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Abstract
These days, Internet coverage and technologies are growing rapidly, hence, it makes the network more complex and heteroge-
neous. Software defined network (SDN) revolutionized the network architecture and simplified the network by separating the 
control and data plane. On the other hand, machine learning (ML) and its derivations have made the systems more intelligent. 
Many pieces of research papers have addressed ML and SDN. In this survey, we collected the papers published in Springer, 
Elsevier, IEEE, and ACM and addressed SDN and ML between 2016 and 2023. The research papers are organized based 
on the solutions, evaluation parameters, and evaluation environments to help those working on SDN and ML for improving 
the target functional or non-functional parameters. The research papers will be analyzed to extract the solutions, evaluation 
parameters and environments. The extracted solutions, evaluation parameters and environments will be clustered in this 
review paper. The research gap and future research directions will be stated in this work. This survey is completely useful 
for those who working on SDN and want to improve the functional and non-functional parameters using machine learning.
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Abbreviations
SDN	� Software defined networks
ML	� Machine learning
DL	� Deep learning
AI	� Artificial intelligence
QOS	� Quality of service
SL	� Supervised learning
UL	� Unsupervised learning
RL	� Reinforcement learning
MBF	� Multiple bloom filters
LR-DDoS	� Low-rate distributed denial of service
IP	� Internet protocol
EFDT	� Extremely fast decision tree
DT	� Decision tree
DT-SVM	� Decision tree_support vector machine
SVM	� Support vector machine
DNS	� Domain name system

SSIM	� Structural similarity index measure
SDNFV	� Software-defined network function 

virtualization
AMLSDM	� Adaptive machine learning services attacks 

detection and mitigation
MLMR	� Machine learning based multipath routing
SRDO	� Smart ranking-based data offloading
GRU​	� Gated recursive unit
RNN	� Recurrent neural network
LSTM	� Long-short-term memory
DRL-SMS	� Deep reinforcement learning_SMS
MDP	� Markov decision process
DLCPP	� Deep learning-based content popularity 

prediction
CNN	� Convolutional neural network
ONOS	� Open network operating system
IED	� Intelligent electronic devices
DMLCA	� Deep machine learning in cyber space called 

cantina
CCO	� Control channel overhead
CUC​	� CPU usage of the controller
GRU​	� Gated regression units
MOO	� Multi-objective optimization
GAN	� Generative adversarial network
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IDS	� Intrusion detection systems
CIDS	� Common intrusion detection system
IID	� Independent identity distribution
ARIMA	� Automatic regression integrated moving 

average

1  Introduction

These days, Internet coverage and quality are growing rap-
idly; hence, the diversity and complexity of the network 
have caused the network architecture to be forced to change. 
Today's network needs to be programmable, agile and flex-
ible, such as a software defined network (SDN) which is an 
architecture [1]. The SDN architecture has made the net-
work more programmable and flexible by separating the data 
plane from the control plane. This architecture simplifies 
the network with a centralized controller. This architecture 
has three layers, including data, control and application lay-
ers. In addition, it has three APIs consisting of northbound, 
southbound and east–west APIs. The SDN architecture is 
shown in Fig. 1. Northbound API is used to connect the 
application layer and control layer. Southbound API is for 
connecting the data layer to the control layer. East–west API 
has been proposed to scale up the control layer and improve 

the scalability of SDN because it causes the controllers to be 
connected and make distributed controllers which are named 
the conceptual centralized controller against the physical 
centralized controller [1]. On the other hand, machine learn-
ing (ML) has given the ability of decision to the system 
which has made the computing system more intelligent. This 
capability can be used in SDN with various applications, 
especially in the control layer as the decision maker in SDN 
architecture [1]. ML has been used to improve network per-
formance, security, Quality of Service (QoS), and other non-
functional concepts in SDN. ML can be categorized into four 
general groups: (1) supervised learning, (2) unsupervised 
learning, (3) semi-supervised learning, and (4) reinforce-
ment learning [2][2].

In the wide range of research papers related to SDN, ML 
has been proposed to be used in SDN for different appli-
cations and improvement targets, so we review the recent 
research papers to extract the improvement targets and the 
solutions which have been proposed. The contributions of 
this paper are:

•	 Review the recent research papers between 2016 and 
2023 which are related to SDN and machine learning. 
Well-known journals, including Elsevier, Springer, IEEE, 
and ACM are the resource target of this paper.
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Fig. 1   Architectural planes of SDN [1]
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•	 The Software Defined Network (SDN) and Machine 
learning are the two key words which different form of 
these words and other derivations of these key words are 
used for this survey in the mentioned resources.

•	 The proposed approaches in recent research papers for 
SDN which are based on a wide range of machine learn-
ing techniques are extracted and categorized in this sur-
vey.

•	 The functional and non-functional improvement targets 
and the effective metrics are extracted in this survey 
according to the recent research papers published.

•	 The gap research topics can be used in future work for 
improvement in SDN using machine learning.

This survey is useful for those working on SDN to 
improve the non-functional parameters while using ML 
because this survey indicates the research gap and future 
direction related to SDN and ML.

The process of this survey has the steps: search, paper 
recognition, review, research refinement, selected papers 
and preparing the articles which are shown in Fig. 2.

In this paper, the published papers between 2016 and 
2023 are reviewed and ML techniques used in SDN archi-
tecture are extracted. The improvement targets that the 
research papers have placed at the center of attention, 
such as network performance, efficiency, intelligence and 
security are discussed in this paper. The proposed solu-
tions are examined and categorized from different aspects 
in this paper. Finally, we will discuss the challenges of 
ML usage in SDN and the direction of proposed solutions. 
In the following, Sect. 2 will address the review papers 
regarding ML in SDN. Section 3 will state the research 
papers and elaborate on their problem and solutions. Sec-
tion 4 will express the ML usage in SDN and illustrate the 
future direction and, the conclusion will be stated finally.

