
Vol.:(0123456789)

International Journal of Networked and Distributed Computing
https://doi.org/10.1007/s44227-024-00021-4

RESEARCH ARTICLE

Analysis and Performance Comparison of IoT Message Transfer
Protocols Applying in Real Photovoltaic System

Khoa Thi Minh Tran1 · Anh Xuan Pham1 · Nam Phuong Nguyen1 · Phuc Thi Dang1

Received: 2 August 2023 / Accepted: 17 January 2024
© The Author(s) 2024

Abstract
The adoption of reliable and real-time communication technology is an absolute necessity for the advancement of Internet of
Things (IoT) applications. Messaging protocols such as MQTT, AMQP, and HTTP are frequently used for communication
with resource-constrained IoT devices. However, choosing a suitable and effective messaging protocol presents a daunting
challenge for organizations, as it depends on the specific characteristics and messaging requirements of the IoT system.
Therefore, it is crucial to have a comprehensive understanding of three established messaging protocols, such as the Hypertext
Transfer Protocol (HTTP), the Message Queuing Telemetry Transport (MQTT), and the Advanced Message Queuing Protocol
(AMQP), to appropriately apply them in practical projects. In this paper, information technology solutions are provided for a
chain of solar farms to improve harvest productivity, facilitate warning notifications, and enable remote control. Subsequently,
a detailed comparative analysis is performed, considering various interconnected criteria, to gain valuable insight into
the strengths and limitations of these protocols. The results show that MQTT and AMQP play a role in enhancing overall
efficiency and speed within the framework of our suggested photovoltaic system.

Keywords IoT Message Transfer Protocols · IoT smart agriculture · Message Queuing Telemetry Transport · Advanced
Message Queuing Protocol · Hypertext Transfer Protocol

1 Introduction

Technological revolutions have a significant impact on
human development and constantly shape our lives in a
more progressive direction. With the growing popula-
tion and increasing demands, services and utilities evolve
accordingly. In particular, the integration of electronic,

information technology, and communication technologies
into our daily lives has been particularly transformative. In
the realm of the Internet of Things (IoT), the application
of these technologies, specifically messages-transfer proto-
cols between devices, extends beyond research purposes to
include entertainment, manufacturing, business, and more.
This ever-expanding scope of applications aims to meet the
diverse needs of various fields [1–6]. IoT encompasses a
range of messaging protocols designed to respond to differ-
ent factors, such as application deployment, communication
modes, suitability for specific applications, device charac-
teristics, security features, and message transmission over
the Internet. The IoT landscape, including devices, stand-
ards, technologies, and platforms, is constantly evolving and
progressing. Currently, the Internet of Things has gained
widespread familiarity and finds extensive applications in
various domains of human life, particularly in technologi-
cally advanced and developed countries. The communica-
tion technology between IoT devices has evolved, driven by
the practical implementation of various systems, resulting
in distinct advantages and improved service quality [7–9].
Consequently, constructing an effective IoT model requires

Anh Pham Xuan, Nam Nguyen Phuong, and Phuc Dang Thi have
contributed equally to this work.

 * Khoa Thi Minh Tran
 ttmkhoa@iuh.edu.vn

 Anh Xuan Pham
 phamxuananh.309@gmail.com

 Nam Phuong Nguyen
 nguyenphuongnam2698@gmail.com

 Phuc Thi Dang
 phucdt@iuh.edu.vn

1 Faculty of Information Technology, Industrial University
of Ho Chi Minh City, 12, Nguyen Van Bao Street, Ward 4,
Go Vap District, Ho Chi Minh City 7000, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s44227-024-00021-4&domain=pdf
http://orcid.org/0000-0002-2668-5998

 International Journal of Networked and Distributed Computing

a deep understanding of the characteristics and features of
different types of information communication. Selecting
the most appropriate protocols for specific cases or services
becomes crucial to optimizing IoT performance and achiev-
ing the desired results. The chosen approach emphasizes
the importance of understanding the intricacies and com-
plexities that underlie each data transport event within the
Internet of Things (IoT) ecosystem. By recognizing and ana-
lyzing the specific circumstances and activities that occur
behind these data transfers, it becomes possible to ensure
smooth and accurate operation of a universal Internet system
that manages multiple devices seamlessly. To achieve this,
a comprehensive examination of the communication proto-
cols, data formats, and network infrastructure involved in
IoT interactions is vital. Each data transport event may differ
in terms of data volume, frequency, latency requirements,
and security considerations. Properly addressing these fac-
tors can optimize the performance of the IoT system and
improve the user experience.

Within the IoT domain, numerous protocols have emerged
with diverse characteristics and specifications. Among
the popular IoT application layer protocols are message
queueing telemetry transport (MQTT) [10–12], Constrained
Application Protocol (CoAP) [13], Advanced Message
Queuing Protocol (AMQP) [13, 14], eXtensible Messaging
and Presence Protocol (XMPP) [15], simple text-oriented
messaging protocol (STOMP) [16], REpresentational State
Transfer (RESTful) HyperText Transfer Protocol (HTTP)
[13], Simple Object Access Protocol (SOAP), WebSocket
and JavaScript IoT. These protocols cater to different use
cases and communication requirements, offering a wide
range of choices for developers and organizations seeking
to deploy IoT solutions across various applications.
Many IoT applications have been proposed that use IoT
communication protocols. The authors in [17] proposed
an application of LoRa (Long-Range Access) to optimize
IoT using MQTT to monitor fish feeding. In the research
paper [18], an IoT solution is suggested, using the MQTT
protocol to transmit waveforms collected by seismic nodes.
The study also provides a performance comparison between
this proposed solution and the current standard used in
early earthquake warning systems. The two papers [19, 20]
work on evaluating the performance of IoT communication
protocols for the application layer, such as AMQP, CoAP,
MQTT and HTTP in the context of test scenarios or in the
real smart city system.

