
Vol:.(1234567890)

International Journal of Networked and Distributed Computing (2023) 11:20–30
https://doi.org/10.1007/s44227-022-00007-0

1 3

RESEARCH ARTICLE

Novel Approaches for Resource Management Across Edge Servers

K. Surya1 · V. Mary Anita Rajam2

Received: 25 August 2022 / Accepted: 22 November 2022 / Published online: 2 January 2023
© The Author(s) 2022

Abstract
Edge computing aims at reducing computation and storage across the cloud and provides service with reduced latency. Edge
devices can be mobile devices, routers, cameras, printers or any Internet of Things (IoT) devices that generate vast amounts
of data. The processing of these data is done by virtual machines (VMs) present in the edge servers that are located within
close proximity of the edge devices. This work proposes two models which predict resource contention at the edge servers,
namely, a Dynamic Markov model for Resource Contention Prediction in Edge Cloud (DMRCP) and a Hybrid Cascade of
Regression and Markov model for Resource Contention Prediction (CRMRCP). In DMRCP, a history matrix is updated based
on the CPU utilization of a Virtual Machine (VM). This history matrix is used to update a transition probability matrix. This
matrix is used to predict the future state of the VM. In the CRMRCP approach, the past CPU utilization values of the virtual
machines in the edge servers are used for predicting a set of future CPU utilization values using linear regression, polynomial
regression, lasso regression and ridge regression. Then, the predicted future CPU utilization values are used by the dynamic
and the second-order Markov models to classify the state of the edge servers as overloaded, underloaded or normally loaded.
In both the approaches, the VMs that may cause resource contention are predicted and are migrated to other edge servers
such that the destination edge server does not get overloaded after the migration. The DMRCP method is compared with the
first-order and the second-order Markov models and the number of VM migrations is analysed to evaluate the performance.
The number of VM migrations in the CRMRCP method is compared with that in the second-order Markov model. The overall
results prove that the number of VM migrations for the DMRCP is 52.9% less compared to the first-order Markov model
and 21.1% less when compared to the second-order Markov model. The number of VM migrations in CRMRCP is reduced
by 81.8% when ridge regression cascaded with the second-order Markov model is used.

Keywords Contention prediction · Edge computing · Resource contention · Virtual machine · Markov model · Regression

1 Introduction

In Edge computing, much of the data processing takes place
at the edge of the network [6, 31, 36] thus, moving the com-
putation away from the remote cloud datacenters. Some
of the edge devices are mobile devices, printers, sensors,

desktops, tablets and IoT devices that can be used for dif-
ferent purposes. These devices generate huge amounts of
data. Edge servers are located close to the edge devices and
perform the computation, and only needed data is offloaded
to the cloud. This results in a reduction in latency [27]. The
resources needed to execute tasks in the edge servers can be
physical resources like storage devices, CPU or any network
device, or virtual resources like virtual machines (VM).

IoT workloads often undergo resource requirement
changes, due to the occurrence of some events at the edge
server which require additional resources to perform the
desired computation. The edge servers have limited hard-
ware resources compared to cloud servers making resource
contention a more prominent issue of concern. Therefore,
each edge server can accommodate only a limited number
of VMs, which makes the allocation of VMs in an edge
computing environment a challenging approach.

 * K. Surya
 suryak@snuchennai.edu.in

 V. Mary Anita Rajam
 anitav@annauniv.edu

1 Department of Computer Science and Engineering,
Shiv Nadar University, Kalavakkam, Chennai 603110,
Tamil Nadu, India

2 Department of Computer Science and Engineering, Anna
University, CEG Guindy, Chennai 600025, Tamil Nadu,
India

http://crossmark.crossref.org/dialog/?doi=10.1007/s44227-022-00007-0&domain=pdf

21International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

Since the edge architecture has a limited amount of
resources, VMs from the overloaded edge servers can be
migrated to other underloaded edge servers instead of allo-
cating new resources.

The migration of VMs between the adjacent edge serv-
ers must be minimal to maintain efficient computation and
processing in the edge servers [32]. The edge computing
environment is dynamic as most of the edge devices are
mobile, thereby increasing the request for shared resources
in the edge servers. These shared resources can be accessed
without any conflict only by avoiding resource contention.

Early prediction of CPU utilization time needed by each
virtual machine to perform the tasks, assists in early migra-
tion of the VMs that may contend in the future. Therefore,
prediction of resource contention and allocation of VMs as
per need lead to the execution of the tasks by maintaining
the desired Quality of Service (QoS). Resource contention
prediction also plays an important role in maintaining the
performance of an application as stated in the Service Level
Agreement (SLA).

In this work, we use an edge cloud architecture in which
the execution of tasks is decentralized across the edge serv-
ers and offloading to the cloud is done only if needed. The
edge cloud is extremely beneficial in online gaming plat-
forms and vehicular applications used by drivers on a mov-
ing car since huge amounts of data are generated by these
applications. Data processing in the edge cloud architecture
is quick, as many edge servers actively process the data in a
decentralised fashion.

Hybrid models overcome the limitations of single models
and improve the performance. Some models are good in pre-
dicting the needed resources for a smaller number of users
who have static requirements for a fixed time but may not be
capable of predicting resources when the number of users
increases suddenly for a particular time. Some other models
may predict resources accurately for a moderate amount of
users with dynamic requirements. These conditions create a
premise to complement the characteristics of different mod-
els and use one to overcome the weaknesses of the others.