2 � Related works

The review papers which have addressed SDN and ML are 
considered for the related work. Five review papers related 
to SDN and ML have been found in this research. Xie et al. 
reviewed machine learning algorithms used in SDN in terms 
of quality of service (QOS)/quality of experience (QoE) pre-
diction, routing optimization and traffic classification using 
machine learning algorithms. The research papers pub-
lished in 1989–2017 have been investigated in [2]. Shirmarz 
et al. have investigated the issues and solutions proposed 
in the research papers for network performance improve-
ment in SDN between 2011 and 2019. They classified the 
research papers based on their applications: wide area net-
work (WAN), wireless network, and cloud computing/fog 
computing. They have searched IEEE, Springer, Elsevier, 
and ACM to find the research papers. One of the solutions 
extracted in their work is ML which is used for performance 
improvement in various applications [1]. R. Amin et al. have 
discussed one of the ways to optimize routing in SDN, so 
they addressed ML techniques divided into three categories 
supervised, unsupervised and reinforcement learning. The 
research papers published between 2005 and 2021 are con-
sidered in their survey [3]. Ebneyousef et al. have surveyed 
to extract fog load balancing algorithms, system architecture, 
tools and applications, and their advantages and disadvan-
tages among the articles published between 2018 and 2022 
in Springer, Elsevier, IEEE, and ACM [4]. Mohammadi 
et al. focused on network traffic engineering in SDN between 
2017 and 2022. The network traffic engineering in SDN has 
been done with different solutions and one of the most sig-
nificant research of them is ML [5]. Jiang et al. have worked 
on graph-based deep learning for communication networks 
and surveyed the approaches proposed for different types of 
communication networks e.g. wireless, wired, and software 
defined networks. They addressed the problems solved with 
graph-based deep learning [6]. The abstract of the reviewed 
articles is given in Table 1.

Fig. 2   Criteria for selection of research papers
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All the review papers which are close to ML and SDN are 
limited and they have addressed the network non-functional-
ities improvement they found machine learning a significant 
approach which is at the center of researchers’ attention. 
This review paper addresses the ML and SDN to narrow 
the research topic; therefore, the research papers which are 
related to these two key words are examined to extract the 
solutions, metrics and target improvements (functional and 
non-functional) concept in SDN architecture. In this review 
paper, the SDN and ML are the key words, which different 
forms and derivations of them are searched in the Springer, 
Elsevier, IEEE, and ACM, but the other found papers are 
considered as well to enrich this review paper. Furthermore, 
the research papers had been published in the years between 
2016 and 2023 are examined and the distribution od pub-
lished papers is shown in Fig. 3.

In the following section, the research papers are elaborate 
and categorized in various aspects.

3 � Machine Learning Usages in Software 
Defined Networking

In recent years, with the advancement of technology and 
the rapid growth of the Internet and mobile communica-
tion technologies, the infrastructure, devices and resources 
in network systems have become more advanced and com-
plex. To manage and organize and optimize and maintain 
network systems, a lot of information must be considered 
and used. However, it was difficult to use machine learning 
in traditionally closed networks, SDN revolutionized the 
network flexibility, agility and programmability and make 
the opportunities for the researchers to work on different 
aspects of the network using software-based solutions. ML 
is a significant approach which can be used in SDN architec-
ture to improve network functionalities and non-functional 
parameters such as performance, security, and others. Ml 
is a concept, that includes three main components: Model, 

Table1.   List of review articles

References Years which addressed Published Publisher Main Background
No Year

[1] 2011–2019 2020 Springer Performance issues and solutions in SDN-based data center: a survey
[2] 1989–2017 2018 IEEE A survey of machine learning techniques applied to software defined networking 

(SDN): research issues and challenges
[3] 2005–2021 2021 IEEE A survey on machine learning techniques for routing optimization in SDN
[4] 2018–2022 2023 Springer A taxonomy of load balancing algorithms and approaches in fog computing: a 

survey
[5] 2017–2022 2022 Springer Taxonomy of Traffic Engineering Mechanisms in Software-Defined Networks: A 

survey
[6] 2017–2021 2022 Elsevier Graph-based deep learning for communication networks: A survey

0

2

4

6

8

10

12

14

16

18

2016 2017 2018 2019 2020 2021 2022 2023

IEEE Elsevier springer Acm others Sensors

Distribution of reviewed papers

Fig. 3   Distribution of papers



316	 Human-Centric Intelligent Systems (2023) 3:312–343

1 3

Parameters, and Learning system. The model predicts or 
identifies, the parameters are the signals or factors used by 
the model to improve the prediction/classification perfor-
mance. The learning system is a system which is used to 
train, evaluate and test the model with training and test sets.

In [3], all the ML techniques have been examined which 
include three categories: reinforcement learning, unsuper-
vised learning, and supervised learning and are used to opti-
mize routing in SDN. The existing one has been specified.

In [7], in this article, the controller is programmed in such 
a way that it has an internal mechanism so that the traffic 
flows suspended in the buffer cannot be deleted and it no 
longer waits for the response of the application page.

In [8], the authors have worked on a proposed plan to 
improve security in today's networks. Based on SDN, a 
multi-target flow routing scheme is enabled for effective 
data delivery. They have compared the proposed model with 
other advanced models and have checked Weber on data sets 
such as CMU, KDD'99, and TIET, and the results show the 
better performance of this model.

In [9], the researchers have investigated the systematic 
performance using a software-based network simulator. They 
have simulated the network elements and conducted experi-
ments based on deep RL and traditional RL algorithms. The 
results show a reduction of about 60 It has shown a percent 
long-term control overhead and about 14% increase in table 
hits concerning flow table with a fixed size of 4 KB com-
pared to the Multiple Bloom Filters (MBF) method. They 
believe that their work is the first to use RL to manage flow 
inputs in SDN and this has not been done before.

In [10], the authors have worked on identifying ransom-
ware. They have proposed a method where ransomware can 
be detected by signatures of network traffic. They have com-
bined the high processing rate of new hardware-based stream 
generators with the high-performance and parallel RaftLib 
framework for ransomware classification and stream feature 
extraction.

In [11], the authors have investigated LR-DDoS attacks 
and proposes a flexible modular architecture to mitigate 
LR-DDoS attacks. This architecture has made it possible to 
detect and mitigate attacks in SDN settings.

In [3], the authors have worked to optimize routing in 
SDN using ML techniques based on reinforcement learning, 
unsupervised learning, and supervised learning.

In [12], the authors have examined complex network 
security and described methods of using machine learn-
ing with SDN to enable complex network security. These 
operations include honeypot rerouting, botnet detection, 
and anomaly detection. They are learning operations. SDN 
machines and control have been used for the distribution, 
scaling, and architecture of complex network systems and 
their existing solutions. Using a Mininet-based testbed, 

they have also investigated the supervised learning aspect 
of the overall system.

