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Abstract
Edge computing aims at reducing computation and storage across the cloud and provides service with reduced latency. Edge 
devices can be mobile devices, routers, cameras, printers or any Internet of Things (IoT) devices that generate vast amounts 
of data. The processing of these data is done by virtual machines (VMs) present in the edge servers that are located within 
close proximity of the edge devices. This work proposes two models which predict resource contention at the edge servers, 
namely, a Dynamic Markov model for Resource Contention Prediction in Edge Cloud (DMRCP) and a Hybrid Cascade of 
Regression and Markov model for Resource Contention Prediction (CRMRCP). In DMRCP, a history matrix is updated based 
on the CPU utilization of a Virtual Machine (VM). This history matrix is used to update a transition probability matrix. This 
matrix is used to predict the future state of the VM. In the CRMRCP approach, the past CPU utilization values of the virtual 
machines in the edge servers are used for predicting a set of future CPU utilization values using linear regression, polynomial 
regression, lasso regression and ridge regression. Then, the predicted future CPU utilization values are used by the dynamic 
and the second-order Markov models to classify the state of the edge servers as overloaded, underloaded or normally loaded. 
In both the approaches, the VMs that may cause resource contention are predicted and are migrated to other edge servers 
such that the destination edge server does not get overloaded after the migration. The DMRCP method is compared with the 
first-order and the second-order Markov models and the number of VM migrations is analysed to evaluate the performance. 
The number of VM migrations in the CRMRCP method is compared with that in the second-order Markov model. The overall 
results prove that the number of VM migrations for the DMRCP is 52.9% less compared to the first-order Markov model 
and 21.1% less when compared to the second-order Markov model. The number of VM migrations in CRMRCP is reduced 
by 81.8% when ridge regression cascaded with the second-order Markov model is used.
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1 Introduction

In Edge computing, much of the data processing takes place 
at the edge of the network [6, 31, 36] thus, moving the com-
putation away from the remote cloud datacenters. Some 
of the edge devices are mobile devices, printers, sensors, 

desktops, tablets and IoT devices that can be used for dif-
ferent purposes. These devices generate huge amounts of 
data. Edge servers are located close to the edge devices and 
perform the computation, and only needed data is offloaded 
to the cloud. This results in a reduction in latency [27]. The 
resources needed to execute tasks in the edge servers can be 
physical resources like storage devices, CPU or any network 
device, or virtual resources like virtual machines (VM).

IoT workloads often undergo resource requirement 
changes, due to the occurrence of some events at the edge 
server which require additional resources to perform the 
desired computation. The edge servers have limited hard-
ware resources compared to cloud servers making resource 
contention a more prominent issue of concern. Therefore, 
each edge server can accommodate only a limited number 
of VMs, which makes the allocation of VMs in an edge 
computing environment a challenging approach.
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Since the edge architecture has a limited amount of 
resources, VMs from the overloaded edge servers can be 
migrated to other underloaded edge servers instead of allo-
cating new resources.

The migration of VMs between the adjacent edge serv-
ers must be minimal to maintain efficient computation and 
processing in the edge servers [32]. The edge computing 
environment is dynamic as most of the edge devices are 
mobile, thereby increasing the request for shared resources 
in the edge servers. These shared resources can be accessed 
without any conflict only by avoiding resource contention.

Early prediction of CPU utilization time needed by each 
virtual machine to perform the tasks, assists in early migra-
tion of the VMs that may contend in the future. Therefore, 
prediction of resource contention and allocation of VMs as 
per need lead to the execution of the tasks by maintaining 
the desired Quality of Service (QoS). Resource contention 
prediction also plays an important role in maintaining the 
performance of an application as stated in the Service Level 
Agreement (SLA).

In this work, we use an edge cloud architecture in which 
the execution of tasks is decentralized across the edge serv-
ers and offloading to the cloud is done only if needed. The 
edge cloud is extremely beneficial in online gaming plat-
forms and vehicular applications used by drivers on a mov-
ing car since huge amounts of data are generated by these 
applications. Data processing in the edge cloud architecture 
is quick, as many edge servers actively process the data in a 
decentralised fashion.

