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Abstract 

The excessive simplification of occupant behavior is considered as the most important factor that affects the uncer-
tainty of building performance simulation, thus affects the reliability and generalizability of simulation-based design 
and forecast. In this paper, occupant behavior in air-conditioned office buildings of the Pearl River Delta (PRD) region 
was investigated and defined. Copies of 873 questionnaires about the occupant behavior in air-conditioned office 
buildings in the PRD region were collected to study the relationship between indoor environment quality and adap-
tive behaviors. Eight typical office occupant schedules were defined via K-means clustering method. A probability 
prediction model of cooling temperature set-point was established by using the Ordinal Logistic Regression method. 
According to the different control modes of air conditioning, window, blind and lighting equipment, four types of 
typical behavior patterns were proposed using the K-prototype clustering method, which could be developed into 20 
typical occupant behavior styles of office buildings in the PRD region.

Keywords:  Building performance simulation, Occupant behavior model, Office building, Pearl River Delta, Indoor 
environment quality
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1  Introduction
Due to the increasing demand for indoor environment 
and energy consumption, research related to building 
energy is considered a hot topic around the world. With 
the rapid development of computer science, building 
performance simulation is becoming a widely accepted 
method for building energy-related studies. However, 
there often exists a significant gap between the simulated 
and the actual energy consumption.

A report of International Energy Agency, Energy in 
the Buildings and Communities Program (IEA-EBC) 
Annex  53 stated that building energy consumption is 
influenced by mainly six parameters, namely meteoro-
logical parameters, building envelope, system equipment, 

indoor design criteria, system operation management 
and occupant behavior (Yoshino et  al., 2017). Among 
them, occupant behavior in buildings has been widely 
recognized as a major factor contributing to the gaps 
between measured and simulated energy consumption in 
buildings (Chen et  al., 2017; Sun et  al., 2014; Sun et  al., 
2016; Yan et  al., 2015). Zhou et  al. (2016) showed that 
the stochastic characteristics of air conditioning use pat-
terns were the main factor for the difference in energy 
consumption between the predicted and the actual per-
formance. However, only one type of user behavior (air 
conditioning) was considered in some study, regardless of 
other office equipment (lighting, window, and blind). Sun 
& Hong, 2017 simulated and analyzed five typical occu-
pant behavior, which concluded that individual occupant 
behavior could cause a difference of up to 22.9% of energy 
consumption, with respect to integrated behavior, the 
difference could be 41%. Eguaras-Martínez et  al. (2014) 
showed that the difference between predicted energy 

Open Access

Architectural Intelligence

*Correspondence:  ceyuhuang@gzhu.edu.cn

4 State Key Laboratory of Green Building in Western China, Xian University 
of Architecture & Technology, Xian, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5199-383X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s44223-022-00005-w&domain=pdf


Page 2 of 19He et al. Architectural Intelligence              (2022) 1:8 

consumption inclusion and exclusion of occupant behav-
ior in building simulations could be up to 30%. The ran-
domness of occupant behavior was often oversimplified 
or neglected, by using full-time full-space static assump-
tions or applying default settings according to building 
types and climate zones. From a simulation perspective, 
occupant behavior is a vital input part of the simulation 
process, it is essential to conduct an in-depth study on 
occupant behavior, achieving accurate occupant behavior 
module input value.

Scholars conducted various studies, indicating that 
the reason why occupant can affect building energy 
consumption was that occupant will perform a series of 
adaptive behaviors to achieve a new comfortable envi-
ronment status (Yamaguchi et al., 2013; Yan et al., 2017). 
Therefore, information about the comfort desires of the 
occupant could be collected to improve the manage-
ment of building energy consumption without sacri-
ficing users’ comfort or productivity (Pérez-Lombard 
et al., 2011; Chung, 2011). Besides, it was also crucial for 
simulation of occupant behavior to study the motivation 
of occupant interaction with the building environment 
(Yan et al., 2017).

Yan & Hong, 2018 focused on the definition or simu-
lation of occupant behavior in buildings and attempted 
to conduct a comprehensive description of the random 
occupant behavior. Data from various locations and 
types of buildings worldwide were collected by scholars 
to build a library of stochastic occupant behavior mod-
els. A newly developed algorithm (the Yun algorithm) 
has been described to simulate the occupant behavior 
of window-control in dynamic building simulation soft-
ware (Yun et al., 2009). The research discovered the rela-
tionship between occupant behavior and environmental 
parameters (Mahdavi et al., 2008). A probabilistic model 
to simulate and predict occupancy in a single-person 
office was proposed by examining the statistical prop-
erties of occupancy (Wang et al., 2005). Taking the uni-
versity office with irregular occupancy as a case study, a 
static and dynamic model of the individual occupant and 
occupant behavior in an office environment in relation to 
building control systems were validated (Zimmermann, 
2007). A new, open-source modeling tool was set for sto-
chastic simulation to predict occupant services demand 
in buildings (Rysanek & Choudhary, 2015). Coupling of 
dynamic building simulation with stochastic modeling of 
occupant behavior in offices was introduced that can be 
used in energy uncertainty analysis. (Parys et  al., 2011). 
A stochastic model of occupant behavior regarding ven-
tilation is proposed to study time-series of window angle 
(Fritsch, 1990). The statistical occupancy time-series data 
at a ten-minute resolution was generated to describe 
realistic occupancy in UK households, that presented to 

provide a stochastic simulation of active occupancy pat-
terns (Richardson et  al., 2008). A stochastic bottom-up 
model based on data that occupancy patterns and day-
light availability observed in measured lighting demand 
in detached houses has been presented and validated 
(Widén et al., 2009).

Presence models and action models were both included 
in the model base, the presence models (often referred as 
the occupancy schedule) describes the presence, absence 
and movement of occupants in space. The action model 
describes various types of adaptive and non-adaptive 
behavior, such as switching on/off air conditioning 
equipment, lighting, window and blind. Typical cooling 
load curves were used by Chow et  al. (2004) and Gang 
et  al. (2015) to simulate the different schedules of sev-
eral building types (such as offices, residential buildings, 
and hotels), the performance of the system was analyzed 
according to the predicted load. The occupancy sched-
ule was established by mining the energy consumption 
data of office building equipment, comparing with the 
occupancy schedule of medium-sized office building 
proposed by the DOE prototype, the results showed that 
there was a 36.67–50.53% difference between the “proto-
type” and the actual specific office (Zhao et al., 2014).