In [13], the authors have worked on the classification 
and detection of conflicting flows in SDN and have pre-
sented several machine learning algorithms. They have 
classified existing conflicts based on IP source address, 
action, protocol, and priority of flow rules. Four algo-
rithms have been used, which are very fast decision tree 
(EFDT), decision tree (DT), hybrid (DT-SVM), and sup-
port vector machine (SVM). Among them, EFDT and 
DT-SVM dual-algorithms were developed based on DT 
and SVM algorithms, respectively, to increase their per-
formance in terms of efficiency and effectiveness. In this 
article, in addition to the aforementioned works, they have 
designed two network topologies, which are called Fat 
Tree Topology and Simple Tree Topology.

In [14], the researchers have proposed and evaluated 
ML techniques to deal with DoS and DDoS attacks in 
SDN. These techniques are evaluated practically in a 
practical setting. They investigated the results by expos-
ing the SDN controller to DDoS attacks to make important 
decisions for security based on ML techniques for future 
communication networks.

In [15], a scheme has been proposed to prevent Domain 
Name System (DNS) amplification attacks in the context 
of SDN software-defined networks (the largest Distributed 
Denial of Service (DDoS) attack) to protect the permission 
blockchain nodes. The name of the proposed scheme is 
BrainChain which is a scalable and efficient plan.

In [16], a model called Deep-SDN has been proposed, 
which is a new deep-learning model for software-defined 
networks. This model can accurately identify a wide range 
of traffic applications in a short period. The performance 
of the proposed model has been compared with the latest 
technology in this field. The results of the investigations 
show that the proposed model has better results in terms 
of accuracy, recall, and F-score. With the proposed model, 
an overall accuracy of 96% can be achieved.

In [17], a technique called decision tree (DT) and support 
vector machine (SVM) have been used to identify malicious 
traffic, and it is one of the machine learning techniques. They 
have conducted experiments and the results show that the 
proposed technique has better accuracy and detection rate.

In [18], the authors have worked on predicting the quality 
of experience (QoE) in SDN networks based on complete 
reference parameters (SSIM, VQM) and application metrics 
(resolution, bit rate, frame rate).

In [19], a new container-based architecture with differ-
ent fog nodes has been proposed to solve the problem of 
resource allocation in geographically distributed heterogene-
ous fog networks. By using this architecture, it is possible to 
have deep learning Q-network-based resource allocation for 
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Solving the resource allocation problem that has different 
components.

In [20], an intelligent defense system has been proposed 
to implement the machine learning agent, which can process 
the current state of the network. This defense system takes a 
set of necessary actions in the form of network flows defined 
by The software.

In [21], machine learning algorithms trained on histori-
cal network attack data have been used to identify potential 
malicious connections and potential attack targets.

In [22], a combination of statistical techniques and 
machine learning has been used to detect high-volume and 
low-volume DDoS attacks.

In [23], a software-defined network function virtualiza-
tion (SDNFV) network for network augmentation has been 
suggested for security and network scalability improvement. 
In this research, stateful firewall services are placed as VNFs 
in the SDN network. A set of guidelines and rules are estab-
lished by the SDN controller to prevent dangerous network 
connectivity.

In [24], the authors have worked on the mitigation of 
attacks and proposed an attack detection and mitigation 
(AMLSDM) framework based on adaptive machine learn-
ing. To successfully identify and mitigate DDoS attacks 
with the support of an adaptive machine learning classifica-
tion model, the AMLSDM framework, which is a security 
mechanism that provides SDN capability for IoT devices.

In [25], the authors suggested an approach to identify and 
protect the open flow (OF) switch controller against DDoS 
attacks. An SDN framework is designed. Their proposed 
framework is to train a machine learning model based on 
the data taken to predict DDoS attacks.

In [26], the security of the SDN environment against 
DDOS attacks has been investigated, discussed and analyzed 
the schemes based on machine learning. They have exam-
ined the criteria such as strengths and weaknesses, perfor-
mance, and datasets. To evaluate the performance of a set 
of classification algorithms that are widely used to detect 
DDoS attacks, all of which are based on machine learning in 
an SDN environment, they used the 2019 CIC-DDoS dataset 
and challenges and have explored the future paths for the 
development of these projects.

In [27], a machine learning-based multipath routing 
(MLMR) framework considering the flow rule space con-
straints and quality of service (QoS) constraints have been 
proposed for software networks.

In [28], a new reputation-based blockchain called Pool-
Coin based on a distributed trust model for mining pools has 
been suggested. This trust model used by this blockchain is 
inspired by the labour market signalling model.

In [29], the authors examined, categorized, and compared 
various advanced plans for detecting and reducing anomalies 
in SDN. This article, by reviewing studies, showed that the 

most important external threats in SDNs are DoS attacks. 
that the collection of statistical data has been done by vari-
ous methods and the anomaly detection algorithm should be 
considered for it because the comparison and analysis of the 
reports show that the data collection is generally done using 
the native OpenFlow protocol in networks with traffic has 
been high, which leads to the saturation of the control level. 
As a result, special protocols are needed to collect data.

In [30], the SDIoT networks have been scrutinized and 
presented a new solution called Deep Place has to establish 
the flow rule to provide a detailed traffic analysis capability 
adaptively. Also, by doing this, flow table overflow can be 
avoided. and ensure the QoS implementation of the traffic 
flow. At the same time, they have formulated the optimiza-
tion problem based on the MDP framework to deal with the 
traffic dynamics of the Internet of Things and to achieve the 
control policy, they have developed an algorithm based on 
the gradient of the deep deterministic policy.

In [31], an entropy-based active learning model has been 
combined with the effective detection of intrusion patterns 
at the packet level. This model, which is developed as a load 
balancer, can track the attack in the network. Also, a load-
balancing algorithm Able to optimize sensor computations 
and resource requirements in automotive sensors has been 
presented.

In [32], the authors combined multi-class semi-super-
vised machine learning in SDN and deep packet detection 
and proposes an architecture based on it. Based on the pro-
posed architecture, the network can achieve fine adaptive 
QoS traffic engineering because the proposed architecture 
can classify into different QoS categories. The network can 
also maintain a dynamic flow database through deep packet 
detection techniques.

In [33], a smart ranking-based data removal (SRDO) 
algorithm has been proposed to select an RSU and improve 
service quality. SRDO is used to select RSU in the Q-Learn-
ing algorithm. Also, to solve the problem of RSU selection 
in an intelligent way to dump data, this algorithm is mod-
elled in the software-defined network controller.

In [34], deep learning algorithms are used to protect the 
controller by applying high-security measures, which are 
essential for continuous connectivity in the network and 
availability. In addition to this Gated Recursive Unit (GRU), 
recurrent neural network (RNN) and long-short-term mem-
ory (LSTM) have been proposed to prevent intrusion attacks 
and identify them. All the models in this paper have been 
evaluated using the In SDN dataset.