Hybrid models overcome the limitations of single models 
and improve the performance. Some models are good in pre-
dicting the needed resources for a smaller number of users 
who have static requirements for a fixed time but may not be 
capable of predicting resources when the number of users 
increases suddenly for a particular time. Some other models 
may predict resources accurately for a moderate amount of 
users with dynamic requirements. These conditions create a 
premise to complement the characteristics of different mod-
els and use one to overcome the weaknesses of the others.

The first approach in this paper proposes a Dynamic 
Markov model for Resource Contention Prediction in Edge 
Cloud (DMRCP). The VMs that cause resource contention 
at a particular edge server are migrated to other edge serv-
ers. The VMs are killed if the resource contention cannot 
be mitigated after performing migrations. VMs are entirely 
isolated and can have a different operating system from the 
host operating system, whereas containers are light weighted 
and use the host operating system. Since containers can also 
be included on a VM, we have considered VM migration as 
it includes containerisation as well.

A history matrix is updated based on the CPU utilization of 
a VM in the DMRCP approach. This history matrix is used to 
update a transition probability matrix. This matrix is used to 

predict the future state of the VM. The future states of the VMs 
are used to calculate the future state of the edge server in which 
the VMs reside. A zone state manager is maintained in the 
micro-datacenter that keeps track of the states of all the edge 
servers. A contention manager obtains the information from 
the zone state manager which gives the list of underloaded 
edge servers available for receiving the migrated VMs. The 
contention manager migrates the VMs that will cause over-
loading to other edge servers that are underloaded.

The second approach is the Hybrid Cascade of Regression 
and Markov model for Resource Contention Prediction (CRM-
RCP). The past CPU utilization values of the virtual machines 
in the edge servers are used for predicting a set of future CPU 
utilization values using linear regression, polynomial regres-
sion, lasso regression, ridge regression and Support Vector 
Regression (SVR). The predicted future CPU utilization val-
ues are used by the second-order Markov model to classify 
the state of the edge servers as overloaded, underloaded or 
normally loaded. The VMs which are down are not considered 
as they are in a suspended state which has no accountability 
in predicting the contention due to overloading. The virtual 
machines (VMs) in the edge servers that cause overloading are 
migrated to other edge servers within the same edge network. 
Thus, resource contention is mitigated even before it occurs, 
as the virtual machines are migrated immediately after predic-
tion. We have performed our experiments in EdgeCloudSim, a 
simulator that simulates edge computing architectures.

The work in this research paper addresses the following:

• Prediction of future CPU utilization of VMs using 
dynamic Markov model, cascade of regression and sec-
ond-order Markov model, and then categorising the VMs 
as overloaded, underloaded, and normally loaded.

• Migration of VMs to normally loaded or underloaded 
edge servers, thereby mitigating CPU resource conten-
tion before it occurs.

• Compare the number of VM migrations for the proposed 
solutions namely DMRCP and CRMRCP.

The rest of the paper proceeds as follows. Section 2 gives the 
related work in this area, Sect. 3 describes the system archi-
tecture, Sects. 4 and 5 explain the proposed models, Sect. 6 
gives the algorithm for prediction of future state of edge 
servers, Sect. 7.1 gives the experimental setup, Sect. 7.2 
discusses the results and Sect. 8 concludes the work done.

2  Related Work

This section discusses some of the challenges in edge com-
puting and the techniques that exist for the allocation of 
resources across the edge. Some of the existing methods 
for resource prediction are also addressed in this section. 
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There are many challenges in the deployment of edge 
devices as the number of IoT networks increases rapidly. 
The number of edge servers to be deployed with storage 
and computation functionality is decided by considering 
the traffic and wireless diversity [38]. The major chal-
lenges in edge computing are management of resources, 
identifying the origination of data, and deciding when to 
offload to the cloud [5]. Constrained computation capacity 
and storage, use of battery power and mobility of devices 
resulted in various challenges like battery life preserva-
tion, offloading considerations, bandwidth allocation and 
energy management [27].