Pearl River Delta is an alluvial plain located in the sub-
tropical climate zone of southern Guangdong, China, 
which covers an area of around 55,000 km2, and a popula-
tion of about 57 million. Considered as one of the most 
prosperous bay areas in the world, Pearl River Delta con-
tains a huge scale of developed urban agglomeration, 
which emphasizes the importance of urban energy design 
and management. Occupant behavior, which is consid-
ered as the most important factor that affects the energy 
performance of buildings, has been the research focus of 
scholars.

At present, there is no first-hand data for occupant 
behaviors within buildings in this area in the ASHRAE 
database (ASHRAE, 2013). In this study, a questionnaire 
was proposed from the literature review, which contains 
questions on thermal comfort, occupant behavior and 
sharing authority within air-conditioned office buildings. 
From the analysis of the survey results, the preference 
of occupant adaptive behavior in air-conditioned indoor 
environment was investigated. A prediction model of 
cooling temperature set points were obtained. A series of 
occupant behavior styles for air-conditioned office build-
ings in the PRD region were summarized.

2 � Methodology
2.1 � Basic information of questionnaire
The occupant behavior within the building is affected 
by various “driving forces”, both internal (such as 
lifestyle, age, gender, attitude, preference, etc.) and 
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external (such as temperature, humidity, wind speed, 
building property etc.) (Sun & Hong, 2017). In order to 
investigate the intention behind the behavior as well as 
the interaction between thermal comfort and occupant 
behavior in the office, a questionnaire survey was con-
ducted in the PRD region from March to April 2019. 
The questions could be divided into thermal comfort, 
equipment control preference, office type as well as the 
personal basic information, as shown in Table  1. Yan 
et  al. (2015) pointed out that the occupant behavior 
mainly includes the operation of air conditioning, light-
ing, window, blind and plug-in appliances. Based on 
the large-scale questionnaire survey, the typical pattern 
of various kinds of occupant behaviors was mined by 
the clustering method and then combined to form the 
occupant behavior style model. In this study, the occu-
pant behavior on plug-in electric appliances was not 
considered, because in the office building, high power 
plug-in electric life appliances such as TV sets, refrig-
erators or washing machines were quite rare.

The questionnaires were distributed both online and 
on-site. The e-questionnaire was released on March 11, 
2019, and recalled on April 30, 2019. During the sur-
vey period, though not every day, the air temperature 
often exceeds 30 °C. In the downtown area the peak 
temperature was even as high as 32 °C. Due to the high 
relative humidity, natural ventilation is not applicable 
especially in offices with multiple occupants. In this 
case, it is believed that the questionnaire result could 
reflect the occupants’ behavior toward air-conditioned 
indoor environment. While a submission was made, the 
location, as well as the time of the submission, could be 
identified. Only those submissions with all the ques-
tions answered, located within the 9 main cities of the 
PRD and submitted during office hours were consid-
ered valid. Questionnaires with contradictory or casu-
ally random answers were also excluded. The number of 
interviews of online survey reached 4571, within which 
667 valid questionnaires were collected. For the filed 
survey, a total of 206 valid questionnaire were collected 
till May 15, 2019.

2.2 � Occupancy schedule analysis
Occupancy schedule is a major issue in occupant behav-
ior model for occupants would make adjustment accord-
ing to comfort or behavior habits only when they are 
presented in the building (Sun et  al., 2014; Wang et  al., 
2011). Currently, the static occupancy schedule is widely 
applied for building performance simulation. Many rele-
vant government institutions and academic organizations 
provide occupancy for different building types in local 
design or evaluation standards. However, the movement 
and spatial change of users within one building could not 
be fully reflected by one single static schedule (Sun & 
Hong, 2017). In this study, occupancy schedules for dif-
ferent office scenes were defined by 3D scatter diagram 
method and the K-mean clustering analysis method. 
The random motion of occupants was simulated by the 
Markov chain method proposed by Wang et  al. (2011), 
which indicates that the random movement probability of 
the person is related to time, and the future state depends 
on the current state. The random user motion was simu-
lated with the application of the DeST software using the 
Markov chain model, and the results were stored in the 
SQLite database. This method can reflect the changes 
of the user’s presence and movement indoor, which can 
reflect the user’s diversity and random features.

2.3 � Cooling temperature set point prediction
The indoor cooling temperature set point is the most 
critical and direct factor affecting cooling load, which 
reflects occupant thermal comfort requirements. In this 
study, the influencing factors of the cooling tempera-
ture set point were analyzed by the IBM SPSS Statistics 
23 Ordinal Logistic Regression method to establish the 
prediction model, which can predict the cooling tem-
perature set-point probability based on the office case 
information. Ordinal logistic regression model fitting 
information test is based on the original hypothesis that 
all constant coefficients of the independent variable are 
0. When P (Sig.) < 0.05, it means 95% probability believes 
that the original hypothesis is not valid, which indicates 
that the prediction model has statistical significance. 

Table 1  Questionnaire structure and content in this study

Structure The questionnaire content

Thermal comfort Thermal sensation vote (TSV), wet sensation vote (WSV), indoor environment quality (IEQ), adaptive behavior

Equipment control pattern Seasonal demand for air conditioning, adjustment pattern, equipment status, behavior preference, whether 
to use heating equipment, energy-saving consciousness

Share permission Control authority, deliberative frequency, collective interaction

Office information Commuting schedule, office size

Personal information Gender, age, work city, profession, office activity, the relative position of office
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When the goodness of fit test (χ2) of the model is P > 0.05, 
which shows that the goodness of fit of the model is bet-
ter. The parallel line test is one of the most essential char-
acteristics of the logistic regression model with ordered 
multi-classification. The original hypothesis of the paral-
lel test is that the coefficients of independent variables of 
multiple binary logistic regression are equal, and when 
the value of P (Sig.) is > 0.05, the original hypothesis can 
be considered valid.

Where, Pj = P(y ≤ j|x), represents the cumulative prob-
ability of y taking the first j values.