In [35], a switch migration strategy based on deep rein-
forcement learning (DRL-SMS) has been suggested to solve 
the problem of load imbalance in the multi-controller control 
plane. In this strategy, the set of migration actions and sys-
tem reward, modelling analysis for SDN for obtaining the 
state of the system is done based on the Markov decision 
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process (MDP). Using double deep Q-Network (DDQN), the 
approximate function fitting is obtained with the Q values 
of the switch migration actions and then optimized by the 
Q-parameters. DDQN training network is given using the 
experience replay mechanism. Also, after training, it calcu-
lates DRL in the current state of the system using a strategy 
based on Q-value, then selects the maximum Q-value to 
perform switch migration. Experiments in the environment 
Simulations show that the proposed strategy greatly reduces 
the balancing time and has a great effect on balancing the 
controller load.

In [36], machine learning (ML) has been utilized based 
UAV management framework in Software Defined Networks 
(SDN). In the proposed framework, the authentication and 
communication rules are compared to their application by 
the SDN controller of ML according to the radio frequency 
feature. The drone is specified and determined.

In [37], an unsupervised hybrid machine learning 
approach has been used for intrusion detection in SDNs 
based on automatic encryption. The experimental results 
show that the proposed module achieves high accuracy 
with the minimum number of currents selected. Also, the 
investigations on the performance of the controller with the 
established model show that for the throughput and delay 
that were tested, regarding the performance of the SDN con-
troller, even though there is minimal overhead, it has very 
high detection accuracy at the same time.

In [38], Deep Learning Based Content Popularity Predic-
tion (DLCPP) to obtain the popularity prediction has been 
used in this research. The proposed model to create a distrib-
uted deep learning network that can be reconfigured from the 
computing resources of switches and links in it uses SDN.

In [39], a routing module has been designed for software-
defined networks that are based on machine learning. The 
proposed module will be able to classify traffic matrices to 
provide real-time routing decisions by learning optimal rout-
ing solutions from historical traffic traces.

In [40], a machine learning framework called MER-SDN 
has been offered for the topic of traffic-aware energy-efficient 
routing in SDN. The three main stages of machine learning 
are feature extraction, training, and testing. All experiments 
have been performed using real-world network topology and 
dynamic traffic tracing from SNDlib on Mininet and POX 
controller. The results of the tests show that in the proposed 
approach, a 65% reduction in the feature size, and 70% accu-
racy has been achieved in the parameter prediction of an 
energy-efficient exploratory algorithm.

In [41], an architecture is proposed for the timely detec-
tion of threats and multi-vector attacks, which is based on 
hybrid DL and has Cuda capability. The proposed architec-
ture uses a convolutional neural network (CNN) and predic-
tive power of short-term memory (LSTM) threats and Detect 
multi-vector attacks.

In [42], an architectural model has been suggested to 
solve the problem of load balancing in SDN networks. The 
proposed model combines machine learning algorithms with 
segment routing to achieve better performance and network 
load balancing. The proposed architecture model facili-
tates the ability to predict the overload of network paths by 
improving QoS, and this is one of the main advantages of 
this model.

In [43], a hybrid machine was proposed to protect the 
controller against DDoS attacks. This hybrid machine is a 
learning model. Examining the results shows that the detec-
tion rate, warning rate, and accuracy in the hybrid machine 
model are less wrong compared to the simple machine learn-
ing models.

In [44], the authors have studied the automatic classifi-
cation of network data based on machine learning. In the 
study, several machine learning algorithms from the ONOS 
(Open Network Operating System) platform were used to 
automatically classify collected real network traffic data. 
Experiments have been conducted with simple network 
topology; the results show that machine learning algorithms 
can effectively classify network traffic data. Also, the results 
show that if they use machine algorithms blindly, they will 
show limited performance.

In [45], the authors have reviewed and analyzed the stud-
ies that have used unsupervised and supervised learning 
techniques. The methods of learning or semi-supervised 
learning that have been used to solve problems in SDN have 
been analyzed and categorized.

In [46], the authors investigated and evaluated the secu-
rity risks in a communication network of a smart network 
equipped with SDN and presents a framework. It specifi-
cally investigates DoS attacks on intelligent electronic 
devices (IED) and the IEC 61850 network and quantifies 
its risks. The proposed model is a security score model that 
considers the critical role of each IED device and evalu-
ates its impact on the overall network of the smart grid. By 
examining the model, they show how SDN frees the smart 
grid network from congestion and improves the scheduling 
performance of IEC 61850-type messages, and makes their 
time compatible.

In [47], the authors have discussed a new framework 
based on a software-defined network with the help of 
deep machine learning in cyberspace called CANTINA 
(DMLCA) for the prevention of phishing attacks. The pro-
posed approach is based on SVM (Support Vector Machine) 
to deal with the phishing attack problem. This approach is 
based on machine learning.

In [48], a highly scalable and efficient combination of 
DL SDN framework called IoMT for malware detection has 
been suggested. The proposed mechanism does not impose 
any additional constraints on IoT resource-limiting factors. 
The results show that the proposed mechanism performs 



319Human-Centric Intelligent Systems (2023) 3:312–343	

1 3

better to identify IoMT for subsequent reduction and pre-
vention. Also, this mechanism does not require much com-
putational complexity.

In [49], a monitoring approach for software-defined 
networks called IPro has been proposed. This approach is 
an architecture based on the knowledge-defined network 
paradigm and an IPro prototype, which is a reinforcement 
learning-based algorithm. This approach uses Reinforcement 
Learning to determine the exploration distance, which keeps 
the control channel overhead (CCO) and additional CPU 
usage of the controller (CUC) at a threshold.

In [50], the incremental strategy consideration in SDN, 
which is called hybrid strategy, has been proposed which 
is a technique called PrePass-Flow. It is based on machine 
learning to reduce the impact of network layer failure in 
hybrid SDN. This technique can predict link failures before 
they occur and proactively install ACL policies at calculated 
locations after recalculating their location.

In [51], the ways to achieve a guaranteed QoS for data 
flows have been examined and proposes an intelligent rout-
ing mechanism with a QoS guarantee called QI-RM in SDN. 
The proposed mechanism has been tested in the simulation 
environment and the results show that MACCA2-RF&RF 
can classify the data streams efficiently with 99.73% identi-
fication accuracy and QI-RM can guarantee the QoS require-
ments of the data stream before and after link congestion.

