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Abstract
Software defect prediction is critical to ensuring software quality. Researchers have worked on building various defect pre-
diction models to improve the performance of defect prediction. Existing defect prediction models are mainly divided into 
two categories: models constructed based on artificial statistical features and models constructed based on semantic features. 
DP-CNN [Li J, He P, Zhu J, et al. Software defect prediction via convolutional neural network. In: 2017 IEEE international 
conference on software quality, reliability and security (QRS). IEEE, 2017; 318–328.] is one of the best defect prediction 
models, because it combines both artificial statistical features and semantic features, so its performance is greatly improved 
compared to traditional defect prediction models. This paper is based on the DP-CNN model and makes the following two 
improvements: first, using a new Struc2vec network representation technique to mine existing information between software 
modules, which specializes in learning node representations from structural identity and can further extract structural features 
associated with defects. Let the DP-CNN model once again incorporate the newly mined structural features. Then, this paper 
proposes a feature selection method based on counterfactual explanations, which can determine the importance score of 
each feature by the feature change rate of counterfactual samples. The origin of these feature importance scores is interpret-
able. Under the guidance of these interpretable feature importance scores, better feature subsets can be obtained and used 
to optimize artificial statistical features within the DP-CNN model. Based on the above methods, this paper proposes a new 
hybrid defect prediction model DPS-CNN-STR. Evaluating our model on six open source projects in terms of F1 score in 
defect prediction. Experimental results show that DPS-CNN-STR improves the state-of-the-art method by an average of 3.3%.

Keywords Software defect prediction · Hybrid defect prediction model · Counterfactual explanations · Network 
representation technique

1 Introduction

As the software system grows in size, there are more and 
more defects in the software. The presence of defects may 
lead to severe economic losses or even endanger people’s 
lives [1–3]. It has been found that nearly four-fifths of the 
cost is spent on defect repair throughout the development 
cycle [4–6], and If the above defects can be identified and 
changed in a timely manner at an early stage of software 

development, the cost of fixing them will be significantly 
reduced. Therefore, related researchers have devoted them-
selves to building various defect prediction models [7–9], 
to help developers identify potential defects in the software 
as early as possible to reduce the losses caused by defects.

Software defect prediction can be divided into intra-
project and cross-project based on data sources. Within a 
project, it is based on historical data from a single project, 
while cross-projects use historical data from multiple differ-
ent projects, and most research focuses on the binary clas-
sification problem of file defect propensity [10]. In early 
research work, machine learning methods were widely used 
to construct defect prediction models. Researchers first 
design artificial statistical features (code metrics, process 
metrics) related to defects based on source code, and then 
obtain labels for each source file based on software history 
information. Finally, prediction models are constructed 
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based on the obtained features and labels using relevant 
algorithms. Most existing software defect metrics fall into 
two main categories: software code metrics and software 
process metrics [11]. Software code metrics (such as LOC 
[12], Halstead [13], and McCabe [14]) represent the code 
program’ complexity, and software process metrics (such 
as CK [15], Martin [16], and MOOD [17]) represent the 
development process’ complexity.

By definition, the process of defect prediction is com-
plex, and in some cases artificial statistical features are not 
sufficient for defect prediction tasks. Previous research has 
focused on manually designing defect metrics closely related 
to the source program. However, manual feature extraction 
has the problem of low efficiency, and the defect information 
contained in artificial statistical features is extremely limited. 
With the widespread application of deep learning [18, 19], it 
can automatically capture highly complex nonlinear features 
and has strong feature extraction capabilities. Deep learning 
techniques are gradually being applied to defect prediction, 
and satisfactory results have been obtained. Wang et al. [20] 
proposed a model called DBN, which can learn semantic 
information existing in software programs end-to-end, and 
then construct a model with better prediction performance 
based on the extracted semantic information. Experimental 
results show that the semantic feature-based model has bet-
ter prediction performance than existing artificial statistical 
feature-based models. Li et al. [21] use CNN's local feature 
extraction capability to automatically extract semantic infor-
mation from software code, and combine it with artificial 
statistical features to construct a prediction model called DP-
CNN. Experimental results show that the predictive perfor-
mance of the DP-CNN model is superior to that of the DBN 
model, which proves that CNN has good feature extraction 
ability and the effectiveness of feature combination. Xia et al. 
proposed a deep learning method called DeepFL, which can 
automatically learn the most effective existing or potential 
features and be used for precise fault localization [22].

The researchers extracted artificial statistical and seman-
tic features from the code, but these two types of features 
only reflect the internal information of each code file and 
lack the structural information that exists between code 
files, and the single source of features leads to unsatisfac-
tory defect prediction results.

