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Abstract 

The present study uses nine machine learning (ML) methods to predict wave runup in an innovative and compre-
hensive methodology. Unlike previous investigations, which often limited the factors considered when applying ML 
methodologies to predict wave runup, this approach takes a holistic perspective. The analysis takes into account 
a comprehensive range of crucial coastal parameters, including the 2% exceedance value for runup, setup, total 
swash excursion, incident swash, infragravity swash, significant wave height, peak wave period, foreshore beach slope, 
and median sediment size. Model performance, interpretability, and practicality were assessed. The findings from this 
study showes that linear models, while valuable in many applications, proved insufficient in grasping the complexity 
of this dataset. On the other hand, we found that non-linear models are essential for achieving accurate wave runup 
predictions, underscoring their significance in the context of the research. Within the framework of this examination, 
it was found that wave runup is affected by median sediment size, significant wave height, and foreshore beach slope. 
Coastal engineers and managers can utilize these findings to design more resilient coastal structures and evaluate 
the risks posed by coastal hazards. To improve forecast accuracy, the research stressed feature selection and model 
complexity management. This research proves machine learning algorithms can predict wave runup, aiding coastal 
engineering and management. These models help build coastal infrastructure and predict coastal hazards.
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Graphical Abstract

1  Introduction
1.1 � Background and significance of wave runup prediction 

in coastal areas
Coastal regions exhibit a particular vulnerability to vari-
ous natural hazards, including but not limited to storms 
and flooding. These occurrences have the potential to 
result in significant harm to infrastructure, property, 
and ecosystems. The measurement of wave runup, which 
refers to the vertical extent to which a wave reaches 
beyond its equilibrium water level along the shoreline, 
is an essential factor in comprehending and forecasting 
coastal hazards and their associated consequences. The 
precise estimation of wave runup values holds significant 
importance in the process of coastal hazard mapping 
and the assessment of the potential risks associated with 
inundation and overtopping (Lecacheux et al. 2012).

Wave runup is a crucial parameter within the field of 
coastal engineering as it serves to quantify the maximum 
vertical distance that wave uprush can reach on a beach 
or structure (Matsuba et al. 2020). The precise anticipa-
tion of wave runup holds significant importance for mul-
tiple reasons:

1.2 � Coastal protection
The assessment of the performance of coastal protec-
tion measures, such as seawalls, dikes, and revetments, 
heavily relies on the consideration of wave runup as a 
significant factor in their design(Torresan et  al.  2012). 
The overestimation of wave runup has the potential to 
incur superfluous expenses in construction, whereas 

underestimation may lead to insufficient safeguarding 
measures and the consequent vulnerability of coastal 
infrastructure to potential damage.

1.3 � Flood risk assessment
Coastal flooding is notably exacerbated by the substantial 
contribution of wave runup (Shimozono et al. 2020), par-
ticularly in the context of storm events. The utilisation of 
wave runup prediction can contribute to the evaluation 
of flood hazards, the formulation of evacuation strate-
gies, and the development of flood mitigation infrastruc-
ture (Li et al. 2018).

1.4 � Beach nourishment projects
Comprehending the phenomenon of wave runup holds 
significant importance within the context of beach nour-
ishment initiatives, which involve the addition of sand to 
depleted shorelines with the aim of reinstating their orig-
inal condition. The outcome of such tasks is contingent 
upon the manner in which the recently implemented 
sand reacts to wave action, a phenomenon that is influ-
enced by wave runup (Stockdon et al. 2014).

1.5 � Climate change adaptation
Climate change adaptation entails addressing the conse-
quences of rising sea levels, which are primarily attrib-
uted to climate change. One of the anticipated outcomes 
is an elevation in wave runup, resulting in intensified vul-
nerabilities to coastal flooding and erosion. The precise 
anticipation of wave runup holds significant importance 
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in the formulation of efficacious adaptation strategies (Li 
et al. 2018).

