

1 3

In short, given the corresponding output of the input
features x and model f , the output y of the model can
be changed by modifying the features x , but it pursues
the change of minimizing the features. Yloss pushes coun-
terfactual C to a prediction different from the original
instance x , and the counterfactual sample C should be
close to the original sample x.

For example, in the Adult Income dataset [41], if you
want to change a low-income person to a high-income per-
son, you can increase the value of working hours. We can
imagine that this value must have a critical value. When
it is equal to or greater than this value, the result of the
model will change, but we only choose the critical value.
People can explain the model's decision through the gener-
ated counterfactual samples.

More recently, Mothilal et al. [42]have extended
Wachter's work. Mothilal et al. argue that the counterfac-
tual samples generated should be diverse, proximal, and
feasible.

To ensure the diversity of counterfactuals, Mothilal
et al. used the Determinant Point Process (DPP) algorithm.
The DPP algorithm ensures that the selection of subsets
is diverse and that similar subsets are not easily captured
simultaneously. where dist

(
Ci,Cj

)
 represents the distance

between each of the two counterfactual samples.

Of the multiple counterfactual samples generated for
an original piece of data, the counterfactual that is closest
to the original data is likely to be the most helpful to the
user in making a decision. Ci represents the ith counterfac-
tual sample and where dist

(
Ci, x

)
 represents the distance

between the Ci and x . Distance is used to determine the
proximity of the generated counterfactuals to the original
data.

(2)Diversity = 1
1+dist(Ci,Cj)

Mothilal et al. ensured the feasibility of counterfactuals
through domain knowledge between features. For example,
gender (discrete features) can only be limited to men and
women; the value of working time (continuity features) is
limited to a normal interval.

Figure 2 shows multiple counterfactual instances gener-
ated for a single piece of original data, and the higher the
ranked counterfactual, the closer it is to the original data.

The ratio of feature changes in all counterfactual sam-
ples is the feature importance score. Inspired by the above,
and to solve the limitations of traditional feature selection
methods, we use the generated counterfactual samples for
feature selection, which can generate a better subset of fea-
tures guided by feature importance scores. Details will be
provided in Sect. 3.2.

2.3 Struc2vec

Traditional network representation learning algorithms
have a limitation. Due to the limited sampling length of the
walk, they cannot effectively model nodes with structural
similarities that are far apart. However, the reason why
previous algorithms perform better is that most datasets
prefer the characterization of homogeneity. That is, nodes
with similar distances are also similar in feature space,
which is enough to cover most data sets. When construct-
ing the graph, Struc2vec neither requires node location
information nor label information. Instead, it relies solely
on the concept of node degree to build the multilayer
graph. An intuitive concept suggests that if two nodes
have the similar degree, then the two nodes will be struc-
turally closer together. Moreover, if all adjacent nodes of
these two nodes also have the same degree, then the nodes
should exhibit even greater structural similarity. In short,

(3)Pr oximity = −
1

k

k∑
i=0

dist
�
Ci, x

�

Fig. 2 Counterfactual generation instances

370 Human-Centric Intelligent Systems (2023) 3:366–380

1 3

nodes with neighbors with similar node sets are expected
to have similar potential representations, and Struc2vec
specifically learns node representations from structure
identification, and achieves good results.

Figure 3 nodes m and n have similar local structures, node
m has degree 4 and node n has degree 3, and nodes m and n
are connected to the software network with 3 and 2 triangles
respectively. It can be seen that these two nodes have high
structural similarity, but because there are no common nodes
in their neighborhoods, traditional network representation
techniques cannot learn the potential representation of nodes
with similar structures, but Struc2vec solves this problem.

In our work, to address the problem of a single feature
source and to improve the prediction performance, we can
use Struct2vec to extract relevant structural features.

3 Proposed Method

This section describes our proposed hybrid defect predic-
tion model in detail. Our DPS-CNN-STR model is based
on artificial statistical, semantic, and structural features. It
is based on the DP-CNN [21] and has made the following
improvements:

1. The artificial statistical features are optimized by the
feature selection method based on counterfactual expla-
nations.

2. Using Struc2vec to learn the structural features of the
software network, a new hybrid defect prediction model
is jointly constructed based on the optimized DP-CNN
model, combined with the newly learned structural fea-
tures.

3.1 Hybrid Defect Prediction Model

To improve the performance of defect prediction models,
Fig. 4 shows a new hybrid defect prediction model. First,
artificial statistical features are optimized through coun-
terfactual explanations, then semantic features are learned
from the source program using CNN, and finally struc-
tural features are learned from the software network using
Struc2vec. A hybrid defect prediction called DPS-CNN-STR
is constructed.