2.1  Computational Offloading Methods in Edge

Researchers have proposed techniques for computational off-
loading in edge computing using game theory [26]. A game-
theoretic approach for computation offloading strategy for 
non-cooperative users in mobile edge computing has been 
proposed by You et al. [35]. Reinforcement learning has 
been used for offloading the computation data of the users 
whose priorities (based on the user’s channel gains and local 
computing energy consumption) exceeded a given threshold 
[35]. A delay-aware task graph partition technique [8] and 
optimal virtual machine selection method has been proposed 
for offloading the tasks in IoT devices by maintaining the 
desired QoS. A game-theoretical model [15] has been pro-
posed for offloading of data in a mobile edge computing 
environment, where the operator managed both wireless and 
computation resources.

The resource allocation and computation offloading 
problem has been considered as an optimization problem 
to maximize system utility [12]. Gaming models [14, 26] 
have also been used for resource management in the edge. 
The work proposed in [10] explained an offloading strategy 
by considering multiple parameters like radio resources, 
computational complexity along with data security using 
Advanced Encryption Standard (AES) algorithm. Optimi-
zation of offloading time using Markov Decision Process 
in Mobile-Edge Computing was proposed by [34] and [2].

2.2  Resource Allocation in Edge Using Machine 
Learning Algorithms

The revival of Artificial Intelligence (AI) has led to learn-
ing at the edge by taking into account data importance in 
resource allocation [39]. AI techniques such as reinforce-
ment learning [17], deep reinforcement learning, clustering 
[18] and federated learning have also been used to optimize 
the resource allocation process [25, 33].

2.3  Energy‑Based Resource Allocation

A survey of energy-aware edge computing, including the 
existing work on computation offloading frameworks and 
the strategies in edge computing has been discussed [13]. 
Successive Convex Approximation Algorithm (SCA) has 
been proposed for energy efficient resource allocation, 
which minimized power consumption by offloading across 
all users considering latency and power constraints [1]. 
An energy-efficient algorithm has been proposed for the 
reduction in operation costs by optimal use of energy in 
edge devices [3]. An energy-efficient computation offload-
ing scheme through type classification and priority assign-
ment for mobile devices has also been proposed [37].

2.4  Resource Prediction Techniques in Edge 
Computing

Dimitrios et  al. proposed techniques for deployment, 
orchestration and management of location based services 
in the edge [29]. VM allocation in mobile edge comput-
ing was done based on the mobility of users, computation 
resources and communication resources [24].

The works done earlier have not focussed on resource 
contention prediction in the edge computing architecture. 
In our work, we propose a dynamic Markov model based 
algorithm to predict the future CPU utilization of VMs, 
and the VMs predicted to cause resource contention, are 
migrated thereby avoiding resource contention.

2.5  Regression Models used for Resource Prediction

Linear regression has been used for prediction of future 
CPU utilization [11, 19]. The lasso and ridge regression 
[28] have been used for multi-dimensional resource alloca-
tion for an auction-based application in a cloud comput-
ing environment. It has been found that the Root Mean 
Squared Error (RMSE) of the lasso and ridge regression 
was less when compared to linear regression. The CPU 
and storage were better utilized when lasso and ridge 
regression were used in resource allocation [28].

Some works have classified the hosts as overloaded and 
underloaded based on linear regression [11], multiple lin-
ear regression [9] and hybrid method based on ensemble 
empirical mode decomposition and AutoRegressive Inte-
grated Moving Average (ARIMA) [7]. VM migration was 
performed from overloaded hosts to underloaded hosts [7, 
9, 11]. Linear regression-based CPU Utilization Prediction 
(LiRCUP) has reduced SLA violation, as well as power 
consumption [11].
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3  System Architecture and Problem 
Formulation