The first approach in this paper proposes a Dynamic
Markov model for Resource Contention Prediction in Edge
Cloud (DMRCP). The VMs that cause resource contention
at a particular edge server are migrated to other edge serv-
ers. The VMs are killed if the resource contention cannot
be mitigated after performing migrations. VMs are entirely
isolated and can have a different operating system from the
host operating system, whereas containers are light weighted
and use the host operating system. Since containers can also
be included on a VM, we have considered VM migration as
it includes containerisation as well.

A history matrix is updated based on the CPU utilization of
a VM in the DMRCP approach. This history matrix is used to
update a transition probability matrix. This matrix is used to

predict the future state of the VM. The future states of the VMs
are used to calculate the future state of the edge server in which
the VMs reside. A zone state manager is maintained in the
micro-datacenter that keeps track of the states of all the edge
servers. A contention manager obtains the information from
the zone state manager which gives the list of underloaded
edge servers available for receiving the migrated VMs. The
contention manager migrates the VMs that will cause over-
loading to other edge servers that are underloaded.

The second approach is the Hybrid Cascade of Regression
and Markov model for Resource Contention Prediction (CRM-
RCP). The past CPU utilization values of the virtual machines
in the edge servers are used for predicting a set of future CPU
utilization values using linear regression, polynomial regres-
sion, lasso regression, ridge regression and Support Vector
Regression (SVR). The predicted future CPU utilization val-
ues are used by the second-order Markov model to classify
the state of the edge servers as overloaded, underloaded or
normally loaded. The VMs which are down are not considered
as they are in a suspended state which has no accountability
in predicting the contention due to overloading. The virtual
machines (VMs) in the edge servers that cause overloading are
migrated to other edge servers within the same edge network.
Thus, resource contention is mitigated even before it occurs,
as the virtual machines are migrated immediately after predic-
tion. We have performed our experiments in EdgeCloudSim, a
simulator that simulates edge computing architectures.

The work in this research paper addresses the following:

• Prediction of future CPU utilization of VMs using
dynamic Markov model, cascade of regression and sec-
ond-order Markov model, and then categorising the VMs
as overloaded, underloaded, and normally loaded.

• Migration of VMs to normally loaded or underloaded
edge servers, thereby mitigating CPU resource conten-
tion before it occurs.

• Compare the number of VM migrations for the proposed
solutions namely DMRCP and CRMRCP.

The rest of the paper proceeds as follows. Section 2 gives the
related work in this area, Sect. 3 describes the system archi-
tecture, Sects. 4 and 5 explain the proposed models, Sect. 6
gives the algorithm for prediction of future state of edge
servers, Sect. 7.1 gives the experimental setup, Sect. 7.2
discusses the results and Sect. 8 concludes the work done.

2 Related Work

This section discusses some of the challenges in edge com-
puting and the techniques that exist for the allocation of
resources across the edge. Some of the existing methods
for resource prediction are also addressed in this section.

22 International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

There are many challenges in the deployment of edge
devices as the number of IoT networks increases rapidly.
The number of edge servers to be deployed with storage
and computation functionality is decided by considering
the traffic and wireless diversity [38]. The major chal-
lenges in edge computing are management of resources,
identifying the origination of data, and deciding when to
offload to the cloud [5]. Constrained computation capacity
and storage, use of battery power and mobility of devices
resulted in various challenges like battery life preserva-
tion, offloading considerations, bandwidth allocation and
energy management [27].

2.1 Computational Offloading Methods in Edge

Researchers have proposed techniques for computational off-
loading in edge computing using game theory [26]. A game-
theoretic approach for computation offloading strategy for
non-cooperative users in mobile edge computing has been
proposed by You et al. [35]. Reinforcement learning has
been used for offloading the computation data of the users
whose priorities (based on the user’s channel gains and local
computing energy consumption) exceeded a given threshold
[35]. A delay-aware task graph partition technique [8] and
optimal virtual machine selection method has been proposed
for offloading the tasks in IoT devices by maintaining the
desired QoS. A game-theoretical model [15] has been pro-
posed for offloading of data in a mobile edge computing
environment, where the operator managed both wireless and
computation resources.

The resource allocation and computation offloading
problem has been considered as an optimization problem
to maximize system utility [12]. Gaming models [14, 26]
have also been used for resource management in the edge.
The work proposed in [10] explained an offloading strategy
by considering multiple parameters like radio resources,
computational complexity along with data security using
Advanced Encryption Standard (AES) algorithm. Optimi-
zation of offloading time using Markov Decision Process
in Mobile-Edge Computing was proposed by [34] and [2].

2.2 Resource Allocation in Edge Using Machine
Learning Algorithms

The revival of Artificial Intelligence (AI) has led to learn-
ing at the edge by taking into account data importance in
resource allocation [39]. AI techniques such as reinforce-
ment learning [17], deep reinforcement learning, clustering
[18] and federated learning have also been used to optimize
the resource allocation process [25, 33].

2.3 Energy‑Based Resource Allocation

A survey of energy-aware edge computing, including the
existing work on computation offloading frameworks and
the strategies in edge computing has been discussed [13].
Successive Convex Approximation Algorithm (SCA) has
been proposed for energy efficient resource allocation,
which minimized power consumption by offloading across
all users considering latency and power constraints [1].
An energy-efficient algorithm has been proposed for the
reduction in operation costs by optimal use of energy in
edge devices [3]. An energy-efficient computation offload-
ing scheme through type classification and priority assign-
ment for mobile devices has also been proposed [37].

2.4 Resource Prediction Techniques in Edge
Computing

Dimitrios et al. proposed techniques for deployment,
orchestration and management of location based services
in the edge [29]. VM allocation in mobile edge comput-
ing was done based on the mobility of users, computation
resources and communication resources [24].