Clean energy and perpetual mining are close to replacing
the world’s future emission-generating energy sources.
However, the output generated is not competitive and
impressive enough for investment, so we need solutions to
maximize the use of natural energy sources. This project
proposes an energy supply system for a chain of farms that
uses solar energy. The system can take advantage of the full

absorption of sunlight during the day and use that energy to
operate at night. This paper focuses on an investigation of
three widely recognized message-transfer protocols within
the realm of IoT development. These protocols include
the Hypertext Transfer Protocol (HTTP), which is used in
conjunction with the Representational State Transfer (REST)
data structure, as well as the Message Queuing Telemetry
Transport (MQTT) and Advanced Message Queuing
Protocol (AMQP). In addition, we have put these protocols
into practical application in a real project aimed at finding
appropriate solutions to improve the absorption of a solar
farm chain. Through this implementation, we offer insightful
comments and summarize the experiences gained from
working with these protocols, providing valuable insights
for future IoT endeavors.

The remainder of the paper is organized as follows.
Section 2 provides an overview of studies that are commonly
associated with IoT communication protocols. Section 3
provides a general overview of the system architecture of
the recommendation protocols used for the photovoltaic
system. In more detail, this section describes the approach
to implementation, analysis, and evaluation of the proposed
system. Finally, Sect. 4 presents the conclusions and future
work of the project.

2 Literature Review

This section briefly summarizes the most prominent
characteristics of IoT messaging transfer protocols that
are commonly used to communicate among IoT devices
that have resource limitations; namely, HTTP, MQTT, and
AMQP.

2.1 REpresentational State Transfer (RESTful)
HyperText Transfer Protocol (HTTP)

HTTP is a hypertext transfer protocol. This protocol is used
to transmit information from Web Server to Web Client
in the Client-Server model for the Internet, World Wide
Web; HTTP belongs to the application layer of the TCP / IP
protocol suite. The main mechanism of operation of HTTP
is Request-Response: The Web Client sends the Request to
the Web Server, the Web Server processes, and sends the
Response to the Web Client.

REpresentational State Transfer (REST) is a type of data
structure transformation, which is an architectural type for
designing connected applications. It uses the HTTP protocol
to create communication between machines. So instead of
using a URL for processing some user information, REST
sends an HTTP request like GET, POST, DELETE, etc.
to a URL to process the data. Application Programming
Interface (API) is a set of rules and mechanisms by which

International Journal of Networked and Distributed Computing

an application or component will interact with another
application or component. The API can return the data you
need for your application in common data types such as
JSON or XML. REST API is a standard used in the design
of APIs for web applications to manage resources. RESTful
is one of the most commonly used API design types today
to let different applications (web, mobile, etc.) communicate
with each other. Focuses on system resources (text files,
images, audio, video, or dynamic data, etc.), including
resource states that are formatted and transmitted via HTTP.

2.2 Message Queuing Telemetry Transport (MQTT)

Message Queuing Telemetry Transport (MQTT) is a
publish/subscribe messaging protocol used for devices in
the Internet of Things with low bandwidth, high reliability
and the ability to be used in unstable networks. Because this
protocol uses low bandwidth in high-latency environments,
it is an ideal protocol for machine-to-machine (M2M)
applications [21].

The high-level architecture of MQTT consists of two
main parts: Broker and clients. In particular, the broker
is considered the center; it is the intersection point of all
incoming connections from the client. The main task of the
broker is to receive messages from the publisher, arrange the
messages in the queue, and then forward them to a specific
address. The broker’s secondary task is that it can take on
a few more features related to the communication process,
such as message security, message storage, logs, etc. The
client is divided into two groups: publisher and subscriber.
Clients are software components that work on edge devices,
so they are designed to be lightweight. The client only does
at least one of two things: publish messages on a specific
topic or subscribe to a certain topic to receive messages from
this topic [12]. The MQTT protocol was born in 1999 and
up to the present time, the MQTT version 3.5 is recognized
as OASIS standard.

In a system using MQTT protocol, many station nodes
(called MQTT clients - referred to as clients) connect to
an MQTT server (called broker). Each client will subscribe
to one or several channels (topic), such as "/ client1 /
channel1", "/ client1 / channel2". This sign-up process
is called "subscribe", just as we subscribe to a YouTube
channel. Each client will receive data when any other station
sends data and the registered channel. When a client sends

data to that channel, it is called a "publish" [22, 23]. There
are 3 QoS options when "publish" and "subscribe":

1. Broker/client will send data exactly once, and sending
process is confirmed by only TCP/IP (Fig. 1).

2. Broker/client will send data with at least one
confirmation from the other end, meaning that there may
be more than 1 confirmation received data (Fig. 2).

3. Broker/client makes sure that when sending data, the
receiver only receives them once; this process has to go
through 4 handshaking steps (Fig. 3).