Cumulative dependent variable probability follows a 
formula (2).

j is a dependent variable partition point, ɑj is the con-
stant term corresponding to the x cooling temperature, 
xn is the n influencing factor, βn is the regression coeffi-
cient of the n influencing factor.

Probability prediction formula of the single dependent 
variable (3).

j is a dependent variable partition point, k is the k cool-
ing temperature.

In this study, the influencing factor of the cooling tem-
perature set point is defined as IDV (X1, X2, ... Xķ): X1-
age, X2-the effect of IAQ on work efficiency, X3-the effect 
of temperature on work efficiency, X4-control authority, 
X5-activity intensity, X6-thermal sensation voting (TSV), 
X7-whether the air conditioning run all the time in sum-
mer, X8-air velocity range, X9-status of window when the 
air conditioning on, X10-office nature, X11-office scale, 
X12-the effect of humidity on work efficiency, X13-air 
condition demand, X14-distance from air outlet.

2.4 � Equipment control models
It is a random event that whether someone in the office 
control equipment at a specific time or not. The occu-
pant may take different behaviors facing the same envi-
ronment or event that related to the indoor environment, 
daily events (commuting, leaving temporarily) and per-
son. The clustering method is conducted by this study 
to classify occupants, and the probability of occupant 
behavior that corresponds to different types of users is 
further counted (Silva et al., 2009).

(1)Y = log it
(

pj
)

= ln

(

pj

1 − pj

)

= Aj + �1x1 + �2x2 +⋯ + �nxn

(2)

Pj = p
(

Y ≤ j|x
)

=

{

exp (�j+�nxn)
1+exp (�j+�nxn)

,when 1 ≤ j ≤ k − 1

1 , when j = k

}

(3)p Y = j = Pj − Pj−1, j = 1, · · · , k

The factors affecting equipment control are divided 
into environmental triggers and event triggers. The mode 
of “open when feeling hot” (related to indoor tempera-
ture) or “open when feeling stuffy” (related to indoor 
humidity) is considered as an environmental trigger, 
which is described as (4).

Where Pon is the probability that the user will con-
trol the equipment; t is the indoor temperature (°C), u 
is threshold temperature (°C), l is the scale parameter, 
which is dimensionless to the temperature, k is the shape 
parameter, which indicates the sensitivity to the environ-
ment, ∇τ is the time step in measurement and simula-
tion, which is typically set at 10 minutes.

The mode of “turn on when at work”, “closed when leav-
ing temporarily” and “closed at work” are considered as 
event triggers, and the probability of which is described 
as (5).

Where Pon is the probability that the user will control 
the equipment, τ is the current time spot in the simula-
tion, τ0 is the time spot when the relevant event occurs.

3 � Result and discussion
3.1 � Impact of IEQ factors on occupant behavior
The impact factors of IEQ that affect productivity was 
studied in this study. According to the survey result, a 
seven-latitude radar chart was applied here as in Fig. 1. It 
is clear that humidity has a relatively low impact on work 
efficiency. 634 out of the 873 subjects, accounting for 
72.3%, believe that temperature had a more considerable 
influence than humidity, which was also the difference of 
the main adaptation behavior between temperature and 
humidity discomfort. 5.5% of subjects did not take any 
adaptive actions to improve the thermal comfort status 
even under cold conditions, while a proportion of 15.2% 
subjects did not take any actions in the case of highly 
humid environment.

The evaluation of the satisfaction level of indoor envi-
ronment quality is shown in Fig. 2. It can be concluded 
that the subjects generally believed that indoor temper-
ature and indoor air quality have an influence on their 
working efficiency, but the corresponding satisfaction 
degree is not so high. Subjects thought that the humid-
ity environment only has an average impact on work 
efficiency.

(4)Pon =

{

1− e−
(

t−u
l

)k
∇τ t ≤ u,

0 t < u

(5)Pon =

{

P τ = τ0
0 τ �= τ0
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Fig. 1  The evaluation of the influence of indoor environment quality on work efficiency

Fig. 2  The evaluation of the satisfaction level of indoor environment quality
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Indoor thermal comfort within office buildings is an 
essential factor affecting health, work efficiency, and 
energy consumption. In this study, while analyzing sub-
jects’ vote on indoor temperature and humidity, it was 
found that 18.9% of subjects thought that the indoor 
temperature of the office is slightly too low in summer. 
In order to study the influence of office staff ’s temper-
ature and humidity perception, a 3-D cross-analysis 

was conducted to analysis temperature and humidity 
perception voting, as shown in Fig.  3. When the ther-
mal environment is relatively satisfactory, most of the 
humidity complaint were in a neutral state. In general, 
when occupants feel hot in summer and cold in win-
ter (discomfort conditions), humidity perception vot-
ing is hugely diversified. The result showed that in the 
PRD region, the temperature has a positive impact on 

Fig. 3  Distribution of indoor temperature and humidity
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wet feeling. When subjects are in a comfortable ther-
mal environment, the acceptance rate of humidity will 
increase. The temperature and humidity of the indoor 
thermal environment are mutually coupled, and the 
influence of one factor on occupant comfort can be 
compensated by the corresponding change of the other 
factor.

Occupant behavior of office building is diversified 
while facing the same thermal discomfort, which can be 
interpreted as individual adaptive preference. During the 
interview about temperature-related adaptive behavior, 
subjects were asked about their preference for behavior 
during a temperature-related uncomfortable period. The 
result is shown in Fig. 4. In a hot and humid area such as 
PRD, the air conditioning is the first choice by 71.0% of 
subjects while they feel hot. On the contrary, in the case 
of a cold situation, clothes are chosen by 50.0% - 59.0%, 
and closing the doors and windows is chosen by 41.0%. 
The probability of switching on air-conditioning behavior 
decreases dramatically to under 20.0%, which is consist-
ent with the trend that only 19.5% of subjects in the PRD 
region have heating systems.

Occupant behavior under humidity related discomfort 
situation is shown in Fig.  5. The probability of air con-
ditioning switching is 32.0%. While 27.2% of subjects 
choose to close doors or windows, 20.0% choose to open 
fans. In dry cases, the probability of taking non-actions 
have been increased to 21.0%.