In [52], a recognition system based on machine learning 
has been introduced to improve the security of SDN-based 
Internet of Things architecture. This approach detects anom-
alies using the limited Boltzmann machine. By examining 
the evaluations and the results of the tests in the simulated 
environment, it shows that the accuracy rate is more than 
94%, which is very significant.

In [53], the DRL-R deep reinforcement learning-based 
routing has been proposed, which is a routing scheme with 
resource recombination mode, for the routing issue in SDN. 
The effectiveness of the proposed design has been investi-
gated in a wide simulation environment. The results show 
that DRL-R has higher throughput, lower flow completion 
time, better robustness, and better load balance compared 
to OSPF.

In [54], To prevent attacks in SDN, the researchers, in 
this article, introduce a defense system that is based on IP 
flow sources obtained from IP flow analysis and uses the 
deep learning method of gated regression units (GRU) to 
identify DDoS attacks and intrusions. This approach is a 
type of direct flow inspection that enables faster mitigation 
responses and greatly reduces and minimizes the impact of 
attacks on SDN.

In [55], the authors, by studying flow control issues, have 
proposed a priority-based model using SDN. In this model, 
the function is that the data packets through the network 

ensure the implementation of the bandwidth and the virtual 
circuits perform the reallocation work. The machine learning 
model monitors all system network behaviours in abnormal 
and normal traffic data transmission to identify abnormal 
intruders.

In [56], a new service migration scheme to support mobil-
ity has been suggested. In this article, in the MEC environ-
ment, the problem of multi-user service migration is studied, 
and based on the investigations, a scheme called DRLMSM 
is proposed based on DRL technology to optimize the aver-
age total cost.

In [57], a new approach called IoT-Train-Deep for smart 
software-defined networks has been introduced. In this arti-
cle, they have tried to embed network intelligence in the 
flow transmission architecture of software-defined networks 
through a deep Boltzmann machine and incremental tensor 
train decomposition model. The results of the evaluations 
based on the amount of delay, throughput, and storage space 
according to the variation in the number of traffic flows, 
request rate, table occupancy index, and the number of flow 
entries show that the proposed model has made significant 
improvements.

In [58], the routing in SDN using machine learning 
(ML) based techniques has been used and an approach that 
is based on ML and multi-objective optimization (MOO) 
techniques has been proposed. Also for this approach using 
an ML-based algorithm, the reliability of links is evalu-
ated in a software-enabled multi-hop (SDN) scenario for 
an IoT-fog environment. The evaluation results show that 
the Pareto-optimal set of App-1 communication through the 
chosen path completed its execution in 13% less time than 
communicating through the shortest path. App-2 had 41% 
less packet loss using the selected path compared to using 
the shortest path.

In [59], a hybrid complex neural network-short-term 
memory (CNN-LSTM) model was introduced to detect 
DDoS attacks in SDN-based networks. Performance evalu-
ations of this model based on customized data sets had very 
good and impressive results Performance criteria were above 
99%.

In [60], an adversarial testing tool for the robustness of 
supervised and unsupervised machine learning classifiers 
against adversarial attacks has been suggested. This test 
tool can create hostile attacks and disrupt various traffic 
characteristics. Now, considering a test platform that this 
article used the same supervised and unsupervised machine 
learning classifiers, this tool is tested. The results show that 
the detection performance of the proposed detection system 
decreases with the creation of hostile attacks.

In [61], a detection and defense system has been proposed 
that uses the Generative Adversarial Network (GAN) frame-
work and is based on Adversarial training in SDN to detect 
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DDoS attacks and applies adversarial training to make the 
system less sensitive to adversary attacks. This system uses 
IP flow analysis to continuously monitor the traffic using 
well-defined modules and enables the anomaly detection 
system to operate in near time.

In [62], the authors examine the security of drone com-
munications and preventing attacks on drone networks with 
the help of machine learning and software-defined networks. 
By examining the previous studies on the identification of 
two main types of attacks in the drone network, i.e.: penetra-
tion from the outside and use of the network from the inside, 
it has addressed the attacks from the outside and examined 
the strength of the Software Defined Network (SDN) archi-
tecture in facing it. Based on SDN flow counters, a traffic 
injection detection technique and corresponding counter-
measures have been proposed. In addition, a new machine 
learning solution based on random forest classification has 
been presented to deal with insider attacks that only rely on 
stream creation events.

In [63], a modular and flexible SDN-based architecture 
that uses multiple machine learning (ML) and deep learn-
ing (DL) models has been proposed to detect transport and 
application layer DDoS attacks. By examining various ML/
DL methods, they have investigated the methods so that they 
can find a more suitable method for detecting attacks. In this 
article, ML/DL models have been tested using two security 
data sets, which are: CICDoS2017 and CICDDoS2019 data 
sets and the results have shown 99% accuracy in invisible 
traffic classification. In addition, using the Mininet network 
simulator and SDN controller of the open network operat-
ing system (ONOS), they have implemented a simulation 
environment, which evaluation results show a detection rate 
of over 98% for transport DDoS attacks and up to 95% for 
DDoS attacks have been the application layer.

In [64], the security threats and intrusion detection sys-
tems (IDS) have been investigated and designed a common 
intrusion detection system (CIDS) for VANETs using deep 
learning with generative adversarial networks. Subscribers 
can only train a global intrusion detection model for the 
entire network without directly exchanging the intrusion 
detection model. With the evaluations, it was determined 
that the mentioned sub-network streams proved their CIDS 
accuracy in both IID (independent identity distribution) and 
non-ID conditions. This work was done through experimen-
tal evaluation and theoretical performance analysis on the 
real-world data set detailed experimental results showed 
that the proposed CIDS is efficient and effective in intru-
sion detection for VANET.

In [65], a framework called HuMOR has been proposed, 
which is a software-defined network (SDN) modular trans-
port management framework, to create and evaluate and 
verify QoS-preserving transmission algorithms. In addition, 

they have introduced ABRAHAM based on the capabilities 
of HuMOR, which is a machine learning-supported pro-
active and proactive forwarding algorithm that uses many 
metrics to predict future network conditions and improve 
AP load to ensure QoS is maintained. Also, ABRAHAM 
has been compared with alternative handover algorithms in 
IEEE 802.11, SDN, and handover algorithm, and the evalu-
ation results showed that it has improved performance by 
139%.