A set of edge devices D = {d1, d2,… , dn} is deployed 
within the same local network. An edge device di , where 
i ∈ 1,… , n can be mobile or any IoT device within the 
same local network as shown in Fig. 1. The local network 
is grouped into different zones Z = {z1, z2,… , zm} and each 
zone has many edge servers E = {e1, e2,… , el} for per-
forming computations. The computations to be performed 
on the data sent by the edge devices within that particular 
zone are done by the corresponding edge servers. A set 
of tasks T = {t1, t2,…} is assigned to a VM in an edge 
server. When an edge server has a lot of computations 
to be done, some of the VMs from the overloaded edge 
server are migrated to other edge servers, thereby, result-
ing in an equal share of load and prevention of contention 
of resources. The cost of migration ( CostVMmigration ) of VMi 
from an overloaded edge server ( eo ) to an underloaded 
edge server ( eu ) includes load due to that VM along with 
the start up configurations for enabling service at the des-
tination edge server. In order to minimise the VM migra-
tion cost, the number of VM migrations must be kept as 
minimal as possible. Hence, the goal of the two models 

proposed in this paper is to minimise the number of VM 
migrations across the edge servers.

The functions of each component of the proposed system 
architecture are explained below:

• Edge device: edge devices can be mobile devices, IoT 
devices, switches, routers, or any devices connected to 
the network.

• Edge server: the edge server performs the computations 
on the data that are received from the edge devices of the 
corresponding zone.

• Virtual machine: the virtual machines are responsible 
for the computation of tasks on the edge servers. The 
allocation of the required number of VMs to each task 
reduces the latency of the application, thereby improving 
the performance of the application.

• Contention manager: each edge server has a contention 
manager. It constructs a transition probability matrix 
for each VM using a history matrix which is updated 
dynamically based on the CPU utilization of the VM. 
It migrates the VMs from the overloaded edge servers 
to other edge servers within the same zone based on the 
predicted future states of the edge servers.

• Micro-datacenter: every zone has a micro-datacenter 
assigned to it. It has a zone state manager that contains 
the states of all the edge servers within that particular 

Fig. 1  Resource Contention 
Prediction in Edge Cloud
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zone. It is also responsible for offloading the necessary 
data that needs to be stored to the cloud.

• Cloud storage: required data from the micro-datacenters 
are sent to the cloud storage at frequent intervals for 
future retrieval.

4  DMRCP

Each edge server can be in one of the three states, namely, 
overloaded, underloaded or normally loaded. This state 
of the edge server depends on the states of all the VMs in 
that edge server. Each VM can also be in one of these three 
states, overloaded (O), underloaded (U), or normally loaded 
(N). When the CPU utilization of a VM is 80% (upper 
threshold) or above, it is labeled as overloaded, and when 
the CPU utilization is 20% (lower threshold) or less it is 
considered as underloaded. These threshold values are set 
based on the work done by Beloglazov et al. [4]. The VMs 
whose CPU utilization values lie in between the upper and 
the lower thresholds are categorized as normally loaded.

The future states of the VMs and thereby, the future states 
of the edge servers are predicted using a dynamic Markov 
model (DMRCP). The VMs of the edge servers, that are 
predicted to become overloaded, are migrated to other edge 
servers, thereby mitigating the resource contention caused 
by overloaded VMs. The construction and updation of the 
history matrix and the transition probability matrix are 
explained in sections 4.1 and 4.2 respectively.

4.1  Construction of History Matrix

For each VM in an edge server, the contention manager in 
the edge server maintains a history matrix of size n × n , 
where n is the number of states in which each VM can be.

The history of movements of a VM across the three states 
is recorded in the history matrix H. An example of the his-
tory matrix is given in matrix 1. The first entry in the first 
row of the history matrix gives the number of times the VM 
has remained in the normally loaded state. The second entry 
represents the number of times the VM has moved to the 
overloaded state from the normally loaded state.

Similarly, the third entry in the first row gives the number of 
times the VM has moved to the underloaded state from the 
normally loaded state. The second and the third rows depict 
the number of VM movements from the overloaded and the 

H =





N O U

N 3 3 0
O 1 2 3
U 2 2 3



 (1)

underloaded states, respectively. This history matrix gets 
updated dynamically based on the change in state of the VM.

4.2  Construction of Transition Probability Matrix 
Using Dynamic Markov Model

The probability of the movement between the three states of 
a VM namely, overloaded, normally loaded and underloaded 
is kept in a transition probability matrix. The structure of 
the transition probability matrix is shown in matrix 2. The 
first row in the matrix 2 gives the probability that the VM 
remains in normally loaded state ( PNN ), the probability that 
it transits to the overloaded state ( PNO ), and the probabil-
ity that it moves to the underloaded state ( PNU ), from the 
normally loaded state. Similarly, the probabilities of transi-
tions from the overloaded state to other states are given in 
the second row of the matrix 2. The third row of the matrix 
2 contains the probabilities of transitions from the under-
loaded state of the VM to other states.