To solve this problem, network representation learning 
[23] is formally applied in the field of software defect pre-
diction. The software network diagram is first constructed 
based on the dependencies existing between the software 
modules, and through representation learning, the graph 
information is effectively characterized and more impor-
tant structural features are extracted. Typical methods are 
DeepWalk [24], LINE [25], Node2Vec [26], and SDNE 
[27], all based on the proximity similarity hypothesis. In 
fact, in some scenarios, two vertices that are not nearest 

neighbors may also have high similarity, and because of 
this type of similarity, the above methods are unable to 
capture it. Therefore, this paper uses a new Struc2vec 
[28] network representation learning technique, which 
specifically constructs node sequences from another per-
spective and focuses more on the structural information of 
nodes, overcoming the limitations of traditional network 
representation learning methods. In contrast to the most 
advanced technologies like as DeepWalk, Node2Vec, and 
RolX, Struc2vec [28] exhibits an exceptional ability to 
capture node structural features and demonstrates superior 
performance in a variety of classification tasks.

Software defect prediction models are mainly constructed 
by features, so the selection of features will directly affect 
the defect prediction results. There are two main types of 
classical feature selection methods, the filter method and 
the wrapper method [29–31]. Afzal and Torkar [32] empiri-
cally compared eight feature selection methods on five defect 
datasets in the PROMISE repository, and experimental 
results showed that the feature selection method can effec-
tively improve the performance of software defect predic-
tion models. Rodriguez et al. [33] conducted a compara-
tive study on three feature selection methods based on the 
Filter method and two feature selection methods based on 
the Wrapper method on four defect datasets. Experimental 
results showed that Wrapper method was overall superior to 
Filter method. However, the evaluation indicators of feature 
importance scores in the Filter method (such as variance, 
frequency, etc.) are largely derived from the prior knowledge 
of the decision-maker, and this experience is subjective. 
Besides, the feature importance score generated by Wrap-
per is determined by the base model. However, the machine 
learning model is a black box, and the unexplainable model 
cannot intuitively demonstrate the source of feature impor-
tance scores for learners. Therefore, the feature importance 
score generated by traditional feature selection methods 
cannot fully explain the contribution rate of features to the 
model output.

Therefore, we use the generated counterfactual samples 
for feature selection [34–36]. The general idea is that by 
minimizing the change in input features to generate differ-
ent model outputs, a set of different counterfactual samples 
can be generated for a piece of data in the same algorithm. 
Intuitively, the feature that changes more frequently to gener-
ate counterfactual samples is an important feature. The rate 
at which a feature is changed in all generated counterfactual 
samples is used as the importance score for that feature, so 
we can obtain the corresponding importance scores for all 
features. These important scores fundamentally explain the 
necessity of features for model output. We can generate the 
best performing subset of features guided by interpretable 
feature importance scores.
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In summary, this paper proposes a new hybrid defect 
prediction model DPS-CNN-STR based on artificial sta-
tistical, semantic and structural features. Among them, the 
artificial statistical features are optimized by the feature 
selection method based on counterfactual explanations, 
and the structural features are extracted by Struc2vec. Our 
main contributions are as follows:

• As far as we know, we are one of the few to consider 
Struc2vec's method for extracting structural features and 
applying it to software defect prediction. In addition, we 
are the first to propose a feature selection method based 
on counterfactual explanations, and have achieved good 
results, providing a new idea for the study of feature 
selection.

• We present a new model called DPS-CNN-STR, whose 
F1 score is improved by 3.3% on average over the optimal 
DP-CNN model.

The paper is organized as follows: Sect.  2 presents 
the related work, while Sect. 3 outlines the procedure 
for constructing the hybrid defect prediction model. 
Section 4 details the experimental setup, while Sect. 5 
analyses the experimental results. Section 6 provides a 
brief description of potential threats to the validity of the 
results. Finally, Sect. 7 provides a summary of the work 
and outlines directions for future research.

2  Related Work

In this section, we mainly introduce the following: soft-
ware defect prediction technology, Counterfactual gen-
eration framework and Struc2vec’s relevant background.

2.1  Software Defect Prediction

Software defect prediction techniques are primarily used to 
identify potential software defects in a timely manner, and to 
help testers perform purposeful testing activities [37]. Figure 1 
shows the common file-level software defect prediction pro-
cess in literature [38, 39], which mainly includes the following 
three steps.

1. First, mark each source file in the project according to 
the software history warehouse. The defect is marked as 
buggy and the flawless is marked as clean.

2. Then, by analyzing the software source code or histori-
cal data, features related to software defects are extracted 
from the source files. The most common features are 
artificial statistical features. The obtained features and 
labels are trained in various machine learning algorithms 
[40] (such as LR, SVM, and RF) to construct the classi-
fier.

3. Finally, features are extracted from the files in the project 
to be predicted. After all the features are extracted, the 
prediction results of each file can be obtained by putting 
the features into the defect prediction model.

2.2  Counterfactual Generation Framework

Machine learning model is a black box, and people can't 
explain how it works internally. Due to the unexplainability of 
models, it can often lead to irreparable consequences. There-
fore, it is necessary to provide explanations for machine learn-
ing models to reduce the potential threats posed by models.