Retain is a flag attached to a message of the MQTT
protocol. Retain only receives values 0 or 1 (corresponding
to 2 logical values false or true). If retained by 1, the
broker will save the last message from a topic with the
corresponding QoS level. When the client begins to
subscribe to the topic where the message is saved, the client
immediately receives the message.

MQTT Bridge is a feature of MQTT Broker that allows
MQTT Broker to connect and exchange data with each
other. To use this feature, we need a minimum of 2 Brokers,
in which any Broker will be configured to Bridge. When

Fig. 1 QoS 0 of MQTT protocol

Fig. 2 QoS 1 of MQTT protocol

Fig. 3 QoS 2 of MQTT protocol

 International Journal of Networked and Distributed Computing

configuring the MQTT bridge, we need to pay attention to
the following parameters:

– Address: broker address to connect
– Bridge protocol version: the version of the MQTT

protocol that is shared by two brokers.
– Topic: this section defines three parameters: topic name

is exchanged between two brokers, exchange direction
(1-way or 2-way), and topic mapping between two
brokers

MQTT is designed to be as light and flexible as possible.
Therefore, it has only one layer of security at the application
layer: authentication security (authenticating clients
that have access to the broker). However, MQTT can be
installed in combination with other security solutions, such
as combining with VPN at the network layer or SSL / TLS
at the transport layer. MQTT is designed to serve machine-
to-machine communication, but, in fact, it proves to be more
flexible than expected. It is completely applicable to other
communication scenarios such as machine-to-cloud, cloud-
to-machine, and app-to-app. As long as there is a suitable
broker and the MQTT client is properly installed, devices
built on different platforms can communicate with each
other easily.

2.3 Advanced Message Queuing Protocol (AMQP)

AMQP specifies the concept of a broker, a network service
that routes messages between parties communicating with
various levels of reliability. Create interoperability between
clients and brokers, with the purpose of allowing different
applications and systems to work together, regardless of their
internal design, standardize the delivery of messages on an
industrial scale [10, 13, 24–26].

AMQP defines how the network works and how the
message broker works:

– Routing and storing messages with message brokers and
rule sets to determine how components are involved.

– Connection protocol to show how the client and message
broker communicates as above.

Before AMQP, there were many types of message brokers
and signal transmission applications from many vendors.
However, their big problem is their lack of interoperability;
there is no simple way for all to work together. The only
way that different systems with different protocols work
is to use an additional layer of signal conversion called
a messaging bride. These systems must use adapters
to receive signals like normal clients, from many and
different signal systems.

In a simple system, a message broker represents inter-
mediaries for all types of services. Functioning as a "Post
Office", the Producer sends a "letter" to this post office. At
the end of the session, the consumer, who registered at the
post office, came to pick up this letter (Fig. 4).

Queue is a component defined in the Broker, operating
under the First In First Out (FIFO) rule. The message
placed in the first queue is first retrieved. Of course,
messages are not sent directly to Queue, spawning
Exchange to redirect messages to the specified rules. There
are some types of Exchange, such as: Direct Exchange,
Default Exchange, Topic Exchange, Fanout Exchange, and
Header Exchange.

– Direct Exchange: transmits messages based on the given
routing key, which exchanges data to queue with the
correct binding key for that routing key.

Default Exchange: is a pre-declared Direct Exchange form
without a name, usually an empty string. When using the
default exchange, the message is delivered to the queue,
with the main name being the routing key of the message.

– Topic Exchange: redirects the data to the queue based
on the "wildcard" that matches the routing key and the
routing pattern string specified when binding.

– Fanout Exchange: works by copying and directing
the received message to all the queues to which it is
associated and can use some routing key or routing
pattern similar to the way direct and topic exchange
works. Fanout exchanges can be useful when the same
message needs to be sent to one or more queues with
consumers who can handle the same message in different
ways.

– Header Exchange: navigate messages based on arguments
that include headers and their values. This type of
exchange is quite similar to the Topic exchange format,

Fig. 4 Simple operation of Broker AMQP

International Journal of Networked and Distributed Computing

but routes messages by the values of the headers instead
of the routing key. A message will match if the header
value is equal to the value specified when binding.

3 Implementation, Analysis and Evaluation

3.1 Implementation of a Photovoltaic System

In the foreseeable future, clean energy and perpetual
exploitation are poised to replace conventional emission
sources worldwide. Despite the promise of these renewable
resources, the generated output may not be competitive
or impressive enough for substantial investments. As a
result, it is imperative to design solutions that effectively
optimize the utilization of these resources. The project’s
primary objective is to develop a comprehensive system
that maximizes sunlight absorption throughout the day,
thereby significantly increasing harvest yields for solar
farms. Rather than relying solely on the current locations,
the focus is on creating a fully utilized and integrated
system. When data are obtained from a single unit, we
can extrapolate and navigate the entire network of units,
facilitating a more efficient and productive use of solar
energy.

The system functions by collecting data from light
sensors and transmitting it to another device for processing.
This allows the solar panel to automatically align with the
direction of sunlight. Additionally, the system integrates a
rain sensor to provide rain alerts, sending notifications to
users via email. Through an application installed on any
device, users can conveniently monitor the light intensity’s
status and even control the navigation, enabling them to
turn it on or off as needed.