First, combine the optimized artificial statistical features,
semantic features of CNN end-to-end learning, and struc-
tural features of Struc2vec Unsupervised Learning, and input
them into the Softmax network as a whole to obtain the
prediction results. The calculation formula for output layer
Softmax is as follows:

Fig. 3 Example of two nodes (m
and n) with similar structure b

c
a

m

d

Software Network
x

w

y

n

Fig. 4 Hybrid defect prediction model

371Human-Centric Intelligent Systems (2023) 3:366–380

1 3

where Pi represents the probability that the module is pre-
dicting as a bug. We build the neural network based on
Keras, the biggest advantage of which is its simplicity and
speed, and we also keep the exact same parameter settings
as in the literature [21].

3.2 Feature Selection Based on Counterfactual
Explanations

Figure 5 shows a feature selection method based on counter-
factual explanations, consisting of the following three main
steps:

1. In this paper, defect prediction is based on iterations of
versions within the project, so the artificial statistical
table of the old version is input into the counterfactual
generation framework, and then each feature is given a
corresponding importance score.

2. Features are combined one by one according to their
scores of importance from the highest to the lowest.
Suppose there are n features, then there are n feature
subsets corresponding.

3. The old version of the artificial statistical features (the
subset of the features described in step 2) and their labels
are used to construct the classifier, then the new version
of the artificial statistical features and their labels are
used as the test set, and the corresponding optimal sub-

(4)Pi =
exp (yi)∑
j exp (yi)

i, j ∈ {0, 1}
set of the features is selected by selecting the highest F1
score.

3.3 Structural Features Extraction

Using the existing dependencies between software modules,
we construct the software network with software modules as
the basic unit, and then use Struc2vec to learn the potential
representation of node structure, in order to extract structural
features under unsupervised learning.

First, based on the data flow relationships that exist
between the modules, the software network G = (V, E) is
constructed, where G represents the constructed software
network, V = {vi|i = 1,2,3,…, n} is the set of nodes in the
software network, the element vi represents each node in
the software network, n =| V | is the number of nodes in
the constructed software network, and k* is the diameter.
E = {ey | vivj = 1, i, j ∈ [1, n]} represents the set of edges.
When the value is 1, it indicates that there is a relationship
between node i and node j. When the value is 0, then there
is no relationship between them, and the relationships that
exist are as follows:

1. There is a dependency between node i and node j;
2. There is a combination relationship between node i and

node j;
3. There is an inheritance relationship between node i and

node j;

Fig. 5 Feature selection based on counterfactual explanations

372 Human-Centric Intelligent Systems (2023) 3:366–380

1 3

Figure 6 shows software networks built by some Apache
open source software projects in accordance with the above
rules.

Extracting structural features from the software network
using Struc2vec is divided into four main steps [28]:

(1) Measuring structural similarity: Rk(u) represents the
set of nodes whose distance from node u is k , R1(u) rep-
resents the set of directly connected nearest neighbors of
u , and s(S) represents the ordered degree sequences of the
set S of nodes. The distance fk(u, v) between all nodes is
calculated by introducing a hierarchical structure, and this
distance can reflect the situation of structural similarity
between nodes, defined as:

The g(D1,D2) ≥ 0 is a function that measures the distance
of the ordered degree sequences D1,D2 . Since s

(
Rk(u)

)
 and

s
(
Rk(v)

)
 have different lengths and may contain duplicate

elements. To solve this problem, so a distance calculation
formula called DTW is used, defined as follows:

(2) Constructing the context graph: A multilayer weighted
graph M is constructed based on the obtained node-pair dis-
tances, which is mainly intended to encode the structural
similarity between nodes. The edge weight of two nodes in
a certain layer k is defined as:

The same node belonging to different layers is connected
by directed edges, and the edge weight is defined as:

(5)
fk(u, v) = fk−1(u, v) + g

(
s
(
Rk(u)

)
, s
(
Rk(v)

))
,

k ≥ 0 and ||Rk(u)
||, ||Rk(v)

|| > 0

(6)d(a, b) =
max (a,b)

min (a,b)
− 1

(7)wk(u, v) = e−fk(u,v), k = 0,… , k∗

Γk(u) is the number of edges related to node u , and its
weight is greater than the average edge weight of the complete
graph in layer k , and is defined as:

(3) Generating context for nodes: A biased random walk
strategy is applied to all nodes in graph M as a way to generate
the contextual representation of each node. At each sampling,
if the decision is to wander to the current layer, and assuming
that it is currently at layer k , the probability of going from
node u to node v is:

Zk(u) is the normalization factor of node u in layer k , which
is obtained by the following formula:

If it is decided to switch different layers, select k + 1 layer
or k − 1 layer with the following probability:

(8)w
(
uk, uk+1

)
= log

(
Γk(u) + e

)
, k = 0,… , k∗ − 1

(9)w
(
uk, uk−1

)
= 1, k = 1,… , k∗

(10)Γ
k(u) =

1∑
v∈V

(w
k(u, v) > w

k
)

(11)Pk(u, v) =
e−fk (u,v)

Zk(u)

(12)Zk(u) =
∑

v∈V ,v≠u e
−fk(u,v)

(13)Pk

(
uk, uk+1

)
=

w(uk ,uk+1)
w(uk ,uk+1)+w(uk ,uk−1)

(14)Pk

(
uk, uk−1

)
= 1 − Pk

(
uk, uk+1

)

Fig. 6 The software network of poi, lucene and synapse

373Human-Centric Intelligent Systems (2023) 3:366–380

1 3

(4) Learning a language model: Finally, using Skip-
Gram technique, the potential representation of each node
is learned from the generated contextual representation.