The most popular explanation is the counterfactual explana-
tion proposed by Wachter et al. [36]:

(1)C = argminYloss(f (c), y) + |x − C|

Fig. 1  Software defect predic-
tion process
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In short, given the corresponding output of the input 
features x and model f  , the output y of the model can 
be changed by modifying the features x , but it pursues 
the change of minimizing the features. Yloss pushes coun-
terfactual C to a prediction different from the original 
instance x , and the counterfactual sample C should be 
close to the original sample x.

For example, in the Adult Income dataset [41], if you 
want to change a low-income person to a high-income per-
son, you can increase the value of working hours. We can 
imagine that this value must have a critical value. When 
it is equal to or greater than this value, the result of the 
model will change, but we only choose the critical value. 
People can explain the model's decision through the gener-
ated counterfactual samples.

More recently, Mothilal et  al. [42]have extended 
Wachter's work. Mothilal et al. argue that the counterfac-
tual samples generated should be diverse, proximal, and 
feasible.

To ensure the diversity of counterfactuals, Mothilal 
et al. used the Determinant Point Process (DPP) algorithm. 
The DPP algorithm ensures that the selection of subsets 
is diverse and that similar subsets are not easily captured 
simultaneously. where dist

(
Ci,Cj

)
 represents the distance 

between each of the two counterfactual samples.

Of the multiple counterfactual samples generated for 
an original piece of data, the counterfactual that is closest 
to the original data is likely to be the most helpful to the 
user in making a decision. Ci represents the ith counterfac-
tual sample and where dist

(
Ci, x

)
 represents the distance 

between the Ci and x . Distance is used to determine the 
proximity of the generated counterfactuals to the original 
data.

(2)Diversity = 1
1+dist(Ci,Cj)

Mothilal et al. ensured the feasibility of counterfactuals 
through domain knowledge between features. For example, 
gender (discrete features) can only be limited to men and 
women; the value of working time (continuity features) is 
limited to a normal interval.

Figure 2 shows multiple counterfactual instances gener-
ated for a single piece of original data, and the higher the 
ranked counterfactual, the closer it is to the original data.

The ratio of feature changes in all counterfactual sam-
ples is the feature importance score. Inspired by the above, 
and to solve the limitations of traditional feature selection 
methods, we use the generated counterfactual samples for 
feature selection, which can generate a better subset of fea-
tures guided by feature importance scores. Details will be 
provided in Sect. 3.2.

2.3  Struc2vec

Traditional network representation learning algorithms 
have a limitation. Due to the limited sampling length of the 
walk, they cannot effectively model nodes with structural 
similarities that are far apart. However, the reason why 
previous algorithms perform better is that most datasets 
prefer the characterization of homogeneity. That is, nodes 
with similar distances are also similar in feature space, 
which is enough to cover most data sets. When construct-
ing the graph, Struc2vec neither requires node location 
information nor label information. Instead, it relies solely 
on the concept of node degree to build the multilayer 
graph. An intuitive concept suggests that if two nodes 
have the similar degree, then the two nodes will be struc-
turally closer together. Moreover, if all adjacent nodes of 
these two nodes also have the same degree, then the nodes 
should exhibit even greater structural similarity. In short, 

(3)Pr oximity = −
1

k

k∑
i=0

dist
�
Ci, x

�

Fig. 2  Counterfactual generation instances
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nodes with neighbors with similar node sets are expected 
to have similar potential representations, and Struc2vec 
specifically learns node representations from structure 
identification, and achieves good results.

Figure 3 nodes m and n have similar local structures, node 
m has degree 4 and node n has degree 3, and nodes m and n 
are connected to the software network with 3 and 2 triangles 
respectively. It can be seen that these two nodes have high 
structural similarity, but because there are no common nodes 
in their neighborhoods, traditional network representation 
techniques cannot learn the potential representation of nodes 
with similar structures, but Struc2vec solves this problem.

In our work, to address the problem of a single feature 
source and to improve the prediction performance, we can 
use Struct2vec to extract relevant structural features.

3  Proposed Method

This section describes our proposed hybrid defect predic-
tion model in detail. Our DPS-CNN-STR model is based 
on artificial statistical, semantic, and structural features. It 
is based on the DP-CNN [21] and has made the following 
improvements:

1. The artificial statistical features are optimized by the 
feature selection method based on counterfactual expla-
nations.

2. Using Struc2vec to learn the structural features of the 
software network, a new hybrid defect prediction model 
is jointly constructed based on the optimized DP-CNN 
model, combined with the newly learned structural fea-
tures.

3.1  Hybrid Defect Prediction Model

To improve the performance of defect prediction models, 
Fig. 4 shows a new hybrid defect prediction model. First, 
artificial statistical features are optimized through coun-
terfactual explanations, then semantic features are learned 
from the source program using CNN, and finally struc-
tural features are learned from the software network using 
Struc2vec. A hybrid defect prediction called DPS-CNN-STR 
is constructed.