In [66], the two forecasting models for SDN controller 
load forecasting based on automatic regression integrated 
moving averages (ARIMA) and long-term short-term mem-
ory (LSTM) approaches have been used for this research. 
The two forecasting models have been compared in terms of 
accuracy and error in forecasting. Is. The evaluation results 
show that in long-term forecasts, the accuracy of the LSTM 
model is 55% better than ARIMA in terms of forecast errors. 
In addition, to select the components of the data plane for 
migration and where the migration should occur under delay 
constraints, formulating the problem as a non-linear binary 
program is proved to be NP-complete and a reinforcement 
learning algorithm is proposed for this. The proposed algo-
rithm was simulated and the results showed that the pro-
posed algorithm has a better performance than the recent 
benchmark algorithms from the literature and has worked 
close to optimal.

In [67], an approach for intelligent detection of DDoS 
attacks in SDN networks called Kulbak-Leibler has been 
proposed. The proposed approach to detect flow anomalies 
during the session works by comparing the average ses-
sion time with the access time to the server from specific 
IP addresses and the obtained values are recorded in the 
machine learning database. The increase in the duration of 
access to the service, which has been seven days here, is 
re-compared and the value of KL is again determined and 
written in the ML database. By analyzing service length 
and access prescription rules, the controller detects anom-
alies in flow admission requests with KL accumulation 
values in an ML. As a result, the SDN controller detects 
the IP domains that DDoS attacks from It starts there using 
machine learning to block.

In [68], authors have designed a DDoS attack detector 
for Software Defined Network (SDN) architecture to be 
deployed in the POX controller. According to the results 
obtained in the simulation environment, their proposed 
model has achieved an accuracy of about 99.4%. This level 
of accuracy is much higher and better compared to Deci-
sion Tree (DT), K-Nearest Neighbor (KNN), and Support 
Vector Machine (SVM) approaches.

In [69], the main goal of this article is to improve the 
performance of the entire SDN network and they have pro-
posed an algorithm that has been evaluated in the shortest 
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path simulation environment and greedy routing algo-
rithms by Java. The obtained results show that the algo-
rithm proposed in this article has improved performance 
and cost metrics including utilization, delay, jitter, packet 
loss ratio (PLR), blocking probability (BP) and link cost.

In [70], the authors have addressed the important and 
challenging issues of flow discrimination and optimal 
allocation of resources in providing network resources 
needed for each flow. In this paper, a model consisting 
of distinct network flow types and optimal allocation of 
resources based on flow classes is proposed. Applications 
are clustered into four groups according to their network 
resource requirements, and a deep network traffic analyzer 
is used for classification. In this model, the greedy algo-
rithm is also used for the optimal allocation of resources. 
have developed the proposed model in Mininet with Pox 
controller in parallel with maximum utilization to prove 
the improvement of Quality of Service (QoS). Compared 
to Spanning Tree Protocol (STP) and Dynamic Adaptive 
Multipath Routing (DAMR), the model presented in this 
paper performs better in allocating network resources 
based on flow requirements and maximizes network 
utilization.

In [71], authors have proposed a model to predict the 
optimal path to minimize the average delay between the 
source and destination nodes in SDN. The proposed model 
is implemented in the controller. The proposed model routed 
the flows based on the collected information in the control-
ler. It showed better behaviour compared with q-routing and 
shortest-path routing algorithms.

In [72], the authors proposed routing to optimize the 
throughput and utilization in optical network links while 
they improve the convergence time using deep reinforcement 
learning based-routing algorithm. They have worked on an 
optical transmission network (OTN) organized in software 
defined network (SDN) architecture.

In [73], the network digital twin (NDT) has been 
addressed and discussed. The authors indicated that machine 
learning (ML) is used in different components of NDT 
because it needs to discriminate, classify, and predicts accu-
rately and fast. The paper surveyed the technologies and the 
future trend in NDT and its applications in the real world. 
The research papers are summarized in Table 2 and organ-
ized to express key words, tools, application scope, case 
study and evaluation results.

In [74], the authors surveyed the digital twins (DT) and 
their applications in the real world to extract the challenges 
and future direction in the industries. The in-depth insight 

related to DT has been collected and deduced in the review 
research. The limitation, challenges and future trends have 
been discussed to pave the way for the researchers work-
ing on DT applications in the industries. It directed those 
intending to work on various aspects of DT to apply in the 
industries.

According to reviewed and analyzed research papers men-
tioned above, the ML roadmap in SDN is shown in Fig. 4.

3.1 � The ML‑based Solutions Categories in SDN

In accordance with the reviewed papers, it was deduced that 
each of the studies has worked on the improvement of one 
or more non-functional parameters. The papers’ improve-
ments are categorized based on non-functional improvement 
targets: reliability-aware, scalability-aware, performance-
aware, balancing-aware, and hybrid. Table 3 shows the 
non-functional targets which have been used as the goal of 
improvement.

3.2 � The Evaluation Parameters Used 
by the Research Papers

The proposed approaches in the research papers have been 
evaluated based on the metrics which are important for the 
researchers; thus, in this subsection, the papers are organized 
based on evaluation metrics and are shown in Table 4. The 
evaluation parameters extracted from the reviewed papers 
are performance optimization, security, platform provision-
ing, attack reduction, attack detection and load balancing 
metrics which have been used for the research solution 
evaluation.

3.3 � The Evaluation Environment Used 
by the Research Papers

ML has three key phases which are training, evaluation, 
and test phases. The training phase is done based on the 
training set. The supervised learning model needs to be 
trained based on the dataset that had been labelled. The 
unsupervised model does not need to be trained with the 
labelled dataset. The semi-supervised learning is based on 
the data set in which a part of it is labelled while the other 
part is not labelled. According to the reviewed papers, the 
datasets which have been used for model creation in the 
ML model usage in SDN are KDD 99, CMU, TIET [8], 
CIC-DDOS 2019 [27] [26], INSDN [34], CICDOS 2017 
[63]. The research papers’ models have been evaluated in 
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different environments extracted from the papers. These 
evaluation environments are real environment, prototype, 
simulation, algorithmic model, and hybrid model. There-
fore, the papers are categorized based on these evaluation 
environments in Table 5.