The works done earlier have not focussed on resource
contention prediction in the edge computing architecture.
In our work, we propose a dynamic Markov model based
algorithm to predict the future CPU utilization of VMs,
and the VMs predicted to cause resource contention, are
migrated thereby avoiding resource contention.

2.5 Regression Models used for Resource Prediction

Linear regression has been used for prediction of future
CPU utilization [11, 19]. The lasso and ridge regression
[28] have been used for multi-dimensional resource alloca-
tion for an auction-based application in a cloud comput-
ing environment. It has been found that the Root Mean
Squared Error (RMSE) of the lasso and ridge regression
was less when compared to linear regression. The CPU
and storage were better utilized when lasso and ridge
regression were used in resource allocation [28].

Some works have classified the hosts as overloaded and
underloaded based on linear regression [11], multiple lin-
ear regression [9] and hybrid method based on ensemble
empirical mode decomposition and AutoRegressive Inte-
grated Moving Average (ARIMA) [7]. VM migration was
performed from overloaded hosts to underloaded hosts [7,
9, 11]. Linear regression-based CPU Utilization Prediction
(LiRCUP) has reduced SLA violation, as well as power
consumption [11].

23International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

3 System Architecture and Problem
Formulation

A set of edge devices D = {d1, d2,… , dn} is deployed
within the same local network. An edge device di , where
i ∈ 1,… , n can be mobile or any IoT device within the
same local network as shown in Fig. 1. The local network
is grouped into different zones Z = {z1, z2,… , zm} and each
zone has many edge servers E = {e1, e2,… , el} for per-
forming computations. The computations to be performed
on the data sent by the edge devices within that particular
zone are done by the corresponding edge servers. A set
of tasks T = {t1, t2,…} is assigned to a VM in an edge
server. When an edge server has a lot of computations
to be done, some of the VMs from the overloaded edge
server are migrated to other edge servers, thereby, result-
ing in an equal share of load and prevention of contention
of resources. The cost of migration (CostVMmigration) of VMi
from an overloaded edge server (eo) to an underloaded
edge server (eu) includes load due to that VM along with
the start up configurations for enabling service at the des-
tination edge server. In order to minimise the VM migra-
tion cost, the number of VM migrations must be kept as
minimal as possible. Hence, the goal of the two models

proposed in this paper is to minimise the number of VM
migrations across the edge servers.

The functions of each component of the proposed system
architecture are explained below:

• Edge device: edge devices can be mobile devices, IoT
devices, switches, routers, or any devices connected to
the network.

• Edge server: the edge server performs the computations
on the data that are received from the edge devices of the
corresponding zone.

• Virtual machine: the virtual machines are responsible
for the computation of tasks on the edge servers. The
allocation of the required number of VMs to each task
reduces the latency of the application, thereby improving
the performance of the application.

• Contention manager: each edge server has a contention
manager. It constructs a transition probability matrix
for each VM using a history matrix which is updated
dynamically based on the CPU utilization of the VM.
It migrates the VMs from the overloaded edge servers
to other edge servers within the same zone based on the
predicted future states of the edge servers.

• Micro-datacenter: every zone has a micro-datacenter
assigned to it. It has a zone state manager that contains
the states of all the edge servers within that particular

Fig. 1 Resource Contention
Prediction in Edge Cloud

24 International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

zone. It is also responsible for offloading the necessary
data that needs to be stored to the cloud.

• Cloud storage: required data from the micro-datacenters
are sent to the cloud storage at frequent intervals for
future retrieval.

4 DMRCP

Each edge server can be in one of the three states, namely,
overloaded, underloaded or normally loaded. This state
of the edge server depends on the states of all the VMs in
that edge server. Each VM can also be in one of these three
states, overloaded (O), underloaded (U), or normally loaded
(N). When the CPU utilization of a VM is 80% (upper
threshold) or above, it is labeled as overloaded, and when
the CPU utilization is 20% (lower threshold) or less it is
considered as underloaded. These threshold values are set
based on the work done by Beloglazov et al. [4]. The VMs
whose CPU utilization values lie in between the upper and
the lower thresholds are categorized as normally loaded.

The future states of the VMs and thereby, the future states
of the edge servers are predicted using a dynamic Markov
model (DMRCP). The VMs of the edge servers, that are
predicted to become overloaded, are migrated to other edge
servers, thereby mitigating the resource contention caused
by overloaded VMs. The construction and updation of the
history matrix and the transition probability matrix are
explained in sections 4.1 and 4.2 respectively.

4.1 Construction of History Matrix

For each VM in an edge server, the contention manager in
the edge server maintains a history matrix of size n × n ,
where n is the number of states in which each VM can be.

The history of movements of a VM across the three states
is recorded in the history matrix H. An example of the his-
tory matrix is given in matrix 1. The first entry in the first
row of the history matrix gives the number of times the VM
has remained in the normally loaded state. The second entry
represents the number of times the VM has moved to the
overloaded state from the normally loaded state.

Similarly, the third entry in the first row gives the number of
times the VM has moved to the underloaded state from the
normally loaded state. The second and the third rows depict
the number of VM movements from the overloaded and the

H =

N O U

N 3 3 0
O 1 2 3
U 2 2 3

 (1)

underloaded states, respectively. This history matrix gets
updated dynamically based on the change in state of the VM.

4.2 Construction of Transition Probability Matrix
Using Dynamic Markov Model

The probability of the movement between the three states of
a VM namely, overloaded, normally loaded and underloaded
is kept in a transition probability matrix. The structure of
the transition probability matrix is shown in matrix 2. The
first row in the matrix 2 gives the probability that the VM
remains in normally loaded state (PNN), the probability that
it transits to the overloaded state (PNO), and the probabil-
ity that it moves to the underloaded state (PNU), from the
normally loaded state. Similarly, the probabilities of transi-
tions from the overloaded state to other states are given in
the second row of the matrix 2. The third row of the matrix
2 contains the probabilities of transitions from the under-
loaded state of the VM to other states.