So far, most studies on occupant behavior only focus 
on one specific behavior, while in practice, multiple 
behaviors may be taken by occupants to adjust the indoor 

environment in many cases (e.g., opening office doors 
and windows to provide cross ventilation). The applica-
bility of these multi-behavior models was not clear (Yan 
et al., 2015). In this study, relevant data were collected to 
study the probability of multiple actions triggered and 
how to restrict or negotiate each action under uncom-
fortable conditions.

In order to study the probability between behaviors 
triggered by thermal discomfort, Fig.  6 was obtained 
after data analysis and statistics. As shown in the fig-
ure, the probability of single behavior is relatively small 
under extreme thermal discomfort. Under opening air 
conditioning behavior, a combination of turning on air 
conditioning and reducing clothing is 11.7%, While the 
combination of turning on air conditioning and opening 
fans is 5.16%. It indicates that while facing extreme ther-
mal discomfort, multiple behaviors would be triggered in 
most cases.

In order to further study the balance among different 
occupant adaptive behaviors under the thermal discom-
fort status, the correlation among the possible adjust 
behaviors of the four devices was analyzed, and the P/Sig. 
value and the correlation coefficient (Phi) were obtained, 
as shown in Table 2.

The results show that air conditioning behavior has a 
significant effect on the adjustment actions of clothing, 
fan, door, and window during the hot period. When the 
air conditioning switching behavior occurs, the prob-
ability of reducing clothing increase, while the probabil-
ity of opening fans and windows decrease. However, for 
any thermal discomfort situation, the action towards air 

Fig. 4  The tendency of temperature-related occupant behaviors to restore thermal comfort
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conditioning has no significant effect on window related 
behavior. It is also found that the probability of air con-
ditioning switching behavior is reduced when the fan 
switching behavior occurs. In extreme discomfort con-
ditions, occupants would choose the air conditioning 
rather than the fan.

In order to further study the occupant adaptive 
behavior under humidity related discomfort, the 
correlation among the behaviors toward the four 
devices was analyzed. The P/Sig. value and the cor-
relation coefficient (Phi) were obtained, as shown in 
Table 3.

Fig. 5  The tendency of humidity-related occupant behaviors to restore thermal comfort

Fig. 6  Adaptive behaviors under opening air conditioning to restore extreme heat discomfort
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The results show that air conditioning switching behav-
ior has a significant effect on the behavior of opening 
windows under the extremely humid situation. When the 
air conditioning switching behavior occurs, the probabil-
ity of opening the window is reduced. The air condition-
ing has no significant effect on the behavior of closing 
window action. It can reflect that the subjects prefer to 
pursue a higher indoor air quality, but have weak aware-
ness of window behavior impacting on air-conditioning 
energy consumption.

3.2 � Occupancy schedule
It was found that the commuting time is affected by the 
size and nature of the office, which would, in turn, affects 
the occupancy schedule of office buildings. Based on sur-
vey data, it was observed that the difference between the 
large office occupancy schedule and the open office occu-
pancy schedule is not significant. Therefore, in this study, 
multi-person office and open-plan office are collectively 
referred to as large office. The size range of small office 
and large office were set at 50m2 (Lv et  al., 2019). The 

Table 2  The correlation between interaction behaviors to restore thermal discomfort

P < 0.05 means that independent variables have a statistically significant influence on dependent variables. The correlation coefficient (Phi) represents the degree to 
which the independent variable affects the dependent variable. Significance code: “***” if P-Value < 0.001, “**” if 0.001 ≤ P-Value < 0.01, “*” if 0.01 ≤ P-Value < 0.05, “-” if 
P-Value ≥0.05. Relevance code: “+” if positive correlation, “0” if uncorrelated, “-” if negative correlation

Discomfort Main behavior Other behavior P/ Sig. Significance Phi Relevance

Hot Turn on air conditioning Turn off window 0.000 *** −0.270 –

Undress 0.001 ** 0.110 +
Turn on fan 0.002 ** −0.102 –

Turn on fan Turn off window 0.090 – −0.049 0

Turn off air conditioning 0.020 * −0.270 –

Warm Turn on air conditioning Turn off window 0.000 *** −0.359 –

Turn on fan 0.000 *** −0.257 –

Undress 0.078 – −0.055 0

Turn on window Turn off window 0.295 – −0.021 0

Turn on fan 0.000 *** 0.130 +
Undress 0.000 *** 0.169 +

Cool Dress Turn off window 0.172 – −0.034 0

Cold Dress Turn off window 0.000 *** 0.252 +
Turn on air conditioning 0.000 *** −0.165 –

Turn off fan 0.000 *** 0.106 +

Table 3  The correlation between interaction behaviors to restore discomfort of humidity

Discomfort Main behavior Other behavior P/ Sig. Significance Phi Relevance

Ultra wet Turn on air conditioning Turn off window 0.103 – 0.046 0

Turn on window 0.000 ** −0.305 –

Turn on fan 0.004 ** −0.091 0

Turn off window Turn on window 0.000 * −0.315 –

Turn on fan 0.227 – −0.029 0

Turn off air conditioning 0.000 *** −0.260 –

Wet Turn on window Turn off window 0.000 *** −0.352 –

Turn on fan 0.417 – −0.011 0

Turn off window Turn off air conditioning 0.372 – −0.014 0

Turn on fan 0.033 * −0.065 0

Dry Turn off window Turn on fan 0.012 * −0.080 0

Turn on air conditioner 0.000 *** −0.210 –

Ultra dry Turn off window Turn off fan 0.430 – −0.009 0

Turn on air conditioning 0.000 *** −0.183 –
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weekly working time data were classified into 3D scatter 
plots, as shown in Fig. 7.

K-mean clustering method was used to cluster the 
occupancy schedule of the office with different sizes and 
functions, and finally, eight typical office timetables were 
achieved, as shown in Table 4.

3.3 � Cooling temperature set point
The cooling temperature set point data was shown in 
Fig. 9. A Q-Q graph is used to verify the normal distri-
bution of the cooling temperature set point, as shown in 
Fig. 10. Each point is approximately distributed near the 
standard line, which indicates that the cooling tempera-
ture set point could be considered to follow a normal dis-
tribution. It can be concluded that the most common set 
points was 26 °C in the office building of the PRD.