An initial probability matrix Pini is constructed by the con-
tention manager with the view that, initially, all the tran-
sitions are equiprobable. Thus, the initial matrix 3 is con-
structed with values 1/3.

The entry in the initial probability matrix Pini is then updated 
using the history matrix as shown in Eq. 4, and this forms 
the transition probability matrix.

Hij is the count corresponding to the ith row and the jth 
column in the history matrix H, l is the number of columns 
in the history matrix (here, 3). The probability values in the 
transition probability matrix depict the probability of the 
VM moving to a different state or remaining in the same 
state based on the history of the transitions of the VM. Thus, 
the probability that a VM will continue to be overloaded 
( POO ) is calculated as shown in Eq. 5.

Matrix 6 shows the transition probability matrix constructed 
from the example history matrix shown in matrix 1.

(2)P =

⎡
⎢⎢⎣

PNN PNO PNU

PON POO POU

PUN PUO PUU

⎤⎥⎥⎦

(3)Pini =

⎡
⎢⎢⎣

1∕3 1∕3 1∕3

1∕3 1∕3 1∕3

1∕3 1∕3 1∕3

⎤⎥⎥⎦

(4)Pij =
Hij∑l

k=1
Hik

(5)POO =
HOO

HON + HOO + HOU
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This is considered as a dynamic Markov model as the transi-
tion probability matrix is updated constantly for each transi-
tion based on the history matrix. This transition probability 
matrix is used by the contention manager to migrate VMs 
from overloaded edge servers to underloaded edge servers 
as described in Sect. 6.

5  CRMRCP

In the hybrid cascade of regression and Markov model (CRM-
RCP), the future CPU utilization of edge servers is predicted 
as shown in figure 2. The historical CPU utilization values are 
given as input to different methods of regression. We have used 
five different methods of regression as explained in Sect. 5.1 
namely, linear, polynomial, lasso, ridge and support vector 
regression to predict a set of future CPU utilization values 
of VMs. The construction of transition probability matrix for 
CRMRCP is explained in Sect. 5.2.

Then, the predicted set of future CPU utilization values 
obtained for a regression model is used by the second-order 
Markov model to predict the future state of the VM as over-
loaded (O), underloaded (U) or normally loaded (N).

5.1  Regression Model

The prediction of future values using regression is one of the 
successful solutions for resource management in the edge 
cloud architecture. The following subsection gives an overview 
of the various regression methods used in this work.

5.1.1  Linear Regression (LR)

Linear regression [23] attempts to model the relationship 
between two variables by fitting a linear equation to the 
observed data. One variable is considered to be an independ-
ent variable, and the other is considered to be a dependent 
variable. A linear regression line has an equation of the form 
shown in Eq. 7.

where x is the independent variable, y is the dependent vari-
able � is the regression coefficient and � is the random error.

(6)P =

⎡
⎢⎢⎣

0.5 0.5 0.0

0.16 0.33 0.5

0.29 0.29 0.42

⎤
⎥⎥⎦

(7)y = x� + �

5.1.2  Polynomial Regression (PR)

Polynomial regression [23] is a form of regression analysis 
in which the relationship between the independent variable 
x and the dependent variable y is modelled as an nth degree 
polynomial of x as shown in Eq. 8

where x1, x2,… xn are the independent variables, y is the 
dependent variable, �0, �1, �2,… , �n are the regression coef-
ficients for a polynomial equation of order n.

5.1.3  Lasso Regression (LaR)

LASSO stands for Least Absolute Shrinkage and Selection 
Operator. Shrinkage is where data values are shrunk towards 
a central point, like the mean. The lasso procedure encour-
ages simple, sparse models (i.e. models with fewer param-
eters) [21]. Lasso regression is modelled as shown in Eq. 9.

where � is the amount of shrinkage, y is the dependent vari-
able, x represents the independent variables, N is the number 
of instances, p is the number of features, B is the regression 
coefficient to be estimated. The first term in the Eq. 9 gives 
the squares of the residual sum and the second term is the 
sum of the absolute value of the magnitude of coefficients 
multiplied with �.