An initial probability matrix Pini is constructed by the con-
tention manager with the view that, initially, all the tran-
sitions are equiprobable. Thus, the initial matrix 3 is con-
structed with values 1/3.

The entry in the initial probability matrix Pini is then updated
using the history matrix as shown in Eq. 4, and this forms
the transition probability matrix.

Hij is the count corresponding to the ith row and the jth
column in the history matrix H, l is the number of columns
in the history matrix (here, 3). The probability values in the
transition probability matrix depict the probability of the
VM moving to a different state or remaining in the same
state based on the history of the transitions of the VM. Thus,
the probability that a VM will continue to be overloaded
(POO) is calculated as shown in Eq. 5.

Matrix 6 shows the transition probability matrix constructed
from the example history matrix shown in matrix 1.

(2)P =

⎡
⎢⎢⎣

PNN PNO PNU

PON POO POU

PUN PUO PUU

⎤⎥⎥⎦

(3)Pini =

⎡
⎢⎢⎣

1∕3 1∕3 1∕3

1∕3 1∕3 1∕3

1∕3 1∕3 1∕3

⎤⎥⎥⎦

(4)Pij =
Hij∑l

k=1
Hik

(5)POO =
HOO

HON + HOO + HOU

25International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

This is considered as a dynamic Markov model as the transi-
tion probability matrix is updated constantly for each transi-
tion based on the history matrix. This transition probability
matrix is used by the contention manager to migrate VMs
from overloaded edge servers to underloaded edge servers
as described in Sect. 6.

5 CRMRCP

In the hybrid cascade of regression and Markov model (CRM-
RCP), the future CPU utilization of edge servers is predicted
as shown in figure 2. The historical CPU utilization values are
given as input to different methods of regression. We have used
five different methods of regression as explained in Sect. 5.1
namely, linear, polynomial, lasso, ridge and support vector
regression to predict a set of future CPU utilization values
of VMs. The construction of transition probability matrix for
CRMRCP is explained in Sect. 5.2.

Then, the predicted set of future CPU utilization values
obtained for a regression model is used by the second-order
Markov model to predict the future state of the VM as over-
loaded (O), underloaded (U) or normally loaded (N).

5.1 Regression Model

The prediction of future values using regression is one of the
successful solutions for resource management in the edge
cloud architecture. The following subsection gives an overview
of the various regression methods used in this work.

5.1.1 Linear Regression (LR)

Linear regression [23] attempts to model the relationship
between two variables by fitting a linear equation to the
observed data. One variable is considered to be an independ-
ent variable, and the other is considered to be a dependent
variable. A linear regression line has an equation of the form
shown in Eq. 7.

where x is the independent variable, y is the dependent vari-
able � is the regression coefficient and � is the random error.

(6)P =

⎡
⎢⎢⎣

0.5 0.5 0.0

0.16 0.33 0.5

0.29 0.29 0.42

⎤
⎥⎥⎦

(7)y = x� + �

5.1.2 Polynomial Regression (PR)

Polynomial regression [23] is a form of regression analysis
in which the relationship between the independent variable
x and the dependent variable y is modelled as an nth degree
polynomial of x as shown in Eq. 8

where x1, x2,… xn are the independent variables, y is the
dependent variable, �0, �1, �2,… , �n are the regression coef-
ficients for a polynomial equation of order n.

5.1.3 Lasso Regression (LaR)

LASSO stands for Least Absolute Shrinkage and Selection
Operator. Shrinkage is where data values are shrunk towards
a central point, like the mean. The lasso procedure encour-
ages simple, sparse models (i.e. models with fewer param-
eters) [21]. Lasso regression is modelled as shown in Eq. 9.

where � is the amount of shrinkage, y is the dependent vari-
able, x represents the independent variables, N is the number
of instances, p is the number of features, B is the regression
coefficient to be estimated. The first term in the Eq. 9 gives
the squares of the residual sum and the second term is the
sum of the absolute value of the magnitude of coefficients
multiplied with �.

5.1.4 Ridge Regression (RR)

Ridge regression is a method for estimating the coefficients
of multiple-regression models in scenarios where inde-
pendent variables are highly correlated by creating a ridge
regression estimator [20]. This provides a more precise
ridge parameters estimate, as its variance and mean square
estimator are often smaller than the least square estimators
previously derived. Ridge regression is modelled as shown
in Eq. 10.

where � is the amount of shrinkage, y is the dependent vari-
able, x represents the independent variables, N is the number
of instances, p is the number of features, B is the regression
coefficient to be estimated. In ridge regression, the cost func-
tion is altered by adding a penalty equivalent to square of the
magnitude of the coefficients.

(8)y = �0 + �1x
1 + �2x

2 + �3x
3 +… �nx

n

(9)
∑N

i=1

(
yi −

∑p

j=1
xijBj

)2

+ �
∑p

j=1

|||Bj
|||

(10)
∑N

i=1

(
yi −

∑p

j=1
xijBj

)2

+ �
∑p

j=1
B2

j

Fig. 2 CRMRCP model

26 International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

5.1.5 Support Vector Regression (SVR)

Support Vector Regression is a form of regression used to
predict the discrete values. Hyperplanes are the decision
boundaries for data to be predicted. The values on either side
of the hyperplane called support vectors give the predicted
output of SVR. The threshold value � is drawn around the
hyperplane and the predicted values within the threshold
gives the best fit in SVR.

