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Abstract
Rendering circles on digital platforms is essential in computer graphics. The widely adopted midpoint circle algorithm is 
a premier tool for this task. This article dives deep into the foundational aspects of this algorithm, highlighting its prowess 
in enabling accurate and effortless circle depiction on digital displays. It further contrasts its merits with alternative circle 
drawing techniques. Importantly, our research presents a refined technique aimed at minimizing inaccuracies inherent in 
the standard cartesian-based Midpoint Circle Drawing Algorithm (MPCDA). By incorporating an error-reduction strategy, 
we ensure greater accuracy in depicting circles. Comparative tests on diverse circle sizes and placements confirmed the 
efficacy of our enhanced method. When set against results from the traditional MPCDA, our approach showcases significant 
improvements.

Keywords Computer graphics · Circle drawing · MPCDA · Error-reduction algorithm

1 Introduction

In the realm of computer graphics, representing perfect cir-
cles on digital canvases is a challenge that's long been faced 
by developers and designers. The Midpoint Circle Drawing 
Algorithm elegantly addresses this challenge, acting as a 
cornerstone technique for circle generation on raster dis-
plays. The algorithm harnesses the inherent symmetry of cir-
cles, allowing for efficient and accurate rendering. Instead of 
calculating every individual pixel value for a circle, it com-
putes for just a segment and then extrapolates for the entire 
shape, thereby optimizing computational resources. This 
not only enhances the speed of rendering but also ensures 
precision, a critical aspect especially when graphics require 
exactness in representation. Whether it's in sophisticated 

graphic design software, video game renderings, or basic 
GUI elements in software applications, the ubiquity of this 
algorithm underscores its importance in the digital world. 
Its blend of mathematical simplicity with practical efficiency 
makes it a fundamental pillar in computer graphics.

In computer graphics, circle drawing stands as a founda-
tional technique. Most graphics software, when generating 
graphs and visuals, relies heavily on this geometric shape. 
Over time, various methodologies have emerged for raster-
izing circles on screens. Bresenham’s algorithm, introduced 
by Bresenham [1], remains the most notable circle creation 
technique, with its variations detailed in works by McIlroy 
[2] and Liu [3]. An advanced method, introduced by Wu 
and Rokne [4], offers scan conversion of lines and circles at 
twice the pixels per iteration, essentially quickening curve 
generation by increasing increment size. Their findings indi-
cate that their double-step algorithms work as efficiently as 
single-step ones but with half the iterations. Kuzmin [5] pro-
posed an incremental algorithm that, while producing results 
identical to Bresenham's, uses fewer arithmetic operations. 
Liu and Li [6] advocated for a double step circle drawing 
approach, relying solely on integer arithmetic, and demon-
strated its superior speed compared to existing methods. 
Aken [7] showcased a highly precise midpoint algorithm for 
drawing ellipses on raster displays, emphasizing its accuracy 
even when Bresenham’s extended algorithm falls short. In 

 * M. Javed Idrisi 
 javed@mtu.edu.et

 N. S. Nithya 
 nithya.ns@vit.ac.in

1 Department of Software Systems, School of Computer 
Science and Engineering, Vellore Institute of Technology, 
Vellore, Tamilnadu, India

2 Department of Mathematics, College of Natural 
and Computational Science, Mizan-Tepi University, Tepi, 
Ethiopia

http://crossmark.crossref.org/dialog/?doi=10.1007/s44227-023-00016-7&domain=pdf
http://orcid.org/0000-0003-1435-6780


 International Journal of Networked and Distributed Computing

1 3

a different vein, Kappel [8] combined previous techniques 
to formulate an optimized approach for drawing discrete 
ellipses. Similarly, Fellner et al. [9] have explored efficient 
algorithms for perfect ellipse approximations. Agathos et al. 
[10], inspired by Bresenham's methodology, introduced a 
fast method for rendering conic sections with alignment to 
coordinate axes. Their method was efficient, used a smaller 
integer range, and maintained accurate area transitions, even 
allowing for easy integration of antialiasing. Haiwen et al. 
[11], using a combined strategy, suggested swift techniques 
for ellipse drawing. Finally, according to Dimri et al. [12], 
the midpoint ellipse algorithm remains a preferred method 
for drawing ellipses, especially with techniques leveraging 
the reflection around the line x = y using the ellipse's para-
metric equation. In [13] proposed a method which efficiently 
detects concentric circles in grayscale images by combin-
ing the minimum envelopment circle and the least square 
ellipse fitting approach. Experimental results indicate supe-
rior detection performance compared to classical algorithms. 
In [14] proposed a circle detection algorithm that corrects 
elliptical distortions in optical CCD detection by employ-
ing ellipse de-falsification and various preprocessing tech-
niques, including the use of RANSAC for outlier removal. 
The efficacy of this approach is evident in the experimental 
results, which highlight a minimal detection error of about 
0.3%. In [15] presented two optimizations for the Dijkstra 
algorithm, focusing on urban express traffic: one enhances 
directional calculation to reduce computational load, and 
the other optimizes the graphical model by reducing node 
count. Comparative analysis validates the efficiency of 
their improved method, streamlining complexity and boost-
ing practical applicability. The study of [16] introduces an 
approach to detecting multiple ellipses in data, treating the 
problem through the lens of cluster analysis and envisioning 
each ellipse as a Mahalanobis circle. By utilizing modified 
k-means and DIRECT algorithms, the method efficiently 
identifies ellipses even when their quantity is undetermined, 
with a novel Geometrical Objects-index (GO-index) assist-
ing in selecting the optimal partition. Notably, while many 
existing algorithms falter with unclear or noisy ellipse 
edges, this method excels in such scenarios, as evidenced 
by numerous test examples.