Design description:

– On the panel surface, the four sensors must be at four
corners, spreading the device across the maximum area
to collect the lightest data from the directions, as shown
in Fig. 5. The energy collected by the solar panel above
is charged into a power supply, which will also power
the devices on the surface that send data. The excess
energy will also be the result of this project.

Figure 6 illustrates the system architecture used to eval-
uate the performance of the message protocols discussed
in this document. The entire system will have three main
components: The data collection and processing area on
the solar farm; Cloud systems and services; User device.

The energy farm equipment consists of two primary
components: The first part focuses on gathering optical
data, which is subsequently transmitted to Cloud services.
An Arduino Uno device receives data and communicates

with NodeMCU, relaying them to cloud services via
the MQTT protocol. The second part involves receiving
information from the two aforementioned brokers,
employing the MQTT protocol. It processes and controls
two navigation motors based on this information.
Additionally, it captures signals from a rain sensor and
utilizes them to generate API requests to Adafruit’s
system.

The cloud services will be used by three providers:
CloudAMQP, which offers both MQTT and AMQP
protocols, together with the API services of Adafruit IO
and Zapier. Using the MQTT Broker, only one unit is
required to collect light data and send it to a specific topic.
Other units can easily connect and receive the data for
processing. This simplifies project upgrades, maintenance,
and scalability. Additionally, by integrating with a remote
control application, we can monitor the current light
intensity status of all four sensors simultaneously. When
using the HTTP API protocol, data transmission occurs
sequentially through each system based on the installation
scenario. After sending rain data, the Adafruit IO service
calculates the requirements and triggers a working signal
to the email department through Zapier. Status information
is stored in the message queue within the AMQP broker.
This allows connected clients to receive data on their screens
and even remotely activate or shut down the system using a
mobile device.

User devices, which can be as simple as a phone or com-
puter with a control application installed, are connected to
the AMQP broker. This connection enables the user devices
to access the system’s operating status and even send control
signals as needed.

Fig. 5 Sensor design on the surface of solar panels

 International Journal of Networked and Distributed Computing

Table 1 lists all the devices and services that are used in
the project.

In addition, an email notification service was developed
that uses a Raspberry Pi3 device to collect data from a
rain sensor. The collected data are then transmitted to the
Adafruit IO cloud API service, which calculates and triggers
an event that prompts Zapier to send an email message to
the designated recipient. For transmitting optical sensor
data in JSON format, the MQTT protocol is utilized. The

NodeMCU device sends these data, which are received and
processed by the Raspberry Pi 3. Acting as a processing and
calculation unit, the Raspberry Pi coordinates the rotation
of the solar panel, optimizing its alignment with sunlight.
To take advantage of the message queue functionality of
the AMQP protocol, a queue is created to store the status
information of the pin plate navigation module. This
application structure allows for dynamic changes to this
status information, enabling the suspension or resumption
of the system’s operations as needed.

3.2 Evaluation of Applied Protocols

Over time, the HTTP API has a long history of continu-
ous development, offering various features that make it a
popular and widely used protocol. However, in recent years,
the MQTT protocol has gained rapidly credibility and has
proven to be highly applicable in many scenarios. Addi-
tionally, the AMQP protocol’s Broker model, along with
its Queue Message technique, ensures efficient and secure
data transfer for specific types of application. Consequently,
developers now have more suitable options for their ideas,
not limited to IoT projects alone.

Fig. 6 The overall design model of the smart solar absorption system

Table 1 Devices and Services of the project

Devices and services Number

Arduino Uno 1
Raspberry Pi 3 1
NodeMCU ESP8266 4
Light sensor 2
Servo motor 2
Rain sensor 1
MQTT service of CloudAMQP
AMQP service of CloudAMQP
HTTP service of adafruit io

International Journal of Networked and Distributed Computing

All three protocols mentioned above can be employed for
data transport applications, falling within the Application
layer of the TCP/IP model. They use the TCP protocol
to ensure accurate and reliable data transfer to the
intended recipients. Operating in a client–server model,
these protocols remain independent of the hardware
components, operating systems, programming languages,
and technologies used, offering versatility and ease of
implementation. The comparison among those applied
protocol are shown in Table 2.

3.2.1 Protocols Architecture

Figure 7 shows the operational architecture of the HTTP
protocol. In the HTTP protocol, tasks must be executed
sequentially, moving from one step to the next, and involve
interactions with various software services and server com-
munications. The operation revolves only around the request
and the response. Therefore, if any point in the structure is
interrupted or an error occurs, subsequent processes are not
executed, leading to potential delays and inefficiencies. The
HTTP protocol’s reliance on multiple layers at the applica-
tion layer contributes to a slower speed, as it requires travers-
ing through various layers to achieve the final result.

Figure 8 illustrates the operational architecture of the
MQTT and AMQP protocols. As indirect message trans-
porters, all systems only need to receive data from the
broker. This enables services to receive data from a single
source and then process tasks without the need to follow a
sequential model like the one used by the HTTP protocol.
By adopting this distributed model, the system’s operation
speed increases as devices simultaneously receive data from
a centralized source. This approach also improves system
performance, as each component is responsible for specific
functions. In case a service point fails or malfunctions, the
remaining components continue to operate normally, making

Table 2 Comparison among HTTPS, MQTT, and AMQP protocols

HTTPS MQTT AMQP

Abstraction Request/Reply Pub/Sub Pub/Sub
Architecture P2P Brokered P2P or Brokered
QoS Provided by TCP 3 3
Transport protocol TCP TCP TCP
Data Serialization No Undefined AMQP type

system or user
defined

Security SSL/TLS SSL TLS

Fig. 7 Operation architecture of
HTTP protocol

Fig. 8 Operation architecture of
MQTT and AMQP protocols

 International Journal of Networked and Distributed Computing

system maintenance more manageable. The decentralized
nature of the MQTT and AMQP protocols leads to better
efficiency, resilience, and fault tolerance in IoT applications.