First, combine the optimized artificial statistical features, 
semantic features of CNN end-to-end learning, and struc-
tural features of Struc2vec Unsupervised Learning, and input 
them into the Softmax network as a whole to obtain the 
prediction results. The calculation formula for output layer 
Softmax is as follows:

Fig. 3  Example of two nodes (m 
and n) with similar structure b

c
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d
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x

w

y

n

Fig. 4  Hybrid defect prediction model



371Human-Centric Intelligent Systems (2023) 3:366–380 

1 3

where Pi represents the probability that the module is pre-
dicting as a bug. We build the neural network based on 
Keras, the biggest advantage of which is its simplicity and 
speed, and we also keep the exact same parameter settings 
as in the literature [21].

3.2  Feature Selection Based on Counterfactual 
Explanations

Figure 5 shows a feature selection method based on counter-
factual explanations, consisting of the following three main 
steps:

1. In this paper, defect prediction is based on iterations of 
versions within the project, so the artificial statistical 
table of the old version is input into the counterfactual 
generation framework, and then each feature is given a 
corresponding importance score.

2. Features are combined one by one according to their 
scores of importance from the highest to the lowest. 
Suppose there are n features, then there are n feature 
subsets corresponding.

3. The old version of the artificial statistical features (the 
subset of the features described in step 2) and their labels 
are used to construct the classifier, then the new version 
of the artificial statistical features and their labels are 
used as the test set, and the corresponding optimal sub-

(4)Pi =
exp (yi)∑
j exp (yi)

i, j ∈ {0, 1}
set of the features is selected by selecting the highest F1 
score.

3.3  Structural Features Extraction

Using the existing dependencies between software modules, 
we construct the software network with software modules as 
the basic unit, and then use Struc2vec to learn the potential 
representation of node structure, in order to extract structural 
features under unsupervised learning.

First, based on the data flow relationships that exist 
between the modules, the software network G = (V, E) is 
constructed, where G represents the constructed software 
network, V = {vi|i = 1,2,3,…, n} is the set of nodes in the 
software network, the element vi represents each node in 
the software network, n =| V | is the number of nodes in 
the constructed software network, and k* is the diameter. 
E = {ey | vivj = 1, i, j ∈ [1, n]} represents the set of edges. 
When the value is 1, it indicates that there is a relationship 
between node i and node j. When the value is 0, then there 
is no relationship between them, and the relationships that 
exist are as follows:

1. There is a dependency between node i and node j;
2. There is a combination relationship between node i and 

node j;
3. There is an inheritance relationship between node i and 

node j;

Fig. 5  Feature selection based on counterfactual explanations
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Figure 6 shows software networks built by some Apache 
open source software projects in accordance with the above 
rules.

Extracting structural features from the software network 
using Struc2vec is divided into four main steps [28]:

(1) Measuring structural similarity: Rk(u) represents the 
set of nodes whose distance from node u is k , R1(u) rep-
resents the set of directly connected nearest neighbors of 
u , and s(S) represents the ordered degree sequences of the 
set S of nodes. The distance fk(u, v) between all nodes is 
calculated by introducing a hierarchical structure, and this 
distance can reflect the situation of structural similarity 
between nodes, defined as:

The g(D1,D2) ≥ 0 is a function that measures the distance 
of the ordered degree sequences D1,D2 . Since s

(
Rk(u)

)
 and 

s
(
Rk(v)

)
 have different lengths and may contain duplicate 

elements. To solve this problem, so a distance calculation 
formula called DTW is used, defined as follows:

(2) Constructing the context graph: A multilayer weighted 
graph M is constructed based on the obtained node-pair dis-
tances, which is mainly intended to encode the structural 
similarity between nodes. The edge weight of two nodes in 
a certain layer k is defined as:

The same node belonging to different layers is connected 
by directed edges, and the edge weight is defined as:

(5)
fk(u, v) = fk−1(u, v) + g

(
s
(
Rk(u)

)
, s
(
Rk(v)

))
,

k ≥ 0 and ||Rk(u)
||, ||Rk(v)

|| > 0

(6)d(a, b) =
max (a,b)

min (a,b)
− 1

(7)wk(u, v) = e−fk(u,v), k = 0,… , k∗

Γk(u) is the number of edges related to node u , and its 
weight is greater than the average edge weight of the complete 
graph in layer k , and is defined as:

(3) Generating context for nodes: A biased random walk 
strategy is applied to all nodes in graph M as a way to generate 
the contextual representation of each node. At each sampling, 
if the decision is to wander to the current layer, and assuming 
that it is currently at layer k , the probability of going from 
node u to node v is:

Zk(u) is the normalization factor of node u in layer k , which 
is obtained by the following formula:

If it is decided to switch different layers, select k + 1 layer 
or k − 1 layer with the following probability:

(8)w
(
uk, uk+1

)
= log

(
Γk(u) + e

)
, k = 0,… , k∗ − 1

(9)w
(
uk, uk−1

)
= 1, k = 1,… , k∗

(10)Γ
k(u) =

1∑
v∈V

(w
k(u, v) > w

k
)

(11)Pk(u, v) =
e−fk (u,v)

Zk(u)

(12)Zk(u) =
∑

v∈V ,v≠u e
−fk(u,v)

(13)Pk

(
uk, uk+1

)
=

w(uk ,uk+1)
w(uk ,uk+1)+w(uk ,uk−1)

(14)Pk

(
uk, uk−1

)
= 1 − Pk

(
uk, uk+1

)

Fig. 6  The software network of poi, lucene and synapse
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(4) Learning a language model: Finally, using Skip-
Gram technique, the potential representation of each node 
is learned from the generated contextual representation.