In this study, we introduce a novel method to minimize 
errors in the prevailing MPCDA by employing diverse 'h' 
values to achieve optimal accuracy. The research article 
is structured into five distinct sections. Section 1 serves 
as the introduction and sheds light on the latest advance-
ments related to MPCDA. Section 2 delves deeper into the 
intricacies of the midpoint circle drawing algorithm. In 
Sect. 3, we illustrate the method by plotting a circle with 
an 8-unit radius using various 'h' values. The findings are 
thoroughly discussed in Sect.  4, while Sect.  5 offers a 

comprehensive conclusion. The final segment of the paper 
lists the references.

2  Enhancements in Circle Rendering: A Dive 
into the Improved Algorithm

In our refined algorithm, the x and y coordinates' progression 
is contingent upon increments or decrements of 'h' units. Our 
initial focus is on plotting points within the first octant. Lev-
eraging the inherent symmetry of circles, these points then 
guide the plotting in the subsequent octants. Specifically, for 
the first octant, plotting begins at the coordinate (0, r), where 
'r' denotes the circle's radius.

Taking a circle centered at the origin with a radius 
of 'r' units, its equation can be defined as x2 + y2 = r2. 
From this, we derive a function f(x, y) represented as f(x, 
y) = x2 + y2 − r2. The circle encompasses all points (x, y) that 
satisfy f(x, y) = 0, assuming x and y as real values. Points 
satisfying f(x, y) < 0 are found within the circle, whereas 
those fulfilling f(x, y) > 0 lie outside the circle's boundary. 
This delineation is visually presented in Fig. 1.

Any point in the first octant may be chosen as (xk, yk), 
and it is assumed that this point is moving clockwise in the 
xy-plane. In the first octant, the next point to (xk, yk) is there-
fore provided by (xk + h, yk) or (xk + h, yk – h), where h is the 
grid's width. So long as (xm, ym) represents the midpoint 
between (xk + h, yk) and (xk + h, yk – h), we have

Fig. 1  The first and second octant of a circle x2 + y2 = r2
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If Pk represents the value of f(x, y) at the mid-point (xm, 
ym), therefore,

Thus, Pk+1 will be given by,

where, xk+1 = xk + h and yk+1 = yk or yk – h. Thus, form 
Eq. (2), we have

On subtracting Eq. (1) from Eq. (3), and then simplifying, 
we get

2.1  Initial Decision Parameter

Let the initial point be (0, r), i.e., xk = 0 and yk = r, therefore 
from Eq. (1), we have

Thus,

If Pk ≥ 0, then yk+1 = yk – h and the next point will be (xk + h, 
yk – h), which gives

If Pk < 0, then yk+1 = yk and the next point will be (xk + h, 
yk), which gives

If we take h = 1, then the initial decision parameter from 
Eq. (5) is Pk = 1 − r and

gives the classical case of MPCDA.

(xm, ym) = (xk + h, yk − h∕2).

(1)Pk = f
(

xm, ym
)

=
(

xk + h
)2

+
(

yk−h∕2
)2
−r2.

(2)Pk+1 =
(

xk+1 + h
)2

+
(

yk+1−h∕2
)2
−r2

(3)Pk+1 =
(

xk + 2h
)2

+
(

yk+1−h∕2
)2
−r2.

(4)
Pk+1 = Pk + 2h(xk + h) + (y2

k+1
− y2

k
) − h(yk+1 − yk) + h2.

Pk = h2 + ( r − h∕2)2 − r2 =
5

4
h2 − hr ≈ h2 − hr.