3.4 Semantic Features Extraction

The source program is the main cause of software defects.
Each source file program code can be parsed into a series of
word sequence representations, and the word sequence rep-
resentations are converted into semantic features by CNN’s
efficient feature extraction capability, the process of which
is shown in Fig. 7.

(1) Iterate through each file in the source project, the code
in each source file is parsed into AST [43] nodes by an open-
source Python package named javalang. According to the
optimal approach [20], only three main node types [44, 45]
are selected as word sequences for software modules. One is
the node type of method invocation and class instance crea-
tion, adding their specific method names and class names to
word sequences; one is the node type of declaration, such
as method declaration, interface description, constructor
declaration, etc., adding their values to word sequences; and
one is the node type of control flow. For example, ForState-
ment, IfStatement, WhileStatement, etc. are added to word
sequences, and some node types are shown in Table 1.

(2) Since the CNN model only receives numeric input, all
words in word sequences need to be converted to numeric
values. The solution is to encode words in a non-repeating
manner starting with a value of 1 and increasing. During
this process, make sure that a word can only correspond to
one encoded value, and duplicate words refer to the previ-
ous encoded value. To distinguish between word encoding
and label coding, we decided to encode labels with One-Hot
encoding. As a result of the above steps, the source files are
parsed into a series of numerical vectors.

(3) Besides, CNN requires input vectors to maintain a
consistent length. Yet it is not possible to keep the same

length because the code of each source file is different. To
solve this problem, we first set the fixed length of the input
vectors, and then if the length of the input vectors is greater
than the set value, the redundant part will be discarded;
otherwise, it is supplemented with 0. In short, the CNN
model uses vectors as input and applies various layers such
as embedding, convolutional, activation, pooling, and fully
connected to extract semantic features.

4 Experimental Setup

In this section, a series of experiments are designed to evalu-
ate the effectiveness of our proposed hybrid defect prediction
model.

4.1 Datasets

This paper uses experimental data from six selected open
source software projects hosted by the Apache Foundation.
The selection is based on criteria such as dataset stability and
other relevant factors. Due to the software defect prediction

Fig. 7 The semantic features extraction process

Table 1 Part of the node types

No. Node type No. Node type

1 PackageDeclaration 11 ForStatement
2 ClassDeclaration 12 ContinueStatement
3 InterfaceDeclaration 13 ReturnStatement
4 MethodInvocation 14 SwitchStatement
5 MemberReference 15 BlockStatement
6 ReferenceType 16 TryResource
7 MethodDeclaration 17 CatchClause
8 IfStatement 18 ForControl
9 WhileStatement 19 BasicType
10 DoStatement 20 FormalParameter

374 Human-Centric Intelligent Systems (2023) 3:366–380

1 3

based on version iteration in this article, each project has
two successive versions, with the old version serving as the
data source for model training and the new version serving as
the data source for model testing. Table 2 provides detailed
descriptions, versions, average file counts, and bug rates for
the six projects.

First of all, the number of files in the project we selected
varies from 210 to 892, and its purpose is to ensure the diver-
sity of data. Then, we also selected projects with different
defect rates to test the performance of our model, with a mini-
mum of 15.5% and a maximum of 64.7%. The first column
displays the names of six datasets, the second column gives a
brief description of the projects, the third and fourth columns
respectively describe the version of the projects and the aver-
age number of files, and the last column describes the percent-
age of defect instances.

In addition, this paper collects a dataset of 20 artificial sta-
tistical features and defect statistics for these six projects, with
statistical feature data coming from the tera-PROMISE pro-
ject. The dataset contains metrics based on software size and
software complexity, and these statistical metrics are shown
in Table 3.

4.2 Evaluation Measures

F1 Score [46] is a metric that combines the precision and recall
of a classifier and is more suitable for evaluating model perfor-
mance under imbalanced datasets than other metrics because it
weighs well the classifier's performance on positive and nega-
tive classes. The precision P is calculated as follows:

Among them, truepositive represents the true number of
cases, falsepositive represents the false positive number of
cases, and falsenegative represents the false negative number
of cases, and the recall R is calculated as follows:

The formula for calculating an F1 score is as follows:

(15)P =
truepositive

truepositive + falsepositive

(16)R =
truepositive

truepositive + falsenegative

For datasets with balanced data distribution, precision
and recall can be good measures of model performance,
but for classical data imbalance datasets such as software
defect prediction, where the prior probability threshold for
determining the category is not equal to 0.5, it is better to
use the F1 score.