The predicted values within the value of � as given in Eq. 11
is alone taken for consideration which minimises the error
rate in prediction.

5.2 Construction of Transition Probability Matrix
Using Second‑Order Markov Model

The future CPU utilization values of the VMs in the edge
server that are predicted using the regression models are sent
to the second-order Markov model. A transition probability
matrix is constructed for each VM using the second-order
Markov model by the contention manager which is used to
predict the future state of edge server (Fig.3). In the second-
order Markov model [30], the future state depends on two
historical values. By using the two historical values at n and
n − 1 , the probability of the CPU utilization of the VM in
future, that is, at n + 1 is found using the Eq. 12.

The general format of the first order transition probability
matrix of a VM is as given in matrix 2. Since there are three
states for the VM, a 3 × 3 matrix is constructed.

Equation 13 gives the probability that a VM will continue
to remain in the overloaded state (POO). Similarly, the other
values are found. For the second-order Markov model, the
probability of a VM being overloaded can be computed
using Eq. 14

where k is U, O and N.
The VMs predicted to be overloaded are migrated to

other underloaded edge servers by the contention manager.
The micro-datacenters contain the state of all the edge serv-
ers. The destination edge server is selected by the contention
manager from the data available at the micro-datacenter. It

(11)yi − wxi − b ≤ �

(12)P(x1, x2 … xn) =

n∏
i=1

P(xi+1 ∣ xi, xi−1)

(13)

POO =
P(xn = O, xn−1 = O)

P(xn = N, xn−1 = O) + P(xn = O, xn−1 = O) + P(xn = U, xn−1 = O)

(14)SPOO =
∑
k

POk.PkO

is also checked that the destination edge server does not
move to an overloaded state after receiving the migrated
edge VMs. The VMs predicted to be overloaded by the con-
tention manager are used in prediction of future state of
edge servers as explained in the next section.

6 Prediction of Future State of Edge Servers

The transition probability matrix constructed for each VM
as given in Sect. 4.2 and 5.2 is used to predict the future
state of the VM, and thereby the future state of the edge
server in which the vm is located as given in Algorithm 1.
The contention manager present in the edge server calcu-
lates the average of the POO values of the transition prob-
ability matrices of all the VMs in the edge server. If the
calculated average value exceeds an upper threshold, then
the edge server is marked as overloaded by the conten-
tion manager. If the calculated average value is less than a
lower threshold, then the edge server is marked as under-
loaded by the contention manager. Else, the edge server is
marked as normally loaded.

Fig. 3 CRMRCP - Prediction and migration

27International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

The contention manager sends the predicted future state
of the edge server periodically to the zone state manager
in the micro-datacenter. Thus, the zone state manager has
the future predicted states of all the edge servers for that
particular zone.

If an edge server is found as overloaded, the contention
manager receives the list of underloaded edge servers from
the zone state manager for that particular zone of the net-
work. The VM with the highest value of POO within the over-
loaded edge server is selected first to be migrated to another
underloaded edge server by the contention manager. Then,
the VM with the lowest value of POO in an underloaded edge
server is also selected by the contention manager from the
received underloaded edge server list.

Before migrating the overloaded VM, a check is done to
verify if the migration would result in the overloading of
the edge server to which the VM is migrated. The highest
value of POO of all the VMs in the overloaded edge server
is swapped with the lowest value of POO of all the VMs in
the underloaded edge server. The average of POO values of
all the VMs of the sending and the receiving edge servers
are calculated separately. If the calculated average for the
receiving edge server or the sending server is above an upper
threshold, the contention manager selects the next under-
loaded edge server from the list and does the check again. If
it is not possible to find any such underloaded edge server,
then the overloaded VM of the sending edge server is killed
since migration is not possible.

7 Experiments

7.1 Experimental Setup

The edge computing environment is simulated using
EdgeCloudSim which is built on top of the CloudSim

simulator. The number of edge devices can be dynamically
increased and the location of the edge devices are randomly
simulated.

The experiments are carried out for PlanetLab values
[22] which are the CPU utilization values of VMs collected
randomly across various datacenters. PlanetLab workload
contains the CPU utilization data collected every five min-
utes from more than a thousand VMs from servers located at
more than 500 places around the world. The workloads con-
tain traces gathered during a random period of 10 days and
these workloads are used throughout the simulations. For
each day, different files containing CPU utilization values
are available; each file corresponds to the host from which
data is collected. The PlanetLab values can be used as data-
sets for edge architecture as well [16].

Random workloads generated by the simulator for spe-
cific periods of time are also used for the experiments. The
random workload data are generated in the simulation as
per the time limit set by the user. In this experiment we have
generated random workloads at every minute for a period
of 24 h.

Table 1 gives the details of the components used in the
simulation. The number of edge devices considered in our
simulation is 1000. Each edge server can handle 20 edge
devices and a total of ten zones are used in our experiments.

Our proposed methodology is compared with the perfor-
mance of the system when the first-order and the second-
order Markov models are used for prediction [30].

The first-order Markov model uses one past CPU utili-
zation value for the prediction, whereas the second-order
Markov model depends on two values from the past. For the
first and the second order, transition probability matrices
are constructed for each VM within the edge servers and the
appropriate POO values are calculated and are used to predict
the overloaded VMs.

7.2 Results and Discussion

The results of our experiments using the configurations men-
tioned in Sect. 7.1 are discussed here. When the number of
VM migrations increases in an edge cloud, the performance
of the application is hindered.