3.4  Semantic Features Extraction

The source program is the main cause of software defects. 
Each source file program code can be parsed into a series of 
word sequence representations, and the word sequence rep-
resentations are converted into semantic features by CNN’s 
efficient feature extraction capability, the process of which 
is shown in Fig. 7.

(1) Iterate through each file in the source project, the code 
in each source file is parsed into AST [43] nodes by an open-
source Python package named javalang. According to the 
optimal approach [20], only three main node types [44, 45] 
are selected as word sequences for software modules. One is 
the node type of method invocation and class instance crea-
tion, adding their specific method names and class names to 
word sequences; one is the node type of declaration, such 
as method declaration, interface description, constructor 
declaration, etc., adding their values to word sequences; and 
one is the node type of control flow. For example, ForState-
ment, IfStatement, WhileStatement, etc. are added to word 
sequences, and some node types are shown in Table 1.

(2) Since the CNN model only receives numeric input, all 
words in word sequences need to be converted to numeric 
values. The solution is to encode words in a non-repeating 
manner starting with a value of 1 and increasing. During 
this process, make sure that a word can only correspond to 
one encoded value, and duplicate words refer to the previ-
ous encoded value. To distinguish between word encoding 
and label coding, we decided to encode labels with One-Hot 
encoding. As a result of the above steps, the source files are 
parsed into a series of numerical vectors.

(3) Besides, CNN requires input vectors to maintain a 
consistent length. Yet it is not possible to keep the same 

length because the code of each source file is different. To 
solve this problem, we first set the fixed length of the input 
vectors, and then if the length of the input vectors is greater 
than the set value, the redundant part will be discarded; 
otherwise, it is supplemented with 0. In short, the CNN 
model uses vectors as input and applies various layers such 
as embedding, convolutional, activation, pooling, and fully 
connected to extract semantic features.

4  Experimental Setup

In this section, a series of experiments are designed to evalu-
ate the effectiveness of our proposed hybrid defect prediction 
model.

4.1  Datasets

This paper uses experimental data from six selected open 
source software projects hosted by the Apache Foundation. 
The selection is based on criteria such as dataset stability and 
other relevant factors. Due to the software defect prediction 

Fig. 7  The semantic features extraction process

Table 1  Part of the node types

No. Node type No. Node type

1 PackageDeclaration 11 ForStatement
2 ClassDeclaration 12 ContinueStatement
3 InterfaceDeclaration 13 ReturnStatement
4 MethodInvocation 14 SwitchStatement
5 MemberReference 15 BlockStatement
6 ReferenceType 16 TryResource
7 MethodDeclaration 17 CatchClause
8 IfStatement 18 ForControl
9 WhileStatement 19 BasicType
10 DoStatement 20 FormalParameter
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based on version iteration in this article, each project has 
two successive versions, with the old version serving as the 
data source for model training and the new version serving as 
the data source for model testing. Table 2 provides detailed 
descriptions, versions, average file counts, and bug rates for 
the six projects.

First of all, the number of files in the project we selected 
varies from 210 to 892, and its purpose is to ensure the diver-
sity of data. Then, we also selected projects with different 
defect rates to test the performance of our model, with a mini-
mum of 15.5% and a maximum of 64.7%. The first column 
displays the names of six datasets, the second column gives a 
brief description of the projects, the third and fourth columns 
respectively describe the version of the projects and the aver-
age number of files, and the last column describes the percent-
age of defect instances.

In addition, this paper collects a dataset of 20 artificial sta-
tistical features and defect statistics for these six projects, with 
statistical feature data coming from the tera-PROMISE pro-
ject. The dataset contains metrics based on software size and 
software complexity, and these statistical metrics are shown 
in Table 3.

4.2  Evaluation Measures

F1 Score [46] is a metric that combines the precision and recall 
of a classifier and is more suitable for evaluating model perfor-
mance under imbalanced datasets than other metrics because it 
weighs well the classifier's performance on positive and nega-
tive classes. The precision P is calculated as follows:

Among them, truepositive represents the true number of 
cases, falsepositive represents the false positive number of 
cases, and falsenegative represents the false negative number 
of cases, and the recall R is calculated as follows:

The formula for calculating an F1 score is as follows:

(15)P =
truepositive

truepositive + falsepositive

(16)R =
truepositive

truepositive + falsenegative

For datasets with balanced data distribution, precision 
and recall can be good measures of model performance, 
but for classical data imbalance datasets such as software 
defect prediction, where the prior probability threshold for 
determining the category is not equal to 0.5, it is better to 
use the F1 score.