Multivariate ordinal logistic regression in IBM SPSS 
Statistics 23 was applied to analysis the cooling tempera-
ture set point prediction model of the air-conditioning 
system. The test results are as follows: Model Fitting 
Information Test P (Sig.) =0.000 < 0.001, Goodness of 
fit test P = 1 > 0.05, Test of Parallel Lines Test P (Sig.) 
=0.87 > 0.05, which indicates that the prediction model of 
cooling temperature setting in this study is valid.

The research results show that the office occupation 
nature, office size, air conditioning demand and the influ-
ence of humidity on office work efficiency have no sig-
nificant influence on the cooling temperature set point. 
The probability of high cooling temperature set point 
increases by 1.27 times when occupant’s age increase. 
Indoor temperature and air quality have a significant 
influence on the cooling temperature set point. The prob-
ability of a low cooling temperature set point increases 
when people realize that temperature/air quality has a 
greater impact on work efficiency. Meanwhile, the larger 
the control permissions, the more diverse and the lower 
and more diverse the temperature setpoints; The fre-
quency of occupant activities increase the probability of 
low temperature set point by 64.0%, compared with those 
who rarely move. Leaving the other variables unchanged, 
increasing the thermal sensation voting (from − 3 to 3) 
leads to an increase of a low temperature set point by 5 
times. The probability of a low temperature set point can 
also be reduced by 68.0% when air conditioning can be 
functioned all day round in summer. Compared with that 
in the somatosensory temperature system, the low tem-
perature set point probability of under high air velocity 
situation is reduced by 52.0%, while the low air veloc-
ity situation the probability by 2.23 times. While the 
AC system is on, the opening window will increase the 

probability of a low temperature set point by 1.42 times. 
Logical regression coefficients P values, significance lev-
els and OR standardized estimations of cooling tempera-
ture setting are reported in Table 5.

The logistic regression function formula (2) can be 
expressed as Formula (6), as the prediction model of the 
cooling temperature of office buildings in the PRD region.

Aiis the constant corresponding to the i cooling tem-
perature set point; Βj stands for the regression coefficient 
of the j influence factor; Xj (η,p)-j is the influencing fac-
tor, η is the option of the j influencing factor, and P is the 
number of an occupant who selects η.

The office case information was substituted into the 
12 model prediction equations obtained by function (6), 
and then the cumulative probability value was obtained 
by substituting the model prediction formula into the 
inverse function formula (2) above. The cumulative prob-
ability value was substituted into a function (3) above to 
calculate the prediction probability of a single dependent 
variable. The category with the highest forecast probabil-
ity can be considered as the category of the case.

Taking a small office (1 person) as an example, the 
probability distribution of the cooling temperature set 
point is predicted as shown in Table 6.

An example of the cooling temperature prediction for 
a large office (10 persons) is also given below. Influenc-
ing factors information and the probability distribution 
of predicting cooling temperature setpoints are shown in 
Table 7.

3.4 � Typical occupant behavior model
3.4.1 � HVAC
K-prototype clustering analysis was conducted to analyze 
the factors affecting air conditioning behavior. Accord-
ing to the actual situation, the clustering categories were 
classified by the combination of opening and closing 
modes, as shown in Table 8.

In all models, air conditioning switching behavior is 
carried out if colleagues and supervisors propose, which 
highlights the collective interactivity in a large office. In 
this study, air conditioning behavior pattern is regarded 
as a combination of environmental and event drivers, 
which are independent of each other. For example, air 
conditioning behavior of the indoor temperature does 
not depend on the event when it is temporarily left. The 
probability of AC on/off is calculated using independent 

(6)Log(pi) = Ai +

j=9,η=6,p=30
∑

j=1,η=1,P=1

βjXj(η,P)
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Fig. 7  3D scatter plot distribution of commuting time in this study
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Fig. 8  Occupancy schedule on workday of all modes randomly simulated by DeST software

Table 4  The occupancy schedule of different types of 
movement models obtained by clustering

Office nature: administration (office staff, accounting, etc.), technician (IT, 
finance, design etc.), marketer (sales, business, customer manager, etc.), 
researcher (teachers, professors, researchers, etc.). After clustering analysis, the 
real-time occupant presence status obtained from questionnaires were input 
into the DeST software to simulate the random occupancy schedule of the office 
building by using the Markov chain model, as showed in Fig. 8. The small office 
size is set as 28m2, and the large office size is set as 76m2 in the DeST software.

Mode Office 
nature

Office size Office 
hours

Off time Work 
hours per 
week

Mode 1 Administra-
tion

Small Office 8:00 18:00 49

Mode 2 Technician Small Office 8:00 17:30 42

Mode 3 Marketer Small Office 8:30 17:30 42

Mode 4 Researcher Small Office 8:00 18:20 56

Mode 5 Administra-
tion

Large office 8:40 17:35 44

Mode 6 Technician Large office 9:10 19:00 59

Mode 7 Marketer Large office 9:00 18:30 56

Mode 8 Researcher Large office 8:50 20:00 61

Fig. 9  Survey result of the cooling temperature setting
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events, as presented in formula (7). P(ζ) is the probability 
of opening air conditioning in driving event ζ, P(η) is the 
probability of opening air conditioning in driving event 
η, the probability of office buildings to turn on air con-
ditioning can be calculated by independent events (Feng 
et al., 2016).

The model obtained by clustering was statistically 
classified with questionnaire data, and the behav-
ior mode probability driven by various factors in 
the model was obtained. The total probability was 
obtained up by the independent events in the ques-
tionnaire that affect various mode behaviors, as shown 
in Table 9.

In the questionnaire, only the probability of occupant 
behavior driven by the even can be calculated. As the 
specific parameters driven by the environmental need 
to be measured later, the probability of occupant behav-
ior driven by the environment has been converted into 
the probability calculation of event-driven factors.

3.4.2 � Lighting
It is found that 24.7% of the subjects have no energy-
saving awareness, which leads to lighting (all or part 
of ) being turned on beyond working hours. 6.9% of the 
subject do not care about the on/off status of the light-
ing system, while 68.3% of the energy-saving users would 

(7)P(ζ ∪ η ∪ �) = P(ζ )+P(η)+P(�)−P(ζ ).P(η)−P(ζ ).P(�)−P(η).P(�)+P(ζ ).P(η).P(�)

turn it off. 36.8% of the subjects with better energy-sav-
ing consciousness will partially reduce or completely 
close the number of lighting fixtures when the daylight is 
sufficient. Therefore, the K-prototype clustering analysis 
method was used to distinguish groups in lighting behav-
ior models, as shown in Table 10.