7.3 Results for DMRCP

The Fig. 4 shows the average number of VM migrations on
10 days for the first-order Markov model, the second-order
Markov model and the proposed dynamic Markov model,
when PlanetLab workload is used. For the PlanetLab work-
load (Fig. 4), the number of VM migrations for the first-
order Markov model is high for all the 10 days, whereas,
the number of VM migrations for the second-order Markov
model is 27.2% lower than the first-order Markov model,

28 International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

on an average. Table 2 gives the percentage decrease in the
VM migrations for each day for dynamic Markov model
using PlanetLab workload. It can be inferred from Table 2
that the dynamic Markov model gives an average decrease
of 50.7% VM migrations when compared with first-order
Markov model and 23.4% decreased VM migrations when
compared with second-order Markov model for PlanetLab
workload.

The number of VM migrations for the random workload
(Fig. 5) also shows that the first order has the maximum
number of migrations followed by the second order which is
36.3% less than the first order. Table 3 gives the percentage
decrease in VM migrations for each day for dynamic Markov
model using random workload. The random workload com-
pared in Table 3 also shows that dynamic Markov model has
55.2% decreased VM migrations when compared to the first-
order Markov model and 18.8% decreased VM migrations
compared to the second-order Markov model.

The computational complexity for the construction of the
history matrix is O(n) where n is the order of the history
matrix. The computational complexity for the construction
of the transition probability matrix using dynamic Markov
model is O(n) where n is the number of states of the VM.
A computation O(n) followed by another O(n) gives an
overall computation complexity of O(2n). The computation
complexity of the dynamic Markov model makes the
algorithm lightweight and suitable for edge computing
architectures.

7.4 Results for CRMRCP

In this section, the results obtained for our experiments are
analyzed graphically as shown in Fig. 6. The percentage
decrease in the number of VM migrations by using CRM-
RCP when compared to using only the SM are summarised
in Table 4. The results show that the number of VM migra-
tions when only the SM is used is always more, compared
to the number of VM migrations when regression is also
used. The cascade of linear regression and the second-order
Markov model (LR+SM) shows a 62.9% decrease in the
number of VM migrations on an average, when compared
to SM. The cascade of polynomial regression and the sec-
ond order Markov model (PR+SM) gives a decrease in the
number of VM migrations by 67.1% on an average. The

cascade of lasso regression and the second-order Markov
model (LaR+SM) shows 75.2% decreased VM migrations,
on an average when compared to SM. The cascade of Sup-
port Vector Regression and the second-order Markov model
(SVR+SM) shows 68.3% decreased VM migrations, on an

Table 1 Devices Simulated Devices Number

Edge devices 1000
Network model Edge cloud
Cloud server 1
Edge server 50
Micro-datacenter 10

Fig. 4 Edge cloud architecture for DMRCP - PlanetLab Workload

Fig. 5 Edge cloud architecture for DMRCP- random workload

Table 2 Comparison of PlanetLab workload in DMRCP

Percentage decrease in number of VM migrations of Dynamic
Markov model compared with when compared with SM

Time First order Second order

Day 1 57.08% 29.78 %
Day 2 48.26 % 17.24 %
Day 3 51.71 % 21.05 %
Day 4 51.78 % 35.71 %
Day 5 43.10 % 26.31 %
Day 6 46.15 % 21.53 %
Day 7 51.72 % 21.05 %
Day 8 57.14 % 23.21 %
Day 9 48.27 % 17.24 %
Day 10 51.72 % 21.05 %

29International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

average when compared to SM. The cascade of ridge regres-
sion and the second-order Markov model (RR+SM) gives
the least number of VM migrations compared to all other

regression methods. It reduces the number of VM migrations
to 81.8% on an average when compared to SM.

Therefore, the overall results prove that the cascade of
ridge regression and SM gives the least number of VM
migrations across the edge servers in the edge cloud archi-
tecture considered.

8 Conclusion

The results of the DMRCP model outperforms both the
first order and the second-order Markov models. The over-
all results prove that the number of VM migrations for the
dynamic Markov model is 52.9% less compared to the first-
order Markov model and 21.1% less when compared to the
second-order Markov model. The results of CRMRCP model
proves that the cascade of ridge regression with the second
order Markov model reduces the number of VM migra-
tions by 81.8% when compared to not using any regression
method for future CPU utilization prediction. The proposed
solutions reduces the number of VM migrations, prevents
unnecessary migrations by predicting the VMs that cause
resource contention in an edge server, thereby enabling com-
putation and processing at the edge servers efficiently. Since
the VM migrations are done from the edge servers predicted
to be overloaded, resource contention is avoided, and also
migration traffic is reduced in the edge cloud, thereby, main-
taining the applications’ performance. The future work will
involve the prediction of other resources like memory, stor-
age needed for computation across edge servers.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Al-Shuwaili A, Simeone O (2017) Energy-efficient resource allo-
cation for mobile edge computing-based augmented reality appli-
cations. IEEE Wirel Commun Lett 6(3):398–401

 2. Alasmari KR, Green RC, Alam M (2018) Mobile edge offload-
ing using markov decision processes. Lecture Notes in Computer
Science. Springer, Berlin, pp 80–90. https:// doi. org/ 10. 1007/
978-3- 319- 94340-4_6

 3. Bahreini T, Badri H, Grosu D (2019) Energy-aware capacity
provisioning and resource allocation in edge computing systems.