4.3 Baselines

To prove the superiority of the feature selection method
based on counterfactual explanations, we compared it with
the featureless selection method and the traditional optimal
feature selection method—Wrapper method, where feature
selection was performed on 20 artificial statistical features
from the six open source projects mentioned in Sect. 4.1.

To prove that our feature selection method and structural
features are conducive to improving model prediction per-
formance, the following six models are set up for the model
comparison experiment, which are described as follows:

1. LR: Construct traditional defect prediction models based
on 20 artificial statistical features and using logistic
regression algorithms.

2. CNN: Use CNN to learn semantic features in the source
programs of software projects, and build defect predic-

(17)F1 =
2 ∗ P ∗ R

P + R

Table 2 Software project
related information

Project Description Versions Avg files Buggy rate (%)

poi Can read and write Office format files 2.5, 3.0 409 64.7
lucene Provides some basic indexing functions 2.0, 2.2 210 55.7
synapse Open source ESB project 1.1, 1.2 239 30.5
camel Provides many built-in components and APIs 1.4, 1.6 892 18.6
jedit A text editor for people who write code 4.0, 4.1 284 23.8
xerces XML parser 1.2, 1.3 441 15.5

Table 3 The statistical metrics

No. Abbreviation No. Abbreviation

1 WMC 11 CA
2 DIT 12 CE
3 NOC 13 IC
4 CBO 14 CBM
5 RFC 15 CAM
6 LCOM3 16 AMC
7 NPM 17 LCOM
8 DAM 18 LCOM3
9 MOA 19 Avg (CC)
10 MFA 20 MaX (CC)

375Human-Centric Intelligent Systems (2023) 3:366–380

1 3

tion models without combining traditional artificial fea-
ture indicators.

3. DP-CNN: Based on semantic features, a new defect pre-
diction model is constructed by combining 20 traditional
artificial feature indicators.

4. DPS-CNN: Based on the DP-CNN model, a feature
selection method based on counterfactual explanations
is used to optimize artificial statistical features.

5. DP-CNN-STR: Based on the DP-CNN model, combined
with newly excavated structural features.

6. DPS-CNN-STR: Combining the above two methods
based on the DP-CNN model.

4.4 Research Questions

In studying the construction of prediction models, the
main concern is the performance of the model. This paper
proposes a new prediction model called DPS-CNN-STR.
Because this model is built on the DP-CNN model and addi-
tionally undergoes feature selection based on counterfactual
explanations and combines the structural features mined by
Struc2vec. Therefore, we have three questions:

• RQ1: Is the feature selection method based on counter-
factual explanations effective?

• RQ2: Can Struc2vec's excavated structural features effec-
tively improve the performance of defect prediction mod-
els?

• RQ3: Is the performance of the mixed defect prediction
model DPS-CNN-STR superior to any other model?

4.5 Setup

In RQ1, we compare the feature selection method based on
counterfactual explanations with the Wrapper method and
the featureless selection method. The featureless selection
method does not optimize the features and uses only logis-
tic regression algorithms as a prediction model. The feature
selection method based on counterfactual explanations and
the Wrapper method require a specific classifier as the car-
rier, and to ensure the comparability of the experiment, both
above two methods also use logistic regression as a specific
classifier. Specific ideas are as follows:

• The feature selection method based on counterfactual
explanations (LRBOC): first, the old version of the arti-
ficial statistical feature table is input into the counterfac-
tual generation framework, and then each feature is given
a corresponding importance score, which is returned in
the form of a dictionary from top to bottom, e.g. { 'fea-
ture1': 0.542, 'feature2': 0.384,…, 'feature20': 0.112}.

Then the features are combined one by one according to
the scores of importance from the highest to the lowest.
Suppose there are 20 features, then there are 20 feature
subsets corresponding to the following form: [feature1],
[feature1, feature2], …[feature1, feature2, …, feature20].
Then, the old version of the artificial statistical features
(the feature subset described above) and their labels are
used to construct the classifier, and finally the new ver-
sion of the artificial statistical features and their labels are
used as the test set, and the corresponding optimal feature
subset is selected by selecting the highest F1 score.

• The Wrapper method (WRAP): This paper selects the
RFECV algorithm in the Wrapper method, as the RFECV
method is generally consistent with the LRBOC. The
RFECV method works by first using the REF (recursive
feature elimination) method to derive an important rank-
ing for each feature. Then, based on this ranking, vari-
ous subsets of different numbers of features are selected
for model training and cross-validation. Finally, the best
performing feature subset is selected as the final feature
set used in the model. There is a parameter named 'n_fea-
tures_to_select' in the RFECV method, which represents
the number of features in the optimal feature subset. First,
the number of features in the optimal feature subset of
the old version is determined by the learning curve, and
afterwards the specific optimal feature subset is deter-
mined by the feature score matrix. Suppose the number
of features in the optimal feature subset is 8 and the form
of the feature score matrix is [1,2,2,3,1,1,2,3,1,2,1,3,1,2
,2,3,1,3,2,1], we can select the 8 features corresponding
to the value 1 as the optimal feature subset. Then, the
best feature subset and labels of the old version are used
to build the classifier, while the best feature subset and
labels of the new version are used as the test set, and its
F1 score is recorded.