4 � Discussion and Future Direction

In this section, the reviewed papers will be discussed to 
extract the research gap and trend for those working on 
ML in SDN. The quantity analysis of the papers will result 
in the following outcomes for the solutions, evaluation 

M
L-

ba
se

d 
SD

N
Background Knowledge of SDN

Overview of Machine Learning 
Algorithms

Machine Learning in SDN

Challenges and Future Research Directions

Broader Perspectives

Architecture of SDN

Workflow of SDN

Data Plane

Supervised Learning

Unsupervised Learning

Semi-supervised Learning

Reinforcement Learning

Traffic Classification

Routing Optimization

QoS/QoE Prediction

Resource Management

Security

High-quality Training Datasets

Distributed Multi-controller Platform

Improving Network Security

Cross-Layer Network Optimization

Incrementally Deployed SDN

Software Defined Edge Computing

Software Defined Optical Networks

Software Defined Internet of Things

Software Defined Vehicular Networks

Software Defined Mobile Networks

Software Defined Wireless Sensor 

Software Defined Network Function 

Application of 
SDN

Control Plane

Fig. 4   Tree view of ML in SDN
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parameters and evaluation environment for the ML models 
proposed for usage in SDN architecture.

4.1 � Discussion

The research papers have utilized ML to improve the net-
work's non-functional parameters, so the proposed solutions 
need to be aware of the network situation to improve the 
ML model with feedback. These model awareness can be 
grouped into reliability, scalability, performance, and load-
balancing. There are some models which are trained based 
on multi-awareness which is called ‘hybrid’.

According to the number of research papers that 
addressed each of the solutions, the pie chart in Fig. 5 is 
presented.

As shown in Fig. 5, the reliability-aware solutions are 
paid more attention by the researchers working on ML in 
SDN with 46%. The second highest priority of the research-
ers belongs to performance-aware solutions with 25%. The 

Table 3   Solutions Clustering

Article Solution Category

Reliabil-
ity-aware

Scalabil-
ity-aware

Perfor-
mance-
aware

Load 
balancing-
aware

Hybrid

[7] ✓
[8] ✓ ✓
[9]
[10] ✓
[11] ✓
[3] ✓
[12] ✓
[13] ✓
[14] ✓
[15] ✓
[16] ✓
[17] ✓
[18] ✓
[19] ✓
[20] ✓
[21] ✓
[22] ✓
[23] ✓
[24] ✓
[25] ✓
[26] ✓
[27] ✓
[28] ✓
[29] ✓
[30] ✓
[31] ✓
[32] ✓
[33] ✓
[34] ✓
[26] ✓
[35] ✓
[36] ✓
[3] ✓
[37] ✓
[38] ✓
[39] ✓
[40] ✓
[41] ✓
[42] ✓
[16] ✓
[17] ✓
[43] ✓
[44] ✓
[45] ✓
[46] ✓
[47] ✓
[48] ✓

Table 3   (continued)

Article Solution Category

Reliabil-
ity-aware

Scalabil-
ity-aware

Perfor-
mance-
aware

Load 
balancing-
aware

Hybrid

[49] ✓
[50] ✓
[51] ✓
[52] ✓
[53] ✓
[54] ✓
[55] ✓
[56] ✓
[57] ✓
[58] ✓
[59] ✓
[60] ✓
[61] ✓
[62] ✓
[63] ✓
[64] ✓
[65] ✓
[66] ✓
[67] ✓
[68] ✓
[69] ✓
[70] ✓
[71] ✓
[72] ✓
[73] ✓
[74] ✓
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Table 4   research papers 
clustering based on Evaluation 
Parameters

Article Evaluation Parameters

Performance 
optimization

security Platform pro-
visioning

Attacks Load balancing

Attack 
reduction

Attack 
detection

[7] ✓
[8] ✓
[9] ✓
[10] ✓
[11] ✓ ✓
[3] ✓
[12] ✓
[13] ✓
[14] ✓
[15] ✓
[16] ✓
[17] ✓
[18] ✓
[19] ✓
[20] ✓
[21] ✓
[22] ✓
[23] ✓
[24] ✓ ✓
[25] ✓ ✓
[26] ✓
[27] ✓
[28] ✓
[29] ✓
[30] ✓
[31] ✓
[32] ✓
[33] ✓
[34] ✓
[26] ✓
[35] ✓
[36] ✓
[3] ✓
[37] ✓
[38] ✓
[39] ✓
[40] ✓
[41] ✓
[42] ✓
[16] ✓
[17] ✓
[43] ✓
[44] ✓
[45] ✓
[46] ✓
[47] ✓
[48] ✓
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hybrid, load-balancing, and scalability-based solutions with 
16%, 10% and 3% are the other priorities, respectively.

The evaluation parameters are the other aspects which 
have been examined in this paper. The Fig. 6 shows the 
percentage of research papers which have been evaluated 
in different ways: performance optimization, security, plat-
form provisioning, attack reduction, attack detection, and 
load-balancing.

According to Fig. 6, the highest percentage related to 
the performance optimization parameters was 29% and 
belongs to performance optimization. The second evalua-
tion parameters which have been used by the researchers are 
attack detection with 23%. Security, platform provisioning, 
load-balancing, and attack reduction are the next parameters 
which have been used for the evaluation of the proposed ML 
model for SDN.

Figure 7 shows the used environment in the research 
papers which can help those simulating or implementing 
their model for SDN research. The environments used for 
evaluation in each research paper are categorized into five 

sections: real environment, Algorithmic method, Simulation, 
Prototype, and hybrid environment.

Based on Fig. 7, the researchers have worked on ML in 
SDN in different environments. Most number of papers have 
worked with the algorithmic method which 30% of papers 
have used it. The second highest evaluation environment 
has been the hybrid environment with 20%. Also, 17% of 
studies were evaluated in SDN simulation environments like 
Mininet. 13% of the papers have utilized prototypes for the 
evaluation of the environment. The research papers which 
used the real environment are only 20%.

4.2 � Future Research Directions

According to the reviewed papers, the research papers have 
worked on SDN to improve the non-functionalities like net-
work performance, security, reliability and quality of ser-
vices. In this trend, the major models belong to supervised 
learning. The researchers intend to train their model based 
on the collected dataset. The researchers used the simulation 

Table 4   (continued) Article Evaluation Parameters

Performance 
optimization

security Platform pro-
visioning

Attacks Load balancing

Attack 
reduction

Attack 
detection

[49] ✓
[50] ✓
[51] ✓
[52] ✓
[53] ✓
[54] ✓
[55] ✓
[56] ✓
[57] ✓
[58] ✓
[59] ✓
[60] ✓
[61] ✓
[62] ✓
[63] ✓
[64] ✓
[65] ✓
[66] ✓
[67] ✓
[68] ✓
[69] ✓
[70] ✓
[71] ✓
[72] ✓
[73] ✓
[74] ✓
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to prove the performance and application of their proposed 
model. Most proposed models have been trained for reactive 
use cases. This trend refers to the deficiencies that exist in 
the feedback and response time. In the following, the future 
research direction will be discussed.