4.3  Baselines

To prove the superiority of the feature selection method 
based on counterfactual explanations, we compared it with 
the featureless selection method and the traditional optimal 
feature selection method—Wrapper method, where feature 
selection was performed on 20 artificial statistical features 
from the six open source projects mentioned in Sect. 4.1.

To prove that our feature selection method and structural 
features are conducive to improving model prediction per-
formance, the following six models are set up for the model 
comparison experiment, which are described as follows:

1. LR: Construct traditional defect prediction models based 
on 20 artificial statistical features and using logistic 
regression algorithms.

2. CNN: Use CNN to learn semantic features in the source 
programs of software projects, and build defect predic-

(17)F1 =
2 ∗ P ∗ R

P + R

Table 2  Software project 
related information

Project Description Versions Avg files Buggy rate (%)

poi Can read and write Office format files 2.5, 3.0 409 64.7
lucene Provides some basic indexing functions 2.0, 2.2 210 55.7
synapse Open source ESB project 1.1, 1.2 239 30.5
camel Provides many built-in components and APIs 1.4, 1.6 892 18.6
jedit A text editor for people who write code 4.0, 4.1 284 23.8
xerces XML parser 1.2, 1.3 441 15.5

Table 3  The statistical metrics

No. Abbreviation No. Abbreviation

1 WMC 11 CA
2 DIT 12 CE
3 NOC 13 IC
4 CBO 14 CBM
5 RFC 15 CAM
6 LCOM3 16 AMC
7 NPM 17 LCOM
8 DAM 18 LCOM3
9 MOA 19 Avg (CC)
10 MFA 20 MaX (CC)
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tion models without combining traditional artificial fea-
ture indicators.

3. DP-CNN: Based on semantic features, a new defect pre-
diction model is constructed by combining 20 traditional 
artificial feature indicators.

4. DPS-CNN: Based on the DP-CNN model, a feature 
selection method based on counterfactual explanations 
is used to optimize artificial statistical features.

5. DP-CNN-STR: Based on the DP-CNN model, combined 
with newly excavated structural features.

6. DPS-CNN-STR: Combining the above two methods 
based on the DP-CNN model.

4.4  Research Questions

In studying the construction of prediction models, the 
main concern is the performance of the model. This paper 
proposes a new prediction model called DPS-CNN-STR. 
Because this model is built on the DP-CNN model and addi-
tionally undergoes feature selection based on counterfactual 
explanations and combines the structural features mined by 
Struc2vec. Therefore, we have three questions:

• RQ1: Is the feature selection method based on counter-
factual explanations effective?

• RQ2: Can Struc2vec's excavated structural features effec-
tively improve the performance of defect prediction mod-
els?

• RQ3: Is the performance of the mixed defect prediction 
model DPS-CNN-STR superior to any other model?

4.5  Setup

In RQ1, we compare the feature selection method based on 
counterfactual explanations with the Wrapper method and 
the featureless selection method. The featureless selection 
method does not optimize the features and uses only logis-
tic regression algorithms as a prediction model. The feature 
selection method based on counterfactual explanations and 
the Wrapper method require a specific classifier as the car-
rier, and to ensure the comparability of the experiment, both 
above two methods also use logistic regression as a specific 
classifier. Specific ideas are as follows:

• The feature selection method based on counterfactual 
explanations (LRBOC): first, the old version of the arti-
ficial statistical feature table is input into the counterfac-
tual generation framework, and then each feature is given 
a corresponding importance score, which is returned in 
the form of a dictionary from top to bottom, e.g. { 'fea-
ture1': 0.542, 'feature2': 0.384,…, 'feature20': 0.112}. 

Then the features are combined one by one according to 
the scores of importance from the highest to the lowest. 
Suppose there are 20 features, then there are 20 feature 
subsets corresponding to the following form: [feature1], 
[feature1, feature2], …[feature1, feature2, …, feature20]. 
Then, the old version of the artificial statistical features 
(the feature subset described above) and their labels are 
used to construct the classifier, and finally the new ver-
sion of the artificial statistical features and their labels are 
used as the test set, and the corresponding optimal feature 
subset is selected by selecting the highest F1 score.