3.2.2 Design Characteristics, Reliability
and Interoperability

Based on measurements performed in the 3 G network,
the MQTT protocol demonstrates significantly higher
throughput compared to HTTP, being approximately 93
times faster. This efficiency can be attributed to MQTT’s
lightweight design, where data are transmitted as a byte
array. The message header in MQTT comprises only 2
Bytes, while the message content can be as large as 256
Megabytes. Similarly, AMQP also provides a byte-by-byte
data transfer mechanism with an 8 Bytes header capacity,
whereas HTTP protocol is known for its support of very long
header and message content editing.

Regarding the trust attribute, the MQTT protocol
is ranked highest due to its reliable and efficient data
transmission capabilities. However, it has the lowest
interoperability compared to HTTP. MQTT is primarily
designed for Publish/Subscribe communication, which may
not cover all use cases in the diverse IoT field. On the other
hand, the HTTP protocol, especially when integrated with
RESTful technology, is well suited for strong interaction
on web services and is known for its ease of client–server
interaction.

Interoperability remains crucial for all types of IoT field
protocol. The limited scope of MQTT in communication
patterns and message formats may pose challenges in certain
IoT scenarios. On the contrary, the AMQP protocol utilizes
serialization techniques such as Protocol Buffers, Message
Packs, and JSON for data transmission design, providing
more flexibility to handle diverse data formats.

In summary, the MQTT protocol stands out for its speed
and trustworthiness, while the HTTP protocol excels in
interoperability and strong web service interaction. Each
protocol has its strengths and weaknesses, making it
essential for developers to choose the most suitable protocol
based on the specific requirements of their IoT projects.

3.2.3 Energy Consumption and Resource Requirements

The MQTT protocol is purposefully designed for efficient
bandwidth consumption and minimal utilization of device
resources, making it highly suitable for 8-bit controllers with
limited memory, typically around 100 Bytes. However, the
AMQP protocol requires a slightly higher level of resource
capacity due to the inclusion of additional activities aimed
at ensuring reliability and redundancy. In comparison,
the HTTP protocol requires a larger source of energy
and resources to perform the same actions as MQTT and

AMQP, making it less favorable for resource-constrained
IoT devices.

3.2.4 Bandwidth and Latency

Among the three protocols mentioned above, the HTTP
protocol exhibits the highest bandwidth usage and
latency, followed by the AMQP protocol and then the
MQTT protocol. Latency and bandwidth requirements are
significantly influenced by the use of the TCP protocol,
which unfortunately does not support improved latency.
During the initial stages of connection establishment, TCP
does not fully utilize the available network bandwidth, as it
adopts a cautious approach to avoid network congestion. As
a consequence, the TCP packet sender gradually increases
the congestion level and doubles the number of packets per
signal transfer round over time. This behavior can contribute
to higher latency and increased bandwidth usage when
using the HTTP and AMQP protocols, affecting overall
performance.

3.2.5 Used in IoT, M2M and Standardization

While the MQTT protocol enjoys widespread usage among
various organizations, it has not yet reached the status
of a global standard. On the other hand, HTTP is a well-
established global Web standard protocol, although its
suitability for the IoT industry is somewhat limited. MQTT,
being a machine-to-machine connection establishment
protocol, is widely supported by renowned organizations
such as IBM, Facebook, Cisco, RedHat, and Amazon Web
Service (AWS).

Additionally, AMQP stands out as one of the most
successful protocols in the IoT field, finding application
in major projects such as the Oceanographic Monitoring
Project in the mid-Atlantic mountains and NASA’s Nebula
Cloud Platform. In particular, AMQP is organized by the
Organization for the Advancement of Structured Information
Standards (OASIS) and is recognized as an international
standard (ISO/IEC 19464: 2014).

In summary, the use of the HTTP protocol in the IoT
domain is limited due to its heavy and slow performance.
MQTT is emerging as a promising and practical protocol
for IoT applications and is gaining traction among various
organizations. Meanwhile, the AMQP protocol stands
as a well-established and successful choice, being an
international standard for IoT deployments.

3.3 Analyze the Obtained Results

We utilized Wireshark software for packet capture and
analysis to study the behavior of each type of protocol.
Wireshark provides a powerful toolkit that enables us to

International Journal of Networked and Distributed Computing

examine packets exchanged between devices and servers in
real time. By capturing and inspecting these packets, we
gained valuable information on the communication patterns,
message structures, and efficiency of the HTTP, MQTT, and
AMQP protocols. Wireshark allowed us to visualize the
headers and contents of the packet, providing a detailed view
of the data transmission process for each protocol. Through
this analysis, we were able to identify the key factors that
influence the speed, bandwidth usage, and latency of the
protocols, allowing us to make comparisons and make
informed evaluations. Figures 9, 10, and 11 show the packet
analysis results of the three protocols HTTPS, MQTT,
and AMQP, respectively. These results were captured and
examined using Wireshark software.