(5)Pk = h(h−r).

(6)Pk+1 = Pk + 2h(xk − yk + h) + h2.

(7)Pk+1 = Pk + 2h(xk + h) + h2.

Pk+1 =

{

Pk + 2(xk − yk) + 3, Pk ≥ 0

Pk + 2xk + 3 , Pk < 0

3  Results

In this particular analysis, we are implementing the adjusted 
version of the midpoint circle drawing algorithm to graphi-
cally represent a circle, which is defined by a radius span-
ning 8 units. To simplify this task, we are focusing exclu-
sively on pinpointing and plotting the points located within 
the first octant, or one-eighth segment of the circle. For this 
purpose, our starting point is designated as (0, 8).

A noteworthy aspect of this endeavor is the variable 
'h'. We have chosen three distinct values for 'h' to examine 
how they influence the circle's representation. The chosen 
values are h = 1, h = 0.5, and h = 0.1. Detailed numerical 
breakdowns for each of these 'h' values are meticulously 
presented in three separate tables. Specifically, Table 1 
is dedicated to the results for h = 1, Table 2 focuses on 
h = 0.5, and Table 3 encapsulates the data for h = 0.1. To 
visually illustrate how the circle appears based on these 
varying 'h' values within the first octant, we have prepared 
diagrams. Figures 2, 3, and 4 provide graphical representa-
tions of the circle corresponding to the 'h' values of 1, 0.5, 
and 0.1, respectively.

Moreover, we have taken it a step further. Beyond just 
the first octant, we also visualize how the circle is depicted 
within the entire first quadrant (or one-fourth of the circle) 
for the aforementioned 'h' values. This broader view can 
be observed in Figs. 5, 6, and 7, which correspond to the 
'h' values of 1, 0.5, and 0.1, respectively.

Table 1  Points in the first octant 
for h = 1

xk yk Pk xk+1 yk+1

0 8 − 7 1 8
1 8 − 2 2 8
2 8 5 3 7
3 7 0 4 6
4 6 − 1 5 6

Table 2  Points in the first octant 
for h = 0.5

xk yk Pk xk+1 yk+1

0 8 − 3.75 0.5 8
0.5 8 − 2.5 1 8
1.0 8 − 0.75 1.5 8
1.5 8 1.5 2 7.5
2.0 7.5 − 3.25 2.5 7.5
2.5 7.5 0 3 7
3.0 7 − 3.25 3.5 7
3.5 7 1 4 6.5
4.0 6.5 − 0.75 4.5 6.5
4.5 6.5 4.5 5 6
5.0 6 4.25 5.5 5.5
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Table 3  Points in the first octant 
for h = 0.1

xk yk Pk xk+1 yk+1 xk yk Pk xk+1 yk+1

0 8 − 0.79 0.1 8 2.8 7.5 0.47 2.9 7.4
0.1 8 − 0.74 0.2 8 2.9 7.4 − 0.4 3.0 7.4
0.2 8 − 0.67 0.3 8 3.0 7.4 0.23 3.1 7.3
0.3 8 − 0.58 0.4 8 3.1 7.3 − 0.58 3.2 7.3
0.4 8 − 0.47 0.5 8 3.2 7.3 0.09 3.3 7.2
0.5 8 − 0.34 0.6 8 3.3 7.2 − 0.66 3.4 7.2
0.6 8 − 0.19 0.7 8 3.4 7.2 0.05 3.5 7.1
0.7 8 − 0.02 0.8 8 3.5 7.1 − 0.64 3.6 7.1
0.8 8 0.17 0.9 7.9 3.6 7.1 0.11 3.7 7
0.9 7.9 − 1.2 1.0 7.9 3.7 7 − 0.52 3.8 7
1.0 7.9 − 0.97 1.1 7.9 3.8 7 0.27 3.9 6.9
1.1 7.9 − 0.72 1.2 7.9 3.9 6.9 − 0.3 4.0 6.9
1.2 7.9 − 0.45 1.3 7.9 4.0 6.9 0.53 4.1 6.8
1.3 7.9 − 0.16 1.4 7.9 4.1 6.8 0.02 4.2 6.7
1.4 7.9 0.15 1.5 7.8 4.2 6.7 − 0.45 4.3 6.7
1.5 7.8 − 1.08 1.6 7.8 4.3 6.7 0.44 4.4 6.6
1.6 7.8 − 0.73 1.7 7.8 4.4 6.6 0.03 4.5 6.5
1.7 7.8 − 0.36 1.8 7.8 4.5 6.5 − 0.34 4.6 6.5
1.8 7.8 0.03 1.9 7.7 4.6 6.5 0.61 4.7 6.4
1.9 7.7 − 1.1 2.0 7.7 4.7 6.4 0.3 4.8 6.3
2.0 7.7 − 0.67 2.1 7.7 4.8 6.3 0.03 4.9 6.2
2.1 7.7 − 0.22 2.2 7.7 4.9 6.2 − 0.2 5.0 6.2
2.2 7.7 0.25 2.3 7.6 5.0 6.2 0.83 5.1 6.1
2.3 7.6 − 0.78 2.4 7.6 5.1 6.1 0.66 5.2 6
2.4 7.6 − 0.27 2.5 7.6 5.2 6 0.53 5.3 5.9
2.5 7.6 0.26 2.6 7.5 5.3 5.9 0.44 5.4 5.8
2.6 7.5 − 0.69 2.7 7.5 5.4 5.8 0.39 5.5 5.7
2.7 7.5 − 0.12 2.8 7.5 5.5 5.7 0.38 5.6 5.6