5.1.4  Ridge Regression (RR)

Ridge regression is a method for estimating the coefficients 
of multiple-regression models in scenarios where inde-
pendent variables are highly correlated by creating a ridge 
regression estimator [20]. This provides a more precise 
ridge parameters estimate, as its variance and mean square 
estimator are often smaller than the least square estimators 
previously derived. Ridge regression is modelled as shown 
in Eq. 10.

where � is the amount of shrinkage, y is the dependent vari-
able, x represents the independent variables, N is the number 
of instances, p is the number of features, B is the regression 
coefficient to be estimated. In ridge regression, the cost func-
tion is altered by adding a penalty equivalent to square of the 
magnitude of the coefficients.

(8)y = �0 + �1x
1 + �2x

2 + �3x
3 +… �nx

n

(9)
∑N

i=1

(
yi −

∑p

j=1
xijBj

)2

+ �
∑p

j=1

|||Bj
|||

(10)
∑N

i=1

(
yi −

∑p

j=1
xijBj

)2

+ �
∑p

j=1
B2

j

Fig. 2  CRMRCP model
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5.1.5  Support Vector Regression (SVR)

Support Vector Regression is a form of regression used to 
predict the discrete values. Hyperplanes are the decision 
boundaries for data to be predicted. The values on either side 
of the hyperplane called support vectors give the predicted 
output of SVR. The threshold value � is drawn around the 
hyperplane and the predicted values within the threshold 
gives the best fit in SVR.

The predicted values within the value of � as given in Eq. 11 
is alone taken for consideration which minimises the error 
rate in prediction.

5.2  Construction of Transition Probability Matrix 
Using Second‑Order Markov Model

The future CPU utilization values of the VMs in the edge 
server that are predicted using the regression models are sent 
to the second-order Markov model. A transition probability 
matrix is constructed for each VM using the second-order 
Markov model by the contention manager which is used to 
predict the future state of edge server (Fig.3). In the second-
order Markov model [30], the future state depends on two 
historical values. By using the two historical values at n and 
n − 1 , the probability of the CPU utilization of the VM in 
future, that is, at n + 1 is found using the Eq. 12.

The general format of the first order transition probability 
matrix of a VM is as given in matrix 2. Since there are three 
states for the VM, a 3 × 3 matrix is constructed.

Equation 13 gives the probability that a VM will continue 
to remain in the overloaded state ( POO ). Similarly, the other 
values are found. For the second-order Markov model, the 
probability of a VM being overloaded can be computed 
using Eq. 14

where k is U, O and N.
The VMs predicted to be overloaded are migrated to 

other underloaded edge servers by the contention manager. 
The micro-datacenters contain the state of all the edge serv-
ers. The destination edge server is selected by the contention 
manager from the data available at the micro-datacenter. It 

(11)yi − wxi − b ≤ �

(12)P(x1, x2 … xn) =

n∏
i=1

P(xi+1 ∣ xi, xi−1)

(13)

POO =
P(xn = O, xn−1 = O)

P(xn = N, xn−1 = O) + P(xn = O, xn−1 = O) + P(xn = U, xn−1 = O)

(14)SPOO =
∑
k

POk.PkO

is also checked that the destination edge server does not 
move to an overloaded state after receiving the migrated 
edge VMs. The VMs predicted to be overloaded by the con-
tention manager are used in prediction of future state of 
edge servers as explained in the next section.

6  Prediction of Future State of Edge Servers

The transition probability matrix constructed for each VM 
as given in Sect. 4.2 and 5.2 is used to predict the future 
state of the VM, and thereby the future state of the edge 
server in which the vm is located as given in Algorithm 1. 
The contention manager present in the edge server calcu-
lates the average of the POO values of the transition prob-
ability matrices of all the VMs in the edge server. If the 
calculated average value exceeds an upper threshold, then 
the edge server is marked as overloaded by the conten-
tion manager. If the calculated average value is less than a 
lower threshold, then the edge server is marked as under-
loaded by the contention manager. Else, the edge server is 
marked as normally loaded.