The research papers analysis shows that the researchers 
have worked on reliability to improve performance, secu-
rity, and attack detection. The researchers proposed the ML-
based model for online improvement in SDN. The proposed 
model needs to get feedback on the network status to opti-
mize the ML-based model. To monitor and check the status 
of the network for reliability, performance, and load balanc-
ing, the metrics like delay, throughput, jitter, blocking prob-
ability, and others have been collected with different sensors, 
but scalability is a problem in SDN because its assessment is 
difficult. The scalability assessment metrics can evaluate the 
software defined networks' scalability status is a challenging 

Table 5   Research papers clustering based on experiment environ-
ments

Article Experiment Environment

Hybrid model Algo-
rithmic 
model

Simulation Prototype Real 
environ-
ment

[7] ✓
[8] ✓
[9] ✓
[10] ✓ ✓
[11] ✓ ✓
[3] ✓
[12] ✓ ✓
[13] ✓
[14] ✓ ✓
[15] ✓ ✓
[16] ✓
[17] ✓ ✓
[18] ✓
[19] ✓ ✓
[20] ✓
[21] ✓
[22] ✓
[23] ✓
[24] ✓
[25] ✓
[26] ✓
[27] ✓
[28] ✓
[29] ✓
[30] ✓
[31] ✓
[32] ✓
[33] ✓
[34] ✓
[26] ✓
[35] ✓
[36] ✓
[3] ✓
[37] ✓
[38] ✓
[39] ✓
[40] ✓
[41] ✓
[42] ✓
[16] ✓
[17] ✓
[43] ✓
[44] ✓
[45] ✓
[46] ✓
[47] ✓

Table 5   (continued)

Article Experiment Environment

Hybrid model Algo-
rithmic 
model

Simulation Prototype Real 
environ-
ment

[48] ✓
[49] ✓
[50] ✓
[51] ✓
[52] ✓
[53] ✓
[54] ✓
[55] ✓
[56] ✓
[57] ✓
[58] ✓
[59] ✓
[60] ✓
[61] ✓
[62] ✓
[63] ✓
[64] ✓
[65] ✓
[66] ✓
[67] ✓
[68] ✓
[69] ✓
[70] ✓
[71] ✓
[72] ✓
[73] ✓
[74] ✓
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issue and gap which can be used by the researcher working 
on SDN and ML.

According to the research analysis, there are a few 
papers which have worked on the routing function, which 
is a fundamental one, using a graph neural network (GNN) 
approach to improve the other non-functional parameters 

such as QoS, security, etc. The routing function is central-
ized in the SDN, and it is not different, whether physical or 
conceptual centralized control plane. SDN programmability 
and network topology, which are based on graphs naturally, 
can motivate the researcher to use GNN for future research 
on SDN and ML. Most papers have used GNN for topology 

46%

3%
25%

10%

16%

Solution Category

Reliability- aware

Scalability-aware

Performance-aware

Load balancing-aware

Hybrid

Fig.5   The research papers solutions classification

29%

19%
13%

5%

23%

11%

Evaluation Metrics

Performance Op�miza�on

Security

Pla�orm Provisioning

A�ack reduc�on

A�ack Detec�on

Load Balancing

Fig.6   The research paper evaluation classification
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extraction and routing, therefore it can be used in the routing 
to improve or optimize other non-functional parameters not 
addressed so far, moreover, it can even be used for topology 
prediction in networks whose topology is changing such as 
vehicular ad-hoc networks (VANET), Mobile ad-hoc net-
works (MANET), etc.

The research papers' quantity and quality assessments 
indicate that most approaches are based on online reactions 
like attack detection, or identification while there is a gap for 
the research based on proactive models which are needed for 
the design purpose to prevent attack, failure, performance, 
and quality reduction. The proactive ML-based model is 
the other direction for future research. The other challenge 
which can be addressed is the online learning that is used 
in the reactive models to grow the model, it will be a big 
challenge because there is no short-term feedback for model 
performance improvement and the proactive model depends 
on the consequences of designs which take a long time. The 
online learning model in this proactive model causes another 
challenge which can be addressed in future research works.

The digital twin is a concept which needs nearly zero-
delay live traffic, which is a challenging issue. To guarantee 
the network resource allocation, network traffic extraction 
is required which is a current challenge and there are some 
pieces of research which addressed this on accuracy and 
delay. Although SDN has made the network programmable 
and flexible, its (physical and conceptual) centralized archi-
tecture can be a challenge because can increase the delay 
compared with traditional networks. These challenges next 

to the other digital twin requirements which should be pro-
vided with the network control layer in SDN are the future 
research direction. The digital twin application in SDN can 
be a hot topic in 6G with which researchers have been cur-
rently dealing.

Most papers have used simulation to evaluate their trained 
models, and it is required for the researcher to evaluate their 
proposed model in a real environment. In addition, online 
learning in a real environment can improve security gradu-
ally. The ML-based model for reactive security which is 
trained online is the other research gap which can be exam-
ined in future research works. The real environment is less 
paid attention to in the research papers we examined.

5 � Conclusion

Nowadays, the growth of Internet coverage and complex-
ity has caused the SDN to have emerged. SDN has made 
the network more programmable and flexible. On the other 
hand, machine learning is the other trend which has been 
making the systems more intelligent. Therefore, in this sur-
vey, we examined the research papers that addressed ML 
and SDN. The research papers published in Springer, Else-
vier, IEEE and ACM which have addressed different forms 
and derivations of ML and SDN between 2016 and 2023 
were considered. The research issues, solutions, evaluation 
parameters, and environments have been examined and the 
research papers clustered. According to the quantity and 

20%

30%
17%

13%

20%

Experiment Environment

Hybrid model

Algorithmic model

Simulation

Prototype

real Environment

Fig. 7   The research papers experiments’ environment classification
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quality assessments done in this paper, the research top-
ics were discussed and the future research directions have 
been stated in this review paper. In accordance with the 
reviewed papers analysis, most papers have addressed the 
reactive model to detect and identify using SDN, architec-
ture thus, the proactive model which is used by the designers 
to mitigate future issues is a prominent gap in the recent 
research papers related to ML and SDN. This proactive Ml-
based model can be used in SDN but online learning which 
improves itself by feedback is difficult because the response 
time in this type of ML-based model is long. Online learn-
ing can improve the model performance which is significant 
with using a real environment that has not been used in the 
reviewed papers. This survey is useful for those working 
on SDN and ML and can help them to move through the 
research direction related to ML and SDN.
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