The lighting model obtained by clustering is statis-
tically classified with questionnaire data to obtain the 
probability of control mode driven by various factors 
in this mode, as shown in Table 11.

3.4.3 � Window
For window related behavior, it is found that the win-
dow of the office in the PRD region is in a state of con-
stant closed with a probability of 26.69%. The reason is 
that in order to prevent objects from dropping, open-
ing a window requires permission from supervisors if 
the office is in high-rise buildings, which greatly reduces 
the probability of window-related behavior. According 
to the adaptive behavior of thermal discomfort, it can 
be concluded that air conditioning systems and win-
dows have a coupling effect on indoor environmental 
thermal comfort or energy use, which means that win-
dow-related behaviors may be affected by different air 
conditioning modes. Therefore, window behavior was 
considered under different air conditioning models, 
and the cluster categories were achieved, as shown in 
Table 12.

3.4.4 � Blind
Although blinds behavior has not been added to the DeST 
occupant behavior module, the purpose of this study is to 
comprehensively define the user behavior style of office 
buildings in the PRD region. Therefore, the classification 
of blind’s behavior is still defined, as shown in Table 14.

3.4.5 � Typical occupant behavior model
This section comprehensively defines the behavior of 
office buildings to adapt to the uncomfortable environ-
ment of various user styles. According to the combina-
tion of typical human behaviors of each cluster, 20 typical 
office user behavior styles are obtained. It can compre-
hensively define the behavior styles of users’ various 
kinds of equipment in office buildings in the PRD region, 
as shown in Table 16.

4 � Conclusions and future work
A questionnaire survey investigating occupant behav-
ior patterns in air-conditioned office buildings in the 
PRD region has been conducted in 2019. Based on the 

Fig. 10  Cooling temperature set point standard Q-Q chart
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Table 5  Cooling temperature set point prediction model related factors

Influence factor Option Regression 
coefficient

P Significant level OR estimated 
value

OR 95%CI

Thresholds T = 18 °C −4.83 0.000 *** – –

T = 19 °C −4.42 0.000 *** – –

T = 20 °C −3.51 0.001 *** – –

T = 21 °C −3.15 0.002 *** – –

T = 22 °C −2.55 0.011 *** – –

T = 23 °C −2.11 0.036 *** – –

T = 24 °C −1.45 0.015 ** – –

T = 25 °C − 0.69 0.049 ** – –

T = 26 °C 1.15 0.255 – – –

T = 27 °C 2.17 0.033 ** – –

T = 28 °C 3.06 0.001 *** – –

T = 29 °C 3.58 0.000 *** – –

T = 30 °C 0a – – – –

X1 – −0.24 0.013 * 1.27 0.21–1.74

X2 High-impact 2.22 0.025 * 0.11 0.02–0.76

Big-impact 2.15 0.027 * 0.12 0.02–0.78

General impact 2.06 0.034 * 0.13 0.02–0.86

Hardly impact 1.91 0.054 0.15 0.02–1.03

Unaffected 0a – – 1.00 –

X3 High-impact 2.07 0.030 * 0.13 0.02–0.82

Big-impact 2.02 0.031 * 0.13 0.02–0.83

General impact 1.91 0.042 * 0.15 0.02–0.94

Hardly impact 1.83 0.057 – 0.16 0.025–1.06

Unaffected 0a – – 1.00 –

X4 1 person −0.21 0.743 1.11 0.61–2.02

2 to 4 persons 0.39 0.047 * 0.68 0.46–0.99

5 to 8 persons 0.40 0.049 * 0.67 0.45–0.99

9 to 15 persons 0.53 0.015 * 0.59 0.38–0.90

X5 Frequent 0.41 0.027 * 0.64 0.43–0.95

Occasional −0.16 0.035 * 0.84 0.59–1.19

Motionless 0a – – 1.00 –

X6 3 −1.24 0.000 *** 4.07 2.05–8.11

2 −1.47 0.003 ** 3.15 1.46–6.80

1 −1.70 0.003 ** 3.04 1.47–6.26

0 −1.53 0.000 *** 3.39 1.72–6.71

−1 − 1.80 0.000 *** 3.97 1.98–7.98

−2 −1.83 0.001 ** 3.40 1.60–7.20

−3 0a – – 1.00 –

X7 Yes −0.47 0.001 ** 0.68 0.53–0.87

No 0a – – 1.00 –

X8 High −0.65 0.019 * 0.52 0.30–0.90

Medium −0.22 0.284 0.80 0.54–1.20

Low 0.80 0.000 *** 2.23 1.43–3.48

Automatic 0.12 0.552 1.13 0.75–1.70

Sense set 0a – – 1.00 –

X9 Off −0.35 0.027 1.42 1.04–1.94

On 0a – – 1.00 –

X10 – – 0.102 – – –

X11 – – 0.736 – – –
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questionnaire survey and data analysis, the influenc-
ing factors of occupant behavior related to the office 
building was studied, a cooling temperature set point 

prediction model was quantified, a series of occu-
pant behavior model for office buildings in PRD were 
defined. The results of the cooling temperature set point 

Table 5  (continued)

Influence factor Option Regression 
coefficient

P Significant level OR estimated 
value

OR 95%CI

X12 – – 0.275 – – –

X13 – – 0.328 – –

X14 Close 0.13 0.058 1.06 0.59–1.88

Medium 0.07 0.071 1.05 0.78–1.41

Distant 0a – – 1.00 –

0a is the reference value; the logical regression coefficient OR indicates that each time the independent variable changes by one unit, the dependent variable 
increases the odds ratio of one level. Significant level code: “* * *” if< P-values < 0.001; “* *” if 0.001 < P-values < 0.01; “*” if 0.01 < P-values < 0.05; “-” if 0.05 < P-values. The 
symbol of regression coefficient indicates the case of low level and high level, “+ “if positive correlation, “- “if negative correlation

Table 6  Validation example of cooling temperature prediction model of small office