Fig. 3  CRMRCP - Prediction and migration
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The contention manager sends the predicted future state 
of the edge server periodically to the zone state manager 
in the micro-datacenter. Thus, the zone state manager has 
the future predicted states of all the edge servers for that 
particular zone.

If an edge server is found as overloaded, the contention 
manager receives the list of underloaded edge servers from 
the zone state manager for that particular zone of the net-
work. The VM with the highest value of POO within the over-
loaded edge server is selected first to be migrated to another 
underloaded edge server by the contention manager. Then, 
the VM with the lowest value of POO in an underloaded edge 
server is also selected by the contention manager from the 
received underloaded edge server list.

Before migrating the overloaded VM, a check is done to 
verify if the migration would result in the overloading of 
the edge server to which the VM is migrated. The highest 
value of POO of all the VMs in the overloaded edge server 
is swapped with the lowest value of POO of all the VMs in 
the underloaded edge server. The average of POO values of 
all the VMs of the sending and the receiving edge servers 
are calculated separately. If the calculated average for the 
receiving edge server or the sending server is above an upper 
threshold, the contention manager selects the next under-
loaded edge server from the list and does the check again. If 
it is not possible to find any such underloaded edge server, 
then the overloaded VM of the sending edge server is killed 
since migration is not possible.

7  Experiments

7.1  Experimental Setup

The edge computing environment is simulated using 
EdgeCloudSim which is built on top of the CloudSim 

simulator. The number of edge devices can be dynamically 
increased and the location of the edge devices are randomly 
simulated.

The experiments are carried out for PlanetLab values 
[22] which are the CPU utilization values of VMs collected 
randomly across various datacenters. PlanetLab workload 
contains the CPU utilization data collected every five min-
utes from more than a thousand VMs from servers located at 
more than 500 places around the world. The workloads con-
tain traces gathered during a random period of 10 days and 
these workloads are used throughout the simulations. For 
each day, different files containing CPU utilization values 
are available; each file corresponds to the host from which 
data is collected. The PlanetLab values can be used as data-
sets for edge architecture as well [16].

Random workloads generated by the simulator for spe-
cific periods of time are also used for the experiments. The 
random workload data are generated in the simulation as 
per the time limit set by the user. In this experiment we have 
generated random workloads at every minute for a period 
of 24 h.

Table 1 gives the details of the components used in the 
simulation. The number of edge devices considered in our 
simulation is 1000. Each edge server can handle 20 edge 
devices and a total of ten zones are used in our experiments.

Our proposed methodology is compared with the perfor-
mance of the system when the first-order and the second-
order Markov models are used for prediction [30].

The first-order Markov model uses one past CPU utili-
zation value for the prediction, whereas the second-order 
Markov model depends on two values from the past. For the 
first and the second order, transition probability matrices 
are constructed for each VM within the edge servers and the 
appropriate POO values are calculated and are used to predict 
the overloaded VMs.

7.2  Results and Discussion

The results of our experiments using the configurations men-
tioned in Sect. 7.1 are discussed here. When the number of 
VM migrations increases in an edge cloud, the performance 
of the application is hindered.

7.3  Results for DMRCP

The Fig. 4 shows the average number of VM migrations on 
10 days for the first-order Markov model, the second-order 
Markov model and the proposed dynamic Markov model, 
when PlanetLab workload is used. For the PlanetLab work-
load (Fig. 4), the number of VM migrations for the first-
order Markov model is high for all the 10 days, whereas, 
the number of VM migrations for the second-order Markov 
model is 27.2% lower than the first-order Markov model, 
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on an average. Table 2 gives the percentage decrease in the 
VM migrations for each day for dynamic Markov model 
using PlanetLab workload. It can be inferred from Table 2 
that the dynamic Markov model gives an average decrease 
of 50.7% VM migrations when compared with first-order 
Markov model and 23.4% decreased VM migrations when 
compared with second-order Markov model for PlanetLab 
workload.