Fig. 2  Original curve versus curve for h = 1 in the first octant Fig. 3  Original curve versus curve for h = 0.5 in the first octant



International Journal of Networked and Distributed Computing 

1 3

In essence, this segment of the study provides both numeri-
cal and visual insights into how the modified midpoint circle 
drawing algorithm functions under different 'h' values, and the 
results they yield.

4  Discussion

In the research paper at hand, a novel methodology aimed 
at error minimization for the prevailing Midpoint Circle 
Drawing Algorithm (MPCDA) is introduced. One of the 
distinctive features of this approach is the incorporation of 
variable 'h' values. By fine-tuning these values, it becomes 
feasible to considerably lower the associated errors, push-
ing the limits of accuracy in circle rendering.

Fig. 4  Original curve versus curve for h = 0.1 in the first octant

Fig. 5  Original curve versus curve for h = 1 in the first quadrant

Fig. 6  Original curve versus curve for h = 0.5 in the first quadrant

Fig. 7  Original curve versus curve for h = 0.1 in the first quadrant
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Proceeding to Sect. 2, a deep dive into the intricacies of 
the midpoint circle drawing algorithm is undertaken. Here, 
readers are offered a detailed understanding of the algo-
rithm's core mechanics, functioning, and its foundational 
principles.

Section 3 transitions into a practical application of the 
discussed algorithm. In this segment, a circle, characterized 
by a radius measuring 8 units, is plotted. The unique aspect 
here is the deployment of diverse 'h' values during the plot-
ting process, showcasing the algorithm's adaptability and the 
influence of varying 'h' values on the outcome.

Subsequently, Sect. 4 delves into a thorough discussion 
of the results obtained from the previously demonstrated 
example. This section aims to shed light on the implications, 
significance, and potential applications of the findings, mak-
ing it crucial for those seeking actionable insights or future 
research directions.

5  Conclusion

In conclusion, the rendering of circles on digital plat-
forms holds undeniable importance in the realm of com-
puter graphics, and the widely embraced midpoint circle 
algorithm stands out as a premier tool for this fundamen-
tal task. Throughout this article, we have delved into the 
foundational aspects of the algorithm, shedding light on its 
remarkable capabilities in facilitating accurate and seam-
less circle depiction on digital displays. The significance of 
the midpoint circle algorithm becomes even more appar-
ent as we contrast its merits with alternative circle draw-
ing techniques. Its efficiency and effectiveness in achieving 
precision set it apart as a reliable choice for graphic ren-
dering. However, acknowledging the inherent inaccuracies 
in the standard cartesian-based Midpoint Circle Drawing 
Algorithm (MPCDA), our research has introduced a refined 
technique. The core focus of our enhancement lies in the 
integration of an error-reduction strategy, aimed at mini-
mizing inaccuracies that may arise during the rendering 
process. This nuanced approach ensures greater accuracy in 
depicting circles, addressing a key concern associated with 
the traditional MPCDA. The comparative tests conducted 
on diverse circle sizes and placements substantiate the effi-
cacy of our enhanced method. When pitted against results 
obtained using the traditional MPCDA, our approach not 
only demonstrates its prowess but also showcases signifi-
cant improvements. The refined technique not only preserves 
the strengths of the original algorithm but elevates its per-
formance, making it a compelling choice for digital circle 
rendering in computer graphics.

In essence, the research presented here contributes to the 
ongoing evolution of circle rendering techniques, provid-
ing a valuable refinement to a widely adopted algorithm. 

As digital displays continue to play an increasingly integral 
role in various fields, the pursuit of accuracy and efficiency 
in graphical representation becomes paramount, and our 
enhanced midpoint circle algorithm contributes significantly 
to this endeavor.
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