• The Wrapper method (WRAP): This paper selects the 
RFECV algorithm in the Wrapper method, as the RFECV 
method is generally consistent with the LRBOC. The 
RFECV method works by first using the REF (recursive 
feature elimination) method to derive an important rank-
ing for each feature. Then, based on this ranking, vari-
ous subsets of different numbers of features are selected 
for model training and cross-validation. Finally, the best 
performing feature subset is selected as the final feature 
set used in the model. There is a parameter named 'n_fea-
tures_to_select' in the RFECV method, which represents 
the number of features in the optimal feature subset. First, 
the number of features in the optimal feature subset of 
the old version is determined by the learning curve, and 
afterwards the specific optimal feature subset is deter-
mined by the feature score matrix. Suppose the number 
of features in the optimal feature subset is 8 and the form 
of the feature score matrix is [1,2,2,3,1,1,2,3,1,2,1,3,1,2
,2,3,1,3,2,1], we can select the 8 features corresponding 
to the value 1 as the optimal feature subset. Then, the 
best feature subset and labels of the old version are used 
to build the classifier, while the best feature subset and 
labels of the new version are used as the test set, and its 
F1 score is recorded.

• Featureless selection method (LR): Without using any 
feature selection method, all features and labels of the old 
version are used to build the classifier, while all features 
and labels of the new version are used as the test set and 
its F1 score is recorded.

The F1 scores obtained from the above three methods 
are compared, and the above comparison results are used to 
demonstrate the superiority of the feature selection method 
based on counterfactual explanations.

In RQ2-3, we mainly set up five sets of comparison 
experiments. More details will be given in the experimental 
analysis in Sect. 5.2.
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5  Experimental Results

In this section, we give experimental results to answer the 
three questions.

5.1  RQ1: Validity of Feature Selection

5.1.1  Comparative

As shown in Table 4, the performance of our proposed 
feature selection method LRBOC is much better than the 
WRAP feature selection method on six datasets.

Table 4 shows that the LRBOC F1 score is on average 
2.9% higher than WRAP, and the LRBOC F1 score is on 
average 5.1% higher than LR. However, WRAP is only 2.2% 
higher on average than LR. All the above data illustrate the 
effectiveness of the feature selection method based on coun-
terfactual explanations.

The advantages of the feature selection method proposed 
in this paper lie in the following two points:

1. Important features are frequently changed to generate 
counterfactual instances, resulting in higher scores. This 
provides objective evaluation indicators for determining 
feature importance scores and addresses the limitations 
of the Filter method.

2. In all generated counterfactual instances, learners can 
intuitively observe the difficulty of feature changes and 
determine the importance score based on the frequency 
of feature changes, solving the limitations of Wrapper 
method.

5.1.2  Extension

As described in Sect. 3.2, the feature selection method based 
on counterfactual explanations consists mainly of three 
steps. Here, we show the process of selecting the best subset 
of features for different projects, as shown in Fig. 8.

In Fig. 8, we can clearly see that when there are 20 fea-
tures, it is equivalent to no feature selection. In the poi 

project, when the number of artificial statistical features is 
7, the F1 score is the largest. These seven features are the 
top seven with the highest scores of feature importance, and 
they are the optimal subset of artificial statistical features 
for this project.

5.2  RQ2‑3: Validity of Structural Features

To answer RQ2 and RQ3, we designed five sets of compari-
son experiments, and the results are shown in Table 5.

From Table 5, it can be seen that the F1 value of the CNN 
model is on average 7.1% higher than that of the LR model, 
proving that automated feature mining methods are more 
conducive to the construction of defect prediction models 
compared to manual feature mining methods, and also veri-
fying the feasibility of deep learning in the field of software 
defect prediction. Then, by comparing the values in the third 
and second columns of the table, it was found that the F1 
value of the DP-CNN model is on average 2.2% higher than 
that of the CNN model, indicating the effectiveness of fea-
ture combination. In addition, the F1 value of the DPS-CNN 
model is on average 0.9% higher than that of the DP-CNN 
model, further verifying the effectiveness of the feature 
selection method based on counterfactual explanations.

To better answer RQ2, this paper designed a comparative 
experiment between the DP-CNN-STR model and the DP-
CNN model. It was found that the F1 average of the former 
was 2.6% higher than the latter, proving that the software 
structure features extracted by Struc2Vec are useful for the 
construction of defect prediction models.

It can be observed that the overall performance of DPS-
CNN-STR model is higher than that of DP-CNN-STR. How-
ever, the DPS-CNN-STR model is not as good as the DP-
CNN-STR model in two projects (lucene and jedit). After 
analysis, we believe that the reason for this phenomenon 
is that the DPS-CNN-STR model is composed of artificial 
statistical features, semantic features, and structural features. 
However, by comparing the F1 values of the CNN model 
with the LR model, we know that the influence of artifi-
cial statistical features on the model is far less than that of 
semantic features. In other words, features mined based on 
deep learning have a greater impact on the defect prediction 
model. Therefore, although the DPS-CNN-STR model has 
undergone artificial statistical feature optimization based on 
the DP-CNN-STR model, it cannot guarantee that the perfor-
mance of the DPS-CNN-STR model will definitely be better 
than the DP-CNN-STR model.

Finally, to answer RQ3, the average F1 score of DPS-
CNN-STR is 3.3% higher than that of DP-CNN, and the 
average F1 score of DPS-CNN-STR is also the highest of the 
six models. The above proves that both the feature selection 
method and the structural features proposed in this paper can 
promote the construction of the model.