The number of VM migrations for the random workload 
(Fig. 5) also shows that the first order has the maximum 
number of migrations followed by the second order which is 
36.3% less than the first order. Table 3 gives the percentage 
decrease in VM migrations for each day for dynamic Markov 
model using random workload. The random workload com-
pared in Table 3 also shows that dynamic Markov model has 
55.2% decreased VM migrations when compared to the first-
order Markov model and 18.8% decreased VM migrations 
compared to the second-order Markov model.

The computational complexity for the construction of the 
history matrix is O(n) where n is the order of the history 
matrix. The computational complexity for the construction 
of the transition probability matrix using dynamic Markov 
model is O(n) where n is the number of states of the VM. 
A computation O(n) followed by another O(n) gives an 
overall computation complexity of O(2n). The computation 
complexity of the dynamic Markov model makes the 
algorithm lightweight and suitable for edge computing 
architectures.

7.4  Results for CRMRCP

In this section, the results obtained for our experiments are 
analyzed graphically as shown in Fig. 6. The percentage 
decrease in the number of VM migrations by using CRM-
RCP when compared to using only the SM are summarised 
in Table 4. The results show that the number of VM migra-
tions when only the SM is used is always more, compared 
to the number of VM migrations when regression is also 
used. The cascade of linear regression and the second-order 
Markov model (LR+SM) shows a 62.9% decrease in the 
number of VM migrations on an average, when compared 
to SM. The cascade of polynomial regression and the sec-
ond order Markov model (PR+SM) gives a decrease in the 
number of VM migrations by 67.1% on an average. The 

cascade of lasso regression and the second-order Markov 
model (LaR+SM) shows 75.2% decreased VM migrations, 
on an average when compared to SM. The cascade of Sup-
port Vector Regression and the second-order Markov model 
(SVR+SM) shows 68.3% decreased VM migrations, on an 

Table 1  Devices Simulated Devices Number

Edge devices 1000
Network model Edge cloud
Cloud server 1
Edge server 50
Micro-datacenter 10

Fig. 4  Edge cloud architecture for DMRCP - PlanetLab Workload

Fig. 5  Edge cloud architecture for DMRCP- random workload

Table 2  Comparison of PlanetLab workload in DMRCP

Percentage decrease in number of VM migrations of Dynamic 
Markov model compared with when compared with SM

Time First order Second order

Day 1 57.08% 29.78 %
Day 2 48.26 % 17.24 %
Day 3 51.71 % 21.05 %
Day 4 51.78 % 35.71 %
Day 5 43.10 % 26.31 %
Day 6 46.15 % 21.53 %
Day 7 51.72 % 21.05 %
Day 8 57.14 % 23.21 %
Day 9 48.27 % 17.24 %
Day 10 51.72 % 21.05 %
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average when compared to SM. The cascade of ridge regres-
sion and the second-order Markov model (RR+SM) gives 
the least number of VM migrations compared to all other 

regression methods. It reduces the number of VM migrations 
to 81.8% on an average when compared to SM.

Therefore, the overall results prove that the cascade of 
ridge regression and SM gives the least number of VM 
migrations across the edge servers in the edge cloud archi-
tecture considered.

8  Conclusion

The results of the DMRCP model outperforms both the 
first order and the second-order Markov models. The over-
all results prove that the number of VM migrations for the 
dynamic Markov model is 52.9% less compared to the first-
order Markov model and 21.1% less when compared to the 
second-order Markov model. The results of CRMRCP model 
proves that the cascade of ridge regression with the second 
order Markov model reduces the number of VM migra-
tions by 81.8% when compared to not using any regression 
method for future CPU utilization prediction. The proposed 
solutions reduces the number of VM migrations, prevents 
unnecessary migrations by predicting the VMs that cause 
resource contention in an edge server, thereby enabling com-
putation and processing at the edge servers efficiently. Since 
the VM migrations are done from the edge servers predicted 
to be overloaded, resource contention is avoided, and also 
migration traffic is reduced in the edge cloud, thereby, main-
taining the applications’ performance. The future work will 
involve the prediction of other resources like memory, stor-
age needed for computation across edge servers.
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