Table 3 Comparison of random workload in DMRCP

Percentage decrease in number of VM migrations of Dynamic
Markov model compared with when compared with SM

Time First Order Second Order

Day 1 50% 19.5 %
Day 2 50 % 16.7 %
Day 3 63 % 12.1 %
Day 4 50 % 19.5 %
Day 5 50 % 23.4 %
Day 6 63 % 21.2 %
Day 7 63 % 21.2 %
Day 8 50 % 16.6 %
Day 9 50 % 23.4 %
Day 10 63 % 15.1 %

Fig. 6 Comparison of number of VM migrations in the proposed
CRMRCP with SM model

Table 4 Percentage decrease in number of VM Migrations for CRM-
RCP

Percentage decrease in number of VM migrations for
CRMRCP when compared with SM

Time LR+SM PR+SM LaR+SM RR+SM SVR+SM

Day 1 59.0% 63.6% 72.7% 72.7% 59.0%
Day 2 41.8% 48.7% 56.2% 68.7% 48.7%
Day 3 70.6% 71.7% 77.1% 80.4% 70.6%
Day 4 67.5% 73.3% 83.3% 91.6% 73.3%
Day 5 60.9% 65.8% 72.0% 86.0% 64.7%
Day 6 67.0% 68.6% 76.4% 84.3% 76.9%
Day 7 64.1% 58.9% 73.9% 80.4% 72.6%
Day 8 60.9% 72.0% 79.0% 79.7% 71.6%
Day 9 67.5% 75.0% 81.2% 87.5% 75.0%
Day 10 70.0% 73.9% 80.4% 86.9% 67.9%

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-94340-4_6
https://doi.org/10.1007/978-3-319-94340-4_6

30 International Journal of Networked and Distributed Computing (2023) 11:20–30

1 3

International Conference on Edge Computing. Springer, Berlin,
pp 31–45

 4. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing. Future gener comput syst 28(5):755–768

 5. Cao K, Liu Y, Meng G et al (2020) An overview on edge comput-
ing research. IEEE Access. https:// doi. org/ 10. 1109/ access. 2020.
29917 34

 6. Caprolu M, Di Pietro R, Lombardi F, et. al (2019) Edge comput-
ing perspectives: Architectures, technologies, and open security
issues. In: 2019 IEEE International Conference on Edge Com-
puting (EDGE), pp 116–123, Doi: https:// doi. org/ 10. 1109/ EDGE.
2019. 00035

 7. Chen J, Wang Y (2020) An adaptive short-term prediction algo-
rithm for resource demands in cloud computing. IEEE Access
8:53915–53930

 8. Chen X, Shi Q, Yang L et al (2018) Thriftyedge: Resource-effi-
cient edge computing for intelligent iot applications. IEEE net
32(1):61–65

 9. El-Moursy AA, Abdelsamea A, Kamran R et al (2019) Multi-
dimensional regression host utilization algorithm (mdrhu) for host
overload detection in cloud computing. J Cloud Comput 8(1):1–17

 10. Elgendy IA, Zhang W, Tian YC et al (2019) Resource allocation
and computation offloading with data security for mobile edge
computing. Future Gener Comput Syst 100:531–541

 11. Farahnakian F, Liljeberg P, Plosila J (2013) Lircup: Linear regres-
sion based cpu usage prediction algorithm for live migration of
virtual machines in data centers. In: 2013 39th Euromicro confer-
ence on software engineering and advanced applications, IEEE,
pp 357–364

 12. Jia F, Zhang H, Ji H, et al (2018) Distributed resource allocation
and computation offloading scheme for cognitive mobile edge
computing networks with noma. In: 2018 IEEE/CIC International
Conference on Communications in China (ICCC), pp 553–557

 13. Jiang C, Fan T, Gao H et al (2020) Energy aware edge computing:
A survey. Comput Commun 151:556–580

 14. Jošilo S, Dán G (2019) Wireless and computing resource allo-
cation for selfish computation offloading in edge computing. In:
IEEE INFOCOM 2019-IEEE Conference on Computer Commu-
nications, IEEE, pp 2467–2475

 15. Jošilo S, Dan G (2021) Joint management of wireless and comput-
ing resources for computation offloading in mobile edge clouds.
IEEE Trans Cloud Comput 9(4):1507–1520. https:// doi. org/ 10.
1109/ TCC. 2019. 29237 68

 16. Kolosov O, Yadgar G, Maheshwari S, et. al (2020) Benchmark-
ing in the dark: On the absence of comprehensive edge datasets.
In: 3rd {USENIX} Workshop on Hot Topics in Edge Computing
(HotEdge 20)

 17. Liu X, Qin Z, Gao Y (2019) Resource allocation for edge comput-
ing in iot networks via reinforcement learning. In: ICC 2019-2019
IEEE International Conference on Communications (ICC), IEEE,
pp 1–6

 18. Liu X, Yu J, Wang J et al (2020) Resource allocation with edge
computing in iot networks via machine learning. IEEE Internet
Thin J 7(4):3415–3426

 19. Mandal G, Dam S, Dasgupta K et al (2020) A linear regression-
based resource utilization prediction policy for live migration in
cloud computing. Algorithms in machine learning paradigms.
Springer, Berlin, pp 109–128

 20. Marquardt D, Snee R (1975) Ridge regression in practice. Am
Stat - Amer Statist 29:3–20. https:// doi. org/ 10. 1080/ 00031 305.
1975. 10479 105

 21. Muthukrishnan R, Rohini R (2016) Lasso: A feature selection
technique in predictive modeling for machine learning. IEEE Int

Con Adv Comput Appl (ICACA). https:// doi. org/ 10. 1109/ ICACA.
2016. 78879 16

 22. Park K, Pai VS (2006) Comon: a mostly-scalable monitoring sys-
tem for planetlab. ACM SIGOPS Operat Syst Rev 40(1):65–74

 23. Patil S, Patil S (2021) Linear with polynomial regression: Over-
view. Int J Appl Res 7:273–275. https:// doi. org/ 10. 22271/ allre
search. 2021. v7. i8d. 8876