• Featureless selection method (LR): Without using any
feature selection method, all features and labels of the old
version are used to build the classifier, while all features
and labels of the new version are used as the test set and
its F1 score is recorded.

The F1 scores obtained from the above three methods
are compared, and the above comparison results are used to
demonstrate the superiority of the feature selection method
based on counterfactual explanations.

In RQ2-3, we mainly set up five sets of comparison
experiments. More details will be given in the experimental
analysis in Sect. 5.2.

376 Human-Centric Intelligent Systems (2023) 3:366–380

1 3

5 Experimental Results

In this section, we give experimental results to answer the
three questions.

5.1 RQ1: Validity of Feature Selection

5.1.1 Comparative

As shown in Table 4, the performance of our proposed
feature selection method LRBOC is much better than the
WRAP feature selection method on six datasets.

Table 4 shows that the LRBOC F1 score is on average
2.9% higher than WRAP, and the LRBOC F1 score is on
average 5.1% higher than LR. However, WRAP is only 2.2%
higher on average than LR. All the above data illustrate the
effectiveness of the feature selection method based on coun-
terfactual explanations.

The advantages of the feature selection method proposed
in this paper lie in the following two points:

1. Important features are frequently changed to generate
counterfactual instances, resulting in higher scores. This
provides objective evaluation indicators for determining
feature importance scores and addresses the limitations
of the Filter method.

2. In all generated counterfactual instances, learners can
intuitively observe the difficulty of feature changes and
determine the importance score based on the frequency
of feature changes, solving the limitations of Wrapper
method.

5.1.2 Extension

As described in Sect. 3.2, the feature selection method based
on counterfactual explanations consists mainly of three
steps. Here, we show the process of selecting the best subset
of features for different projects, as shown in Fig. 8.

In Fig. 8, we can clearly see that when there are 20 fea-
tures, it is equivalent to no feature selection. In the poi

project, when the number of artificial statistical features is
7, the F1 score is the largest. These seven features are the
top seven with the highest scores of feature importance, and
they are the optimal subset of artificial statistical features
for this project.

5.2 RQ2‑3: Validity of Structural Features

To answer RQ2 and RQ3, we designed five sets of compari-
son experiments, and the results are shown in Table 5.

From Table 5, it can be seen that the F1 value of the CNN
model is on average 7.1% higher than that of the LR model,
proving that automated feature mining methods are more
conducive to the construction of defect prediction models
compared to manual feature mining methods, and also veri-
fying the feasibility of deep learning in the field of software
defect prediction. Then, by comparing the values in the third
and second columns of the table, it was found that the F1
value of the DP-CNN model is on average 2.2% higher than
that of the CNN model, indicating the effectiveness of fea-
ture combination. In addition, the F1 value of the DPS-CNN
model is on average 0.9% higher than that of the DP-CNN
model, further verifying the effectiveness of the feature
selection method based on counterfactual explanations.

To better answer RQ2, this paper designed a comparative
experiment between the DP-CNN-STR model and the DP-
CNN model. It was found that the F1 average of the former
was 2.6% higher than the latter, proving that the software
structure features extracted by Struc2Vec are useful for the
construction of defect prediction models.

It can be observed that the overall performance of DPS-
CNN-STR model is higher than that of DP-CNN-STR. How-
ever, the DPS-CNN-STR model is not as good as the DP-
CNN-STR model in two projects (lucene and jedit). After
analysis, we believe that the reason for this phenomenon
is that the DPS-CNN-STR model is composed of artificial
statistical features, semantic features, and structural features.
However, by comparing the F1 values of the CNN model
with the LR model, we know that the influence of artifi-
cial statistical features on the model is far less than that of
semantic features. In other words, features mined based on
deep learning have a greater impact on the defect prediction
model. Therefore, although the DPS-CNN-STR model has
undergone artificial statistical feature optimization based on
the DP-CNN-STR model, it cannot guarantee that the perfor-
mance of the DPS-CNN-STR model will definitely be better
than the DP-CNN-STR model.

Finally, to answer RQ3, the average F1 score of DPS-
CNN-STR is 3.3% higher than that of DP-CNN, and the
average F1 score of DPS-CNN-STR is also the highest of the
six models. The above proves that both the feature selection
method and the structural features proposed in this paper can
promote the construction of the model.