Based on Fig. 9, the HTTPS protocol follows the follow-
ing steps during communication: - Three-way handshake
event. - Client greeting with TLSv1.3 security and acknowl-
edgment from the server. - The server sends greetings and
receives acknowledgment. - Confidential Information
Exchange. - Data Exchange. For the data sample provided,
the exchanged packets are encrypted, making it impossible
to view their content without decryption on the server. The
time taken to complete a request-response process is calcu-
lated as 3.033766 – 2.216408 = 0.817358 s. This duration
is slightly longer due to the addition of key-exchange steps

and an increase in packet size. However, the advantage is
that the security of the system is ensured.

When a client connects to the server using the MQTT
protocol, it must undergo the three-way handshake and user
authentication process. Once the client is authenticated, it
can start receiving signals from the MQTT Broker as soon
as a message is published. Referring to Fig. 10, the server
continuously sends messages to our machine at a frequency
of every half second. The delivery of a 94-bytes packet takes
only 0.039863 s, calculated as 0.584867 - 0.545004 s. This
high speed allows the system enough time to efficiently han-
dle tasks such as navigating the solar panels or manipulating
intensity information on the program display.

Based on the packet capture of the AMQP protocol’s
operation, shown in Fig. 11, we can calculate the operation
times as follows: - Complete connection setup, including
three-way handshake, Connection, Channel, Queue, and
Consume initiation. The duration is temporarily calculated
as: 4.741508 - 3.832052 = 0.909456 s. - Obtaining the
Basic.Get system status signal takes: 4.828093 - 4.742299
= 0.085794 s. - Publishing a data packet takes: 4.913548
- 4.828748 = 0.0848 s. - Compliment of message deliv-
ery during consumption with the Basic.Deliver package:
4.958620 - 4.916574 = 0.042046 s.

The package exchange times of the three protocols
include five phases from connection establish, authorization,

Fig. 9 Packets exchanged over HTTPS protocol

 International Journal of Networked and Distributed Computing

Fig. 10 Analyze the packet received by the client from the Broker MQTT

Fig. 11 Analyze Consumer packets from Broker AMQP

International Journal of Networked and Distributed Computing

configuration, sending data, and receiving response. In
Fig. 12, it becomes clear that the MQTT protocol exhibits a
faster speed than the other protocols during the connection
establishment and data transmission phases. However, the
AMQP protocol involves more data due to the requirement
of declaring numerous setup settings before sending and
receiving messages, making its communication more opti-
mized. For the HTTP protocol, each data request requires
sending a bulky header and requires authentication with
every request. Consequently, in terms of actual transport
speed, MQTT outperforms both AMQP and HTTP, with
AMQP trailing behind MQTT and HTTP in descending
order of speed.

The speed of operation of the three protocols is also influ-
enced by their respective message design characteristics.
Table 3 presents the Header and Body sizes of each proto-
col packet. It is evident that, while the data transfer may be
relatively small, the HTTP protocol includes a significant
portion of its packet size dedicated to the header, and the
packets sent from the server are also large due to adherence
to API rules. In contrast, the remaining two protocols adopt
a minimalist packet design, and message transport does not
generate additional data. This streamlined approach contrib-
utes to the overall efficiency and speed of the MQTT and
AMQP protocols.

4 Conclusions and Future Works

In summary, this paper has provided an overview and
evaluation of three widely used and well-known proto-
cols. HTTP, MQTT, and AMQP, followed by their practi-
cal application in real projects. The comparison between
these protocols revealed some similarities in characteris-
tics. To gain a complete understanding of their strengths
and weaknesses, a deeper analysis was conducted based
on specific criteria. By reevaluating their ranking for each
criterion, a direct and concise evaluation was achieved,
allowing a more informed selection decision for IoT pro-
jects and systems. The study has presented a comprehen-
sive comparative picture of these protocols in data trans-
port applications, supported by empirical evidence from
actual projects. However, it is essential to acknowledge
that these protocols are subject to rapid evolution and may
gain support in other fields, potentially leading to changes
in their features and functionalities in the future. Conse-
quently, there will be opportunities for further analysis,
evaluation, and realistic judgments about these protocols
in the ever-evolving IoT ecosystem. In conducting this

Table 3 Header and Body sizes of each protocol packet

Protocol Header of
sent msg

Body of
sent msg

Header of
received msg

Body of
recieved
msg

HTTP 337 25 1043 194
MQTT 2 41 2 41
AMQP 22 11 22 11

Fig. 12 Timeline of packet exchange

 International Journal of Networked and Distributed Computing

research, we have provided valuable information on the
strengths and limitations of HTTP, MQTT, and AMQP in
various IoT scenarios. As the IoT landscape continues to
evolve, researchers and developers will have the opportu-
nity to revisit and re-assess these protocols to ensure opti-
mal choices for their specific IoT systems and applications.

In our future endeavors, our goal is to evaluate other
metrics and adjust the settings of each protocol to suit
various network environments. Furthermore, it will be
beneficial to observe the behavior of these protocols under
higher performance conditions in specific IoT systems.

Author Contributions APN and NNP contributed to the design of the
system and the communication of data. KTTM and PDT wrote the
article and performed the final correction.

Funding The authors declare that no funds, grants, or other support
was received during the preparation of this manuscript.