 24. Plachy J, Becvar Z, Strinati EC (2016) Dynamic resource alloca-
tion exploiting mobility prediction in mobile edge computing. In:
2016 IEEE 27th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), pp 1–6,
Doi: https:// doi. org/ 10. 1109/ PIMRC. 2016. 77949 55

 25. Shan N, Cui X, Gao Z (2020) Drl+ fl-an intelligent resource allo-
cation model based on deep reinforcement learning for mobile
edge computing. Comput Commun 160:14–24

 26. Shan N, Li Y, Cui X (2020b) A multilevel optimization framework
for computation offloading in mobile edge computing. Mathemati-
cal Problems in Engineering 2020

 27. Shi W, Cao J, Zhang Q et al (2016) Edge computing: Vision and
challenges. IEEE Int Thing 3(5):637–646

 28. Shingne H, Sountharrajan S, Karthiga M et al (2020) Lasso and
ridge regression for optimized resource allocation in cloud com-
puting. J Adv Res Dynam Contr Syst 12:1740–1747

 29. Spatharakis D, Dimolitsas I, Dechouniotis D et al (2020) A scal-
able edge computing architecture enabling smart offloading for
location based services. Pervasive Mobile Comput 67(101):217

 30. Surya K, Rajam VMA (2021) Prediction of resource contention
in cloud using second order markov model. Springer Comput.
https:// doi. org/ 10. 1007/ s00607- 021- 00967-1

 31. Svorobej S, Takako Endo P, Bendechache M et al (2019) Simulat-
ing fog and edge computing scenarios: An overview and research
challenges. Future Internet 11(3):55

 32. Tao Z, Xia Q, Hao Z et al (2019) A survey of virtual machine
management in edge computing. Proceed IEEE 107(8):1482–1499

 33. Xiong X, Zheng K, Lei L et al (2020) Resource allocation based
on deep reinforcement learning in iot edge computing. IEEE J
Selec Area Commun 38(6):1133–1146. https:// doi. org/ 10. 1109/
JSAC. 2020. 29866 15

 34. Yang G, Hou L, He X et al (2021) Offloading time optimization
via markov decision process in mobile-edge computing. IEEE
Internet Thin J 8(4):2483–2493. https:// doi. org/ 10. 1109/ JIOT.
2020. 30332 85

 35. You C, Huang K, Chae H et al (2016) Energy-efficient resource
allocation for mobile-edge computation offloading. IEEE Transact
Wirel Commun 16(3):1397–1411

 36. Yousefpour A, Fung C, Nguyen T et al (2019) All one needs
to know about fog computing and related edge computing para-
digms: A complete survey. J Syst Architec 98:289–330. https://
doi. org/ 10. 1016/j. sysarc. 2019. 02. 009

 37. Zhang K, Mao Y, Leng S et al (2016) Energy-efficient offloading
for mobile edge computing in 5g heterogeneous networks. IEEE
access 4:5896–5907

 38. Zhao Z, Min G, Gao W et al (2018) Deploying edge computing
nodes for large-scale iot: A diversity aware approach. IEEE Inter-
net of Things Journal 5(5):3606–3614

 39. Zhu G, Liu D, Du Y et al (2020) Toward an intelligent edge: wire-
less communication meets machine learning. IEEE Commun Mag
58(1):19–25

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/access.2020.2991734
https://doi.org/10.1109/access.2020.2991734
https://doi.org/10.1109/EDGE.2019.00035
https://doi.org/10.1109/EDGE.2019.00035
https://doi.org/10.1109/TCC.2019.2923768
https://doi.org/10.1109/TCC.2019.2923768
https://doi.org/10.1080/00031305.1975.10479105
https://doi.org/10.1080/00031305.1975.10479105
https://doi.org/10.1109/ICACA.2016.7887916
https://doi.org/10.1109/ICACA.2016.7887916
https://doi.org/10.22271/allresearch.2021.v7.i8d.8876
https://doi.org/10.22271/allresearch.2021.v7.i8d.8876
https://doi.org/10.1109/PIMRC.2016.7794955
https://doi.org/10.1007/s00607-021-00967-1
https://doi.org/10.1109/JSAC.2020.2986615
https://doi.org/10.1109/JSAC.2020.2986615
https://doi.org/10.1109/JIOT.2020.3033285
https://doi.org/10.1109/JIOT.2020.3033285
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1016/j.sysarc.2019.02.009

	Novel Approaches for Resource Management Across Edge Servers
	Abstract
	1 Introduction
	2 Related Work
	2.1 Computational Offloading Methods in Edge
	2.2 Resource Allocation in Edge Using Machine Learning Algorithms
	2.3 Energy-Based Resource Allocation
	2.4 Resource Prediction Techniques in Edge Computing
	2.5 Regression Models used for Resource Prediction

	3 System Architecture and Problem Formulation
	4 DMRCP
	4.1 Construction of History Matrix
	4.2 Construction of Transition Probability Matrix Using Dynamic Markov Model

	5 CRMRCP
	5.1 Regression Model
	5.1.1 Linear Regression (LR)
	5.1.2 Polynomial Regression (PR)
	5.1.3 Lasso Regression (LaR)
	5.1.4 Ridge Regression (RR)
	5.1.5 Support Vector Regression (SVR)

	5.2 Construction of Transition Probability Matrix Using Second-Order Markov Model

	6 Prediction of Future State of Edge Servers
	7 Experiments
	7.1 Experimental Setup
	7.2 Results and Discussion
	7.3 Results for DMRCP
	7.4 Results for CRMRCP

	8 Conclusion
	References