Table 4 F1 scores of different feature selection methods

The bold number in each row of the table represents the largest value
in the row, indicating the best effect

Project Version LR WRAP LRBOC

poi 2.5, 3.0 0.745 0.742 0.788
lucene 2.0, 2.2 0.603 0.605 0.609
synapse 1.1, 1.2 0.512 0.554 0.639
camel 1.4, 1.6 0.320 0.354 0.360
jedit 4.0, 4.1 0.578 0.610 0.626
xerces 1.2, 1.3 0.263 0.291 0.307
Avg 0.504 0.526 0.555

377Human-Centric Intelligent Systems (2023) 3:366–380

1 3

Fig. 8 The process of selecting the best feature subset

378 Human-Centric Intelligent Systems (2023) 3:366–380

1 3

6 Threats to Validity

The main internal threats come from the construction of the
experimental environment and the setting of parameters. Our
experiments are based on the Python language environment.
To reduce the uncontrollable factors during the implementa-
tion process, we have adopted sufficiently mature third-party
libraries, such as calling various Python packages, to achieve
the required requirements. In addition, we refer to the default
values of the documentation as the parameters for defect
prediction, and the parameter setting often directly affects
the prediction performance.

For example, in the experiment of feature selection based
on counterfactual explanations, there is a parameter called
penalty term. In the process of machine learning, because
we provide a lot of data for training, many dimensions will
be generated during the training, some are decisive, oth-
ers are irrelevant. In other words, we hope to obtain more
accurate results through a large amount of data training, but
at the same time, the more judgment dimensions, the worse
the generalization ability of our model. This requires us to
control a balance, so we introduced the penalty term. In the
experiment in Sect. 5.1.1, we choose its default value of 1.
However, when the values of penalty terms are different, the
results are often different, as shown in Table 6.

In addition, when constructing the DPS-CNN-STR
model, different internal parameter settings will also lead to
different prediction performance of the model. Therefore,

it is necessary to select the appropriate parameters for the
model, so as to make the prediction performance of the
model better.

The main external threat stems from the universality of
the project. We have only done our model on 6 projects, but
these projects cannot summarize all types of software. In
addition, we feel it necessary to explain why only 6 data-
sets were selected. Because the construction of our defect
prediction model uses artificial statistical features, semantic
features, and structural features, which means that not only
the features that need to be manually mined, but also the
corresponding source code needs to be provided. However,
some source code files in some projects have syntax errors
and are difficult to correct, so only 6 projects are selected as
our final dataset after careful consideration.

7 Conclusion and Future Work

Researchers have developed various models for software
defect prediction to reduce the losses due to defects.
This paper present a new model called DPS-CNN-STR,
which is built on the basis of the DP-CNN model. The
improvements are mainly reflected in the following two
aspects: first, we build a software network using the data
flow existing between the modules and the new network
characterization technique Struc2vec is used to extract the
more important structural features, combining these new
mined structural features on the DP-CNN model. Then,
the feature importance score is determined through the
generated counterfactual samples, and the importance
score is used as heuristic search information to optimize
the artificial statistical features in the model. Because the
feature importance score of this method is interpretable,
this method can produce a better feature subset than the
traditional feature selection method. Finally, our experi-
ments on six public datasets show that our proposed model
DPS-CNN-STR based on multi-feature fusion can provide
a new idea for the construction of software defect predic-
tion models.

Table 5 F1 scores of six defect
prediction models

The bold number in each row of the table represents the largest value in the row, indicating the best effect

Project LR CNN DP-CNN DPS-CNN DP-CNN-STR DPS-CNN-STR

poi 0.745 0.778 0.784 0.790 0.799 0.806
lucene 0.603 0.750 0.761 0.763 0.768 0.765
synapse 0.512 0.525 0.556 0.572 0.570 0.582
camel 0.320 0.503 0.508 0.500 0.548 0.560
jedit 0.578 0.598 0.600 0.610 0.627 0.620
xerces 0.263 0.298 0.374 0.400 0.426 0.448
Avg 0.504 0.575 0.597 0.606 0.623 0.630

Table 6 Results of LRBOC under different parameter settings

The bold number in each row of the table represents the largest value
in the row, indicating the best effect

Project Version C = 0.01 C = 0.1 C = 1

poi 2.5, 3.0 0.770 0.758 0.788
lucene 2.0, 2.2 0.608 0.607 0.609
synapse 1.1, 1.2 0.601 0.635 0.639
camel 1.4, 1.6 0.363 0.360 0.360
jedit 4.0, 4.1 0.619 0.621 0.626
xerces 1.2, 1.3 0.339 0.309 0.307
Avg 0.550 0.548 0.555

379Human-Centric Intelligent Systems (2023) 3:366–380

1 3

In the future, we will explore the potential of our DPS-
CNN-STR for defect prediction on more projects. In
addition, we will explore how to combine features more
effectively under the premise of given feature importance
scores, and how to extract the structural features of soft-
ware network more effectively, in order to further improve
the performance of defect prediction model.

Acknowledgements A preprint has previously been published. The
name of the original preprint is[Software defect prediction based on
counterfactual explanations]. The link location of the original preprint
is at [https:// assets. resea rchsq uare. com/ files/ rs- 18700 38/ v1_ cover ed.
pdf?c= 16589 43649].