Data Availability The experiment data used to support the findings
of this study are available on request from the corresponding author.

Code Availability Project code is available from the corresponding
author on request.

Declarations

Conflict of Interest The authors declare that there are no conflicts of
interest with respect to the publication of this paper.

 Ethical Approval This research work does not involve human and/or
animal subjects. Traffic signs are collected from street cameras. The
model is built on training data and has been tested through the test
data set.

 Consent to Participate All authors have agreed to participate to con-
tribute to the project.

 Consent for Publication All authors have read and agreed to the pub-
lished version of the manuscript.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Shah SH, Yaqoob I (2016) A survey: Internet of things (iot)
technologies, applications and challenges. In: 2016 IEEE Smart

Energy Grid Engineering (SEGE), pp 381–385. https:// doi. org/
10. 1109/ SEGE. 2016. 75895 56

 2. Balaji S, Nathani K, Santhakumar R (2019) Iot technology,
applications and challenges: a contemporary survey. Wirel
Pers Commun 108(1):363–388. https:// doi. org/ 10. 1007/
s11277- 019- 06407-w

 3. Li M, Gu W, Chen W, He Y, Wu Y, Zhang Y (2018) Smart home:
architecture, technologies and systems. Procedia Comput Sci
131:393–400. https:// doi. org/ 10. 1016/j. procs. 2018. 04. 219

 4. Khoa TTM, Minh NCA, Hau NT (2021) Internet of things ena-
bles real time smart home monitoring system. J Sci Technol
50(2):257–267

 5. Dhanvijay MM, Patil SC (2019) Internet of things: a survey of
enabling technologies in healthcare and its applications. Comput
Netw 153:113–131. https:// doi. org/ 10. 1016/j. comnet. 2019. 03. 006

 6. Senoo EEK, Akansah E, Mendonça I, Aritsugi M (2023) Monitor-
ing and control framework for iot, implemented for smart agricul-
ture. Sensors. https:// doi. org/ 10. 3390/ s2305 2714

 7. Gupta P, M IOP (2021) A survey of application layer protocols
for internet of things. In: 2021 International Conference on Com-
munication Information and Computing Technology (ICCICT),
pp 1–6. https:// doi. org/ 10. 1109/ ICCIC T50803. 2021. 95101 40

 8. Kraijak S, Tuwanut P (2015) A survey on iot architectures, pro-
tocols, applications, security, privacy, real-world implementa-
tion and future trends. In: 11th International Conference on
Wireless Communications, Networking and Mobile Computing
(WiCOM 2015), pp 1–6. https:// doi. org/ 10. 1049/ cp. 2015. 0714

 9. Moraes T, Nogueira B, Lira V, Tavares E (2019) Performance
comparison of iot communication protocols. IEEE Press, pp
3249–3254. https:// doi. org/ 10. 1109/ SMC. 2019. 89145 52

 10. Uy NQ, Nam VH (2019) A comparison of amqp and mqtt pro-
tocols for internet of things. In: 2019 6th NAFOSTED Confer-
ence on Information and Computer Science (NICS), pp 292–297.
https:// doi. org/ 10. 1109/ NICS4 8868. 2019. 90238 12

 11. Yassein MB, Shatnawi MQ, Aljwarneh S, Al-Hatmi R (2017)
Internet of things: Survey and open issues of mqtt protocol. In:
2017 International Conference on Engineering & MIS (ICEMIS),
pp 1–6. https:// doi. org/ 10. 1109/ ICEMIS. 2017. 82731 12

 12. Mansour M, Gamal A, Ahmed AI, Said LA, Elbaz A, Herencsar
N, Soltan A (2023) Internet of things: a comprehensive overview
on protocols, architectures, technologies, simulation tools, and
future directions. Energies. https:// doi. org/ 10. 3390/ en160 83465

 13. Yudidharma A, Nathaniel N, Gimli TN, Achmad S, Kurniawan A
(2023) A systematic literature review: messaging protocols and
electronic platforms used in the internet of things for the purpose
of building smart homes. Procedia Comput Sci 216:194–203.
https:// doi. org/ 10. 1016/j. procs. 2022. 12. 127

 14. Krishna CS, Sasikala T (2019) Healthcare monitoring system
based on iot using amqp protocol. In: Smys S, Bestak R, Chen
JI-Z, Kotuliak I (eds) International Conference on Computer Net-
works and Communication Technologies. Springer, Singapore. pp
305–319

 15. Wang H, Xiong D, Wang P, Liu Y (2017) A lightweight xmpp
publish/subscribe scheme for resource-constrained iot devices.
IEEE Access 5:16393–16405. https:// doi. org/ 10. 1109/ ACCESS.
2017. 27420 20

 16. Wang V, Salim F, Moskovits P (2013) Using messaging over Web-
Socket with STOMP. Apress, Berkeley, CA, pp 85–108. https://
doi. org/ 10. 1007/ 978-1- 4302- 4741-8_5

 17. Saputro AK, Anditya AR, Ulum M, Sukri H, Alfita R, Ibadillah
AF (2020) Application of lora (long range access) in optimizing
internet of things using mqtt (message queuing telemetry trans-
port) for fish feed monitoring. In: 2020 6th Information Technol-
ogy International Seminar (ITIS), pp 224–228. https:// doi. org/ 10.
1109/ ITIS5 0118. 2020. 93210 21