Temperature Case information Logical function Cumulative probability Prediction 
probability

18 °C X1 = 20 −5.923 0.27% 0.27%

19 °C X2 = 2 −5.511 0.40% 0.14%

20 °C X3 = 2 −4.603 0.99% 0.59%

21 °C X4 = 2 −4.239 1.42% 0.43%

22 °C X5 = 1 −3.642 2.55% 1.13%

23 °C X6 = 1 −3.201 3.91% 1.36%

24 °C X7 = 1 −2.538 7.32% 3.41%

25 °C X8 = 3 −1.783 14.39% 7.07%

26 °C X9 = 1 0.053 51.32% 36.93%

27 °C 1.073 74.52% 23.19%

28 °C 1.969 87.75% 13.23%

29 °C 2.486 92.32% 4.57%

Table 7  Validation example of the cooling temperature prediction model of the large office building

Temperature Case information Logical function Cumulative probability Prediction 
probability

18 °C X1 = (20,1) −2.734 6.10% 6.10%

19 °C X1 = (21,1) −2.322 8.93% 2.83%

20 °C X1 = (23,1) − 1.414 19.56% 10.63%

21 °C X1 = (24,1) −1.05 25.92% 6.36%

22 °C X1 = (25,2) −0.453 38.86% 12.94%

23 °C X1 = (27,1) −0.012 49.70% 10.84%

24 °C X1 = (28,2) 0.651 65.72% 16.02%

25 °C X1 = (30,1) 1.406 80.31% 14.59%

26 °C X2 = (1,5) , 3.242 96.24% 15.93%

27 °C X2 = (2,5) 4.262 98.61% 2.37%

28 °C X3 = (1,5) , 5.158 99.43% 0.82%

29 °C X3 = (2,5) 5.675 99.66% 0.23%

X4, X8 = 2

X5, X6, X7, X9 = 1
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Table 8  The types and proportions of the occupant in the air conditioning behavior model

Model Control behavior Proportion

AT-1 Stay when at-work, close when temporary depart, close when off-duty, open when stuffy, open when hot, close when cold, air-
conditioning works all work time.

27.6%

AT-2 Open at-work, open when temporary depart, close when off-duty, open when stuffy, open when hot, close when cold, air-
conditioning works all work time.

32.9%

AT-3 Open at-work, close when temporary depart, close when off-duty, open when stuffy, open when hot, close when cold, air-
conditioning doesn’t work all the time.

21.3%

AT-4 Open at-work, stay when temporary depart, close when off-duty, open when stuffy, open when hot, close when cold, air-condi-
tioning works all work time.

18.2%

Table 9  The probability of occupant in the air conditioning behavior model (on/off )

Model At work Off duty Temporary 
depart

Stuffy Hot Cold Total probability

AM-1 Open Probability 31.5% – – 57.7% 71.0% – 91.4%

Close probability – 65.2% 48.1% – – 38.4% 81.9%

AM-2 Open Probability 96.9% – 100% 72.1% 91.7% – 100%

Close probability – 76.0% – – – 38.4% 96.4%

AM-3 Open Probability 88.7% – – 60.2% 90.3% – 99.6%

Close probability – 91.9% 50.5% – – 38.4% 99.4%

AM-4 Open Probability 98.1% – – 66.7% 88.7% – 99.9%

Close probability – 92.5% 19.7% – – 38.4% 93.6%

Table 10  The types and proportions of the occupant in the lighting behavior model

Model Control behavior Proportion

LT-1 Do not have the habit of adjusting lighting equipment 44.0%

LT-2 Partly open when at work, open the window, sufficient outdoor light, insufficient indoor light daytime, indoor glare caused by 
sunshine; close when off-duty.

14.8%

LT-3 All open when at work or insufficient indoor light daytime; partly open when opening the window; all close when off-duty, suf-
ficient outdoor light or indoor glare caused by sunshine.

28.0%

LT-4 All open when insufficient indoor light daytime; stay when at work, open the window, sufficient outdoor light or indoor glare 
caused by sunshine; all close when off-duty.

13.2%

Table 11  The probability of occupant in lighting behavior model (on/off )

Abbreviations: window The window is opened, light Outdoor light is sufficient, Un-light Indoor light is insufficient at daytime, glare Indoor glare caused by the sun, SP 
Single probability, TP Total probability

Model At work Off duty Window Light Un-light Glare SP TP

LM-1 All open Do not have the habit of adjusting lighting equipment 44.0% 44.0%

LM-2 All open – – – – – – 0% 97.2%

Part open 37.7% – 58.2% 40.0% 39.8% 37.7% 97.2%

All close – 68.1% – – – – 68.1% 68.1%

LM-3 All open 46.7% – – – 50.7% – 73.7% 89.0%

Part open – – 58.2% 40.0% – – 58.2%

All close – 68.1% – – – 40.9% 88.1% 88.1%

LM-4 All open 4.5% – 4.8% 3.7% 50.7% 3.4% 58.2% 64.6%

Part open 4.5% – 4.8% 3.7% – 3.4% 15.3%

All close 4.5% 68.1% 4.8% 3.7% – 3.4% 73.0% 73.0%
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prediction model were analyzed, which shows that fac-
tors, such as age, activity intensity, and TSV, etc., have 
a significant influence on the cooling temperature set 
point. It also shows that the probability of a low cooling 
temperature set point in the large office is higher than 
that in the small office.

However, this study has two limitations. First, the influ-
encing factors of occupant’s behavior of various electrical 
appliances (such as air conditioning, lighting, window, etc.) 
is studied by questionnaire, the event-driven behavior prob-
ability can only be established initially. The environmen-
tal driving factors lack the support of measured data, the 

Table 12  The types and proportions of the occupant in the window behavior model

The window model obtained by clustering was statistically classified with questionnaire data to obtain the probability of control mode driven by various factors in this 
mode, as shown in Table 13

Model Control behavior Proportion

WT-1 The window is closed 24.9%

WT-2 All open when feeling odour; partly open when at work, cold, air condition on or sufficient outdoor light; all close when off duty, 
all-weather reason, outdoor damp or noise.

29.7%

WT-3 All open when feeling odour, cold or sufficient outdoor light; partly open when air condition on; stay when at work, off duty, 
all-weather reason, outdoor damp or noise.