Author Contributions All authors are contributed equally.

Funding This paper is supported by the National Natural Science
Foundation of China (61867004).

Availability of Data and Materials The counterfactual generation frame-
work is at https:// github. com/ micro soft/ DiCE.

Declarations

Conflict of Interest The authors declare they have no conflicts of inter-
est.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Hall T, Beecham S, Bowes D, et al. A systematic literature review
on fault prediction performance in software engineering. IEEE
Trans Softw Eng. 2011;38(6):1276–304.

 2. Sun X, Peng X, Zhang K, et al. How security bugs are fixed and
what can be improved: an empirical study with Mozilla. Sci China
Inf Sci. 2019;62:1–3.

 3. Sun X, Yang H, Xia X, et al. Enhancing developer recommenda-
tion with supplementary information via mining historical com-
mits. J Syst Softw. 2017;134:355–68.

 4. Wang L, Sun X, Wang J, et al. Construct bug knowledge graph for
bug resolution. In: 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering Companion (ICSE-C). IEEE, 2017;
189–191.

 5. Sun X, Zhou W, Li B, et al. Bug localization for version issues
with defect patterns. IEEE Access. 2019;7:18811–20.

 6. Sun X, Peng X, Li B, et al. IPSETFUL: an iterative process of
selecting test cases for effective fault localization by explor-
ing concept lattice of program spectra. Front Comp Sci.
2016;10:812–31.

 7. Liu C, Yang D, Xia X, et al. A two-phase transfer learning
model for cross-project defect prediction[J]. Inf Softw Technol.
2019;107:125–36.

 8. Shippey T, Bowes D, Hall T. Automatically identifying code
features for software defect prediction: using AST N-grams. Inf
Softw Technol. 2019;106:142–60.

 9. Li N, Shepperd M, Guo Y. A systematic review of unsupervised
learning techniques for software defect prediction. Inf Softw Tech-
nol. 2020;122: 106287.

 10. Pachouly J, Ahirrao S, Kotecha K, et al. A systematic literature
review on software defect prediction using artificial intelligence:
datasets, data validation methods, approaches, and tools. Eng
Appl Artif Intell. 2022;111: 104773.

 11. Huda S, Alyahya S, Ali MM, et al. A framework for soft-
ware defect prediction and metric selection. IEEE Access.
2017;6:2844–58.

 12. Akiyama F. An example of software system debugging. In:
Proc. of the Int’l Federation of Information Proc. Societies
Congress. New York: Springer Science and Business Media,
1971; 353−359.

 13. Halstead MH. Elements of software science. North-Holland: Else-
vier; 1977. p. 32–41.

 14. McCabe TJ. A complexity measure. IEEE Trans Softw Eng.
1976;4:308–20.

 15. Chidamber SR, Kemerer CF. A metrics suite for object oriented
design. IEEE Trans Softw Eng. 1994;20(6):476–93.

 16. Tripathi A. An analytical and comparative review of cohesion
metrics. In: Proceedings of the 2018 International Conference
on Software Engineering and Information Management. 2018:
17–25.

 17. Radjenović D, Heričko M, Torkar R, et al. Software fault predic-
tion metrics: a systematic literature review. Inf Softw Technol.
2013;55(8):1397–418.

 18. Bengio Y, Goodfellow I, Courville A. Deep learning. Cambridge:
MIT Press; 2017.

 19. Learning D. Deep learning. High-dimensional fuzzy clustering,
2020.

 20. Wang S, Liu T, Tan L. Automatically learning semantic features
for defect prediction. In: Proceedings of the 38th International
Conference on Software Engineering. 2016; 297–308.

 21. Li J, He P, Zhu J, et al. Software defect prediction via convo-
lutional neural network. In: 2017 IEEE international conference
on software quality, reliability and security (QRS). IEEE, 2017;
318–328.

 22. Li X, Li W, Zhang Y, et al. Deepfl: integrating multiple fault
diagnosis dimensions for deep fault localization. In: Proceedings
of the 28th ACM SIGSOFT international symposium on software
testing and analysis. 2019; 169–180.

 23. Li B, Pi D. Network representation learning: a systematic litera-
ture review. Neural Comput Appl. 2020;32(21):16647–79.

 24. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of
social representations. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data min-
ing. 2014; 701–710.

 25. Qiu J, Dong Y, Ma H, et al. Network embedding as matrix factori-
zation: Unifying deepwalk, line, pte, and node2vec. In: Proceed-
ings of the eleventh ACM international conference on web search
and data mining. 2018; 459–467.

 26. Grover A, Leskovec J. node2vec: scalable feature learning for
networks. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. 2016;
855–864.