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SEGE.2016.7589556
https://doi.org/10.1109/SEGE.2016.7589556
https://doi.org/10.1007/s11277-019-06407-w
https://doi.org/10.1007/s11277-019-06407-w
https://doi.org/10.1016/j.procs.2018.04.219
https://doi.org/10.1016/j.comnet.2019.03.006
https://doi.org/10.3390/s23052714
https://doi.org/10.1109/ICCICT50803.2021.9510140
https://doi.org/10.1049/cp.2015.0714
https://doi.org/10.1109/SMC.2019.8914552
https://doi.org/10.1109/NICS48868.2019.9023812
https://doi.org/10.1109/ICEMIS.2017.8273112
https://doi.org/10.3390/en16083465
https://doi.org/10.1016/j.procs.2022.12.127
https://doi.org/10.1109/ACCESS.2017.2742020
https://doi.org/10.1109/ACCESS.2017.2742020
https://doi.org/10.1007/978-1-4302-4741-8_5
https://doi.org/10.1007/978-1-4302-4741-8_5
https://doi.org/10.1109/ITIS50118.2020.9321021
https://doi.org/10.1109/ITIS50118.2020.9321021

International Journal of Networked and Distributed Computing

 18. Pierleoni P, Concetti R, Marzorati S, Belli A, Palma L (2023)
Internet of things for earthquake early warning systems: a per-
formance comparison between communication protocols. IEEE
Access 11:43183–43194. https:// doi. org/ 10. 1109/ ACCESS. 2023.
32717 73

 19. Gemirter CB, Şenturca Çağatay, Baydere Şebnem (2021) A com-
parative evaluation of amqp, mqtt and http protocols using real-
time public smart city data. In: 2021 6th International Conference
on Computer Science and Engineering (UBMK), pp 542–547.
https:// doi. org/ 10. 1109/ UBMK5 2708. 2021. 95590 32

 20. Moraes T, Nogueira B, Lira V, Tavares E (2019) Performance
comparison of iot communication protocols. In: 2019 IEEE Inter-
national Conference on Systems, Man and Cybernetics (SMC), pp
3249–3254. https:// doi. org/ 10. 1109/ SMC. 2019. 89145 52

 21. Mishra B, Kertesz A (2020) The use of mqtt in m2m and iot sys-
tems: a survey. IEEE Access 8:201071–201086. https:// doi. org/
10. 1109/ ACCESS. 2020. 30358 49

 22. Dobbelaere P, Sheykh Esmaili K (2017) Kafka versus rabbitmq:
A comparative study of two industry reference publish/subscribe

implementations: industry paper, pp 227–238. https:// doi. org/ 10.
1145/ 30937 42. 30939 08

 23. Hunkeler U, Truong HL, Stanford-Clark A (2008) Mqtt-s – a pub-
lish/subscribe protocol for wireless sensor networks. In: 2008 3rd
International Conference on Communication Systems Software
and Middleware and Workshops (COMSWARE ’08), pp 791–798.
https:// doi. org/ 10. 1109/ COMSWA. 2008. 45545 19

 24. Naik N (2017) Choice of effective messaging protocols for iot
systems: Mqtt, coap, amqp and http. In: 2017 IEEE International
Systems Engineering Symposium (ISSE), pp 1–7. https:// doi. org/
10. 1109/ SysEng. 2017. 80882 51

 25. Fernandes JL, Lopes IC, Rodrigues JJPC, Ullah S (2013) Perfor-
mance evaluation of restful web services and amqp protocol. In:
2013 Fifth International Conference on Ubiquitous and Future
Networks (ICUFN), pp 810–815. https:// doi. org/ 10. 1109/ ICUFN.
2013. 66149 32

 26. Krishna C, Sasikala T (2019) Healthcare Monitoring System
Based on IoT Using AMQP Protocol. In: ICCNCT 2018:305–319.
https:// doi. org/ 10. 1007/ 978- 981- 10- 8681-6_ 29

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ACCESS.2023.3271773
https://doi.org/10.1109/ACCESS.2023.3271773
https://doi.org/10.1109/UBMK52708.2021.9559032
https://doi.org/10.1109/SMC.2019.8914552
https://doi.org/10.1109/ACCESS.2020.3035849
https://doi.org/10.1109/ACCESS.2020.3035849
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1109/COMSWA.2008.4554519
https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1109/ICUFN.2013.6614932
https://doi.org/10.1109/ICUFN.2013.6614932
https://doi.org/10.1007/978-981-10-8681-6_29

	Analysis and Performance Comparison of IoT Message Transfer Protocols Applying in Real Photovoltaic System
	Abstract
	1 Introduction
	2 Literature Review
	2.1 REpresentational State Transfer (RESTful) HyperText Transfer Protocol (HTTP)
	2.2 Message Queuing Telemetry Transport (MQTT)
	2.3 Advanced Message Queuing Protocol (AMQP)

	3 Implementation, Analysis and Evaluation
	3.1 Implementation of a Photovoltaic System
	3.2 Evaluation of Applied Protocols
	3.2.1 Protocols Architecture
	3.2.2 Design Characteristics, Reliability and Interoperability
	3.2.3 Energy Consumption and Resource Requirements
	3.2.4 Bandwidth and Latency
	3.2.5 Used in IoT, M2M and Standardization

	3.3 Analyze the Obtained Results

	4 Conclusions and Future Works
	References