10.3%

WT-4 All open when at work or cold; partly open when off duty, feel odour, sufficient outdoor light or outdoor damp; all close when air 
condition on, all-weather reason or noise.

12.4%

WT-5 All open when feeling odour or sufficient outdoor light; partly open when at work; all close when off duty, cold, air condition on, 
all-weather reason, outdoor damp or noise.

22.7%

Table 13  The probability of occupant in the window behavior model (on/off )

Abbreviations: AC Air condition is turned on, damp outdoor is damp, noise Outdoor is noisy

Model Work Off Odour AC Cold Light Damp Noise Weather SP TP

WM-1 All close The window is closed 100% 100%

WM-2 All open – – 65.8% – – – – – – 65.8% 97.3%

Part open 57.6% – – 27.4% 45.7% 52.3% – – – 92.0%

All close – 67.9% – – – – 32.6% 70.3% 69.6% 98.6% 98.6%

WM-3 All open 2.9% 2.7% 65.8% – 5.7% 32.4% – – – 78.2% 96.3%

Part open 2.9% 2.7% – 27.4% – – – – – 82.9%

All close 2.9% 2.7% – – – – 51.1% 70.3% 69.6% 22.2% 22.2%

WM-4 All open 65.8% – – – 5.7% 32.4% – – – 40.2% 88.7%

Part open – 18.3% 27.7% – – – 51.1% – – 81.0%

All close – – – 27.4% – – – 32.6% 69.6% 96.3% 96.3%

WM-5 All open – – 65.8% – – 32.4% – – – 76.9% 90.2%

Part open 57.6% – – – – – – – – 57.6%

All close – 67.9% 58.5% 42.7% – – 51.1% 70.3% 69.6% 98.6% 98.6%

Table 14  The types and proportions of the occupant in the blind behavior model

The blind model obtained by clustering is statistically classified with questionnaire data to obtain the probability of control mode driven by various factors in this 
mode, as shown in Table 15

Model Control behavior Proportion

BT-1 The blind is closed 28.5%

BT-2 All open when at work, off duty, open the window or insufficient indoor light daytime; part open when cold or indoor glare 
caused by sun; all close when indoor overheat caused by the sun.

14.3%

BT-3 All open when insufficient indoor light daytime; part open when at work or open the window; all close when off duty, cold, 
indoor glare or overheating caused by the sun.

18.8%

BT-4 Stay when at work, off duty, open the window, cold, insufficient indoor light daytime, indoor glare or overheating caused by the 
sun.

10.4%

BT-5 All open when insufficient indoor light daytime; part open when at work, off duty, open the window, cold, indoor glare or over-
heat caused by the sun.

29.3%
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quantitative relationship between environmental factors 
and behavior cannot be captured. Second, the samples of 
this study were mainly young people less than 35 years old, 
which may lead to a large deviation in the cooling tempera-
ture set point prediction model. It is suggested that samples 
over 35 years old should also be considered in the future.

It should also be noted that, as previously mentioned, 
the occupants’ behavior can be affected by various “driv-
ing forces”, their behaviors cannot be the same in different 
climate regions. However, the research method described 
in this paper contains no climate sensitive factors, and 
can be applied to similar studies in other regions.

In the future, the effort will be spent on investiga-
tion of the verification and improvement of the pro-
posed occupant behavior model for practical use. 
A laboratory has been built for the on-site meas-
urement of occupant behavior in the office build-
ing of the PRD. Over 20 occupants’ daily behavior 

(including the adjustment of the air-conditioning 
system, lighting system, shading system and office 
equipment), as well as the indoor environment 
status (including temperature, RH, black globe 
temperature and air velocity), are measured and 
recorded. Besides the verification through labora-
tory tests, both survey and measurement studies are 
planned on occupant behaviors in the hotel, shop-
ping centers, transport station and finally, residen-
tial buildings.
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Table 15  The probability of occupant in the blind behavior model (on/off )

Model Work Off Window Un-light Cold Glare Overheat SP TP

BM-1 All close The blind is closed 100% 100%

BM-2 All open 36.8% – 36.1% 62.5% – – – 86.6% 96.1%

Part open – – – – 36.6% 53.7% – 70.6%

All close – 50.1% – – – – 43.4% 43.4% 43.4%

BM-3 All open – – – 62.5% – – – 62.5% 90.5%

Part open 49.8% 50.1% 49.6% – 37.9% – – 74.7%

All close – – – – – 33.8% 43.4% 88.4% 88.4%

BM-4 All open 3.4% 6.0% 2.9% 2.1% 4.5% 1.8% 1.9% 15.6% 28.7%

Part open 15.6%

All close 15.6% 15.6%

BM-5 All open – – – 62.5% – – – 62.5% 90.2%

Part open 49.8% 20.5% 49.6% – 36.6% 53.7% 34.3% 80.3%

Table 16  User style defined by the behavior model of office builders in Pearl river delta

Model WT-1 WT-2 WT-3 WT-4 WT-5 Model

AT-1 AT-1\WT-1\ AT-1\WT-2\ AT-1\WT-3\ AT-1\WT-4\ AT-1\WT-5\ LT-1

BT-1\LT-1 BT-2\LT-1 BT-3\LT-1 BT-4\LT-1 BT-5\LT-1

AT-2 AT-2\WT-1\ AT-2\WT-2\ AT-2\WT-3\ AT-2\WT-4\ AT-2\WT-5\ LT-2

BT-1\LT-2 BT-2\LT-2 BT-3\LT-2 BT-4\LT-2 BT-5\LT-2

AT-3 AT-3\WT-1\ AT-3\WT-2\ AT-3\WT-3\ AT-3\WT-4\ AT-3\WT-5\ LT-3

BT-1\LT-3 BT-2\LT-3 BT-3\LT-3 BT-4\LT-3 BT-5\LT-3

AT-4 AT-4\WT-1\ AT-4\WT-2\ AT-4\WT-3\ AT-4\WT-4\ AT-4\WT-5\ LT-4

BT-1\LT-4 BT-2\LT-4 BT-3\LT-4 BT-4\LT-4 BT-5\LT-4

Model BT-1 BT-2 BT-3 BT-4 BT-5 Model
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