Table 4  F1 scores of different feature selection methods

The bold number in each row of the table represents the largest value 
in the row, indicating the best effect

Project Version LR WRAP LRBOC

poi 2.5, 3.0 0.745 0.742 0.788
lucene 2.0, 2.2 0.603 0.605 0.609
synapse 1.1, 1.2 0.512 0.554 0.639
camel 1.4, 1.6 0.320 0.354 0.360
jedit 4.0, 4.1 0.578 0.610 0.626
xerces 1.2, 1.3 0.263 0.291 0.307
Avg 0.504 0.526 0.555
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Fig. 8  The process of selecting the best feature subset
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6  Threats to Validity

The main internal threats come from the construction of the 
experimental environment and the setting of parameters. Our 
experiments are based on the Python language environment. 
To reduce the uncontrollable factors during the implementa-
tion process, we have adopted sufficiently mature third-party 
libraries, such as calling various Python packages, to achieve 
the required requirements. In addition, we refer to the default 
values of the documentation as the parameters for defect 
prediction, and the parameter setting often directly affects 
the prediction performance.

For example, in the experiment of feature selection based 
on counterfactual explanations, there is a parameter called 
penalty term. In the process of machine learning, because 
we provide a lot of data for training, many dimensions will 
be generated during the training, some are decisive, oth-
ers are irrelevant. In other words, we hope to obtain more 
accurate results through a large amount of data training, but 
at the same time, the more judgment dimensions, the worse 
the generalization ability of our model. This requires us to 
control a balance, so we introduced the penalty term. In the 
experiment in Sect. 5.1.1, we choose its default value of 1. 
However, when the values of penalty terms are different, the 
results are often different, as shown in Table 6.

In addition, when constructing the DPS-CNN-STR 
model, different internal parameter settings will also lead to 
different prediction performance of the model. Therefore, 

it is necessary to select the appropriate parameters for the 
model, so as to make the prediction performance of the 
model better.

The main external threat stems from the universality of 
the project. We have only done our model on 6 projects, but 
these projects cannot summarize all types of software. In 
addition, we feel it necessary to explain why only 6 data-
sets were selected. Because the construction of our defect 
prediction model uses artificial statistical features, semantic 
features, and structural features, which means that not only 
the features that need to be manually mined, but also the 
corresponding source code needs to be provided. However, 
some source code files in some projects have syntax errors 
and are difficult to correct, so only 6 projects are selected as 
our final dataset after careful consideration.

7  Conclusion and Future Work

Researchers have developed various models for software 
defect prediction to reduce the losses due to defects. 
This paper present a new model called DPS-CNN-STR, 
which is built on the basis of the DP-CNN model. The 
improvements are mainly reflected in the following two 
aspects: first, we build a software network using the data 
flow existing between the modules and the new network 
characterization technique Struc2vec is used to extract the 
more important structural features, combining these new 
mined structural features on the DP-CNN model. Then, 
the feature importance score is determined through the 
generated counterfactual samples, and the importance 
score is used as heuristic search information to optimize 
the artificial statistical features in the model. Because the 
feature importance score of this method is interpretable, 
this method can produce a better feature subset than the 
traditional feature selection method. Finally, our experi-
ments on six public datasets show that our proposed model 
DPS-CNN-STR based on multi-feature fusion can provide 
a new idea for the construction of software defect predic-
tion models.

Table 5  F1 scores of six defect 
prediction models

The bold number in each row of the table represents the largest value in the row, indicating the best effect

Project LR CNN DP-CNN DPS-CNN DP-CNN-STR DPS-CNN-STR

poi 0.745 0.778 0.784 0.790 0.799 0.806
lucene 0.603 0.750 0.761 0.763 0.768 0.765
synapse 0.512 0.525 0.556 0.572 0.570 0.582
camel 0.320 0.503 0.508 0.500 0.548 0.560
jedit 0.578 0.598 0.600 0.610 0.627 0.620
xerces 0.263 0.298 0.374 0.400 0.426 0.448
Avg 0.504 0.575 0.597 0.606 0.623 0.630

Table 6  Results of LRBOC under different parameter settings

The bold number in each row of the table represents the largest value 
in the row, indicating the best effect

Project Version C = 0.01 C = 0.1 C = 1

poi 2.5, 3.0 0.770 0.758 0.788
lucene 2.0, 2.2 0.608 0.607 0.609
synapse 1.1, 1.2 0.601 0.635 0.639
camel 1.4, 1.6 0.363 0.360 0.360
jedit 4.0, 4.1 0.619 0.621 0.626
xerces 1.2, 1.3 0.339 0.309 0.307
Avg 0.550 0.548 0.555
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In the future, we will explore the potential of our DPS-
CNN-STR for defect prediction on more projects. In 
addition, we will explore how to combine features more 
effectively under the premise of given feature importance 
scores, and how to extract the structural features of soft-
ware network more effectively, in order to further improve 
the performance of defect prediction model.
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