 27. Goyal P, Raja S, Huang D, et al. Graph representation ensem-
ble learning[C]//2020 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM).
IEEE, 2020: 24–31.

https://assets.researchsquare.com/files/rs-1870038/v1_covered.pdf?c=1658943649
https://assets.researchsquare.com/files/rs-1870038/v1_covered.pdf?c=1658943649
https://github.com/microsoft/DiCE
http://creativecommons.org/licenses/by/4.0/

380 Human-Centric Intelligent Systems (2023) 3:366–380

1 3

 28. Ribeiro LFR, Saverese PHP, Figueiredo DR. struc2vec: learning
node representations from structural identity. In: Proceedings of
the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 2017; 385–394.

 29. Das H, Naik B, Behera HS. A Jaya algorithm based wrapper
method for optimal feature selection in supervised classification.
J King Saud Univ Comput Inform Sci. 2022;34(6):3851–63.

 30. Wah YB, Ibrahim N, Hamid HA, et al. Feature selection methods:
case of filter and wrapper approaches for maximising classifica-
tion accuracy. Pertanika J Sci Technol, 2018; 26(1).

 31. Jović A, Brkić K, Bogunović N. A review of feature selection
methods with applications. In: 2015 38th international convention
on information and communication technology, electronics and
microelectronics (MIPRO). IEEE, 2015; 1200–1205.

 32. Afzal W, Torkar R. Towards benchmarking feature subset selec-
tion methods for software fault prediction. In: Computational
intelligence and quantitative software engineering. Cham:
Springer; 2016. p. 33–58.

 33. Rodriguez D, Ruiz R, Cuadrado-Gallego J, et al. Attribute selec-
tion in software engineering datasets for detecting fault modules.
In: 33rd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO 2007). IEEE, 2007;
418–423.

 34. Keane MT, Smyth B. Good counterfactuals and where to find
them: A case-based technique for generating counterfactuals for
explainable AI (XAI). In: Case-based reasoning research and
development: 28th International Conference, ICCBR 2020, Sala-
manca, Spain, June 8–12, 2020, Proceedings 28. Springer Inter-
national Publishing, 2020; 163–178.

 35. Dandl S, Molnar C, Binder M, et al. Multi-objective counter-
factual explanations. In: Parallel Problem Solving from Nature–
PPSN XVI: 16th International Conference, PPSN 2020, Leiden,
The Netherlands, September 5–9, 2020, Proceedings, Part I.
Cham: Springer International Publishing, 2020; 448–469.

 36. Wachter S, Mittelstadt B, Russell C. Counterfactual explanations
without opening the black box: Automated decisions and the
GDPR. Harv JL & Tech. 2017;31:841.

 37. Menzies T, Milton Z, Turhan B, et al. Defect prediction from static
code features: current results, limitations, new approaches. Autom
Softw Eng. 2010;17:375–407.

 38. Jing XY, Ying S, Zhang Z W, et al. Dictionary learning based soft-
ware defect prediction. In: Proceedings of the 36th international
conference on software engineering. 2014; 414–423.

 39. Menzies T, Greenwald J, Frank A. Data mining static code
attributes to learn defect predictors. IEEE Trans Softw Eng.
2006;33(1):2–13.

 40. Sarker IH. Machine learning: Algorithms, real-world applications
and research directions. SN Comput Sci. 2021;2(3):160.

 41. https:// archi ve. ics. uci. edu/ ml/ datas ets/ adult.
 42. Mothilal RK, Sharma A, Tan C. Explaining machine learning

classifiers through diverse counterfactual explanations. In: Pro-
ceedings of the 2020 conference on fairness, accountability, and
transparency. 2020; 607–617.

 43. Xiao Y, Keung J, Bennin KE, et al. Improving bug localization
with word embedding and enhanced convolutional neural net-
works. Inf Softw Technol. 2019;105:17–29.

 44. Cao S, Sun X, Bo L, et al. Bgnn4vd: constructing bidirectional
graph neural-network for vulnerability detection. Inf Softw Tech-
nol. 2021;136: 106576.

 45. Wang T, Su X, Wang Y, et al. Semantic similarity-based grading
of student programs[J]. Inf Softw Technol. 2007;49(2):99–107.

 46. Nam J. Survey on software defect prediction. Department of
Compter Science and Engineerning, The Hong Kong University
of Science and Technology, Tech. Rep, 2014.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://archive.ics.uci.edu/ml/datasets/adult

	Hybrid Defect Prediction Model Based on Counterfactual Feature Optimization
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Defect Prediction
	2.2 Counterfactual Generation Framework
	2.3 Struc2vec

	3 Proposed Method
	3.1 Hybrid Defect Prediction Model
	3.2 Feature Selection Based on Counterfactual Explanations
	3.3 Structural Features Extraction
	3.4 Semantic Features Extraction

	4 Experimental Setup
	4.1 Datasets
	4.2 Evaluation Measures
	4.3 Baselines
	4.4 Research Questions
	4.5 Setup

	5 Experimental Results
	5.1 RQ1: Validity of Feature Selection
	5.1.1 Comparative
	5.1.2 Extension

	5.2 RQ2-3: Validity of Structural Features

	6 Threats to Validity
	7 Conclusion and Future Work
	Acknowledgements
	References