Traditionally, empirical models and numerical simula-
tions have been used in the research process for studying 
wave runup (Penalba and Ringwood 2020). These meth-
ods have generated useful insights into the processes 
associated with wave runup; however, they also have 
some limits that encourage the development of alternate 
techniques such as machine learning.

Empirical models for wave runup are formulated using 
empirical relationships that have been derived from 
extensive field measurements and rigorous laboratory 
experiments e.g., (Hughes 2004; Muttray et al. 2007; Park 
and Cox 2016; van Ormondt et al. 2021). Typically, these 
models are dependent on simplified equations that take 
into account various parameters, including wave charac-
teristics, beach slope, and coastal structures. Empirical 
models have been formulated to suit particular coastal 
configurations and are frequently calibrated through the 
utilisation of observed data.

Numerical simulations, such as computational fluid 
dynamics (CFD) models, provide a more comprehensive 
methodology for investigating wave runup e.g., (Milanian 
et  al.  2017; Najafi-Jilani et  al.  2014). These models are 
designed to address the fundamental equations govern-
ing fluid motion, encompassing the intricate dynamics of 
wave propagation, interactions between waves and struc-
tures, as well as the evolution of coastal morphology. The 
utilisation of numerical simulations enables a compre-
hensive examination of wave runup phenomena across 
diverse scenarios.

Although numerical simulations offer a more compre-
hensive comprehension of wave runup, it is important to 
acknowledge the underlying limitations (Alfonsi  2015). 
Firstly, extensive computational resources are necessary 
for these simulations, and they can be time-consuming, 
especially when dealing with large-scale and long-dura-
tion scenarios. Additionally, a crucial aspect of their 
functioning is the substantial dependence on precise 
input data, encompassing bathymetry, wave character-
istics, and boundary conditions. Acquiring accurate and 
thorough data can present difficulties, especially in prac-
tical field settings. Finally, the analysis and validation of 
simulation outcomes in comparison to empirical data can 
present intricate challenges.

Researchers have turned to alternative techniques, 
such as machine learning, in order to address the limi-
tations associated with traditional approaches for wave 
runup prediction (Beuzen et  al.  2019). Machine learn-
ing algorithms possess the capability to examine intricate 
relationships and patterns present in datasets, thereby 
potentially capturing non-linear dependencies and 
enhancing the accuracy of predictions.

Machine learning techniques provide numerous ben-
efits. These systems possess the capability to effectively 
manage extensive and varied datasets, autonomously rec-
ognize pertinent attributes, and adjust their functioning 
in response to dynamic circumstances. Machine learning 
models possess the capability to offer precise prognosti-
cations of wave runup in diverse coastal settings, avoid-
ing the necessity for extensive calibration (Athanasiou 
et al. 2021). By integrating domain expertise and funda-
mental physical principles into the design of the model, 
machine learning has the potential to supplement con-
ventional methodologies and advance our comprehen-
sion of wave runup phenomena.

In summary, the utilization of empirical models and 
numerical simulations has proven to be advantageous in 
the examination of wave runup phenomena. However, it 
is important to acknowledge that these approaches pos-
sess natural limitations. The advent of machine learning 
methodologies provides a potential avenue for address-
ing these constraints and enhancing the accuracy of 
wave runup prediction. Through the integration of con-
ventional methodologies with the versatile and adjust-
able nature of machine learning, researchers have the 
potential to enhance our comprehension of wave runup 
dynamics and make valuable contributions to the field of 
coastal engineering and management.

2 � Machine learning in wave Runup prediction: 
advances, applications, and comparative 
analyses

In recent times, machine learning has emerged as a 
potent tool in diverse domains, including the predic-
tion of wave runup (Ha et  al.  2014). Machine learning 
algorithms possess the capability to analyse vast quanti-
ties of data and discern patterns that may not be readily 
discernible to human observers (Fang et  al.  2019). The 
ability of machine learning to analyse intricate data sets 
and discern the factors influencing wave runup renders 
it highly attractive for wave runup prediction (Sarasa-
Cabezuelo 2022). Wave runup is a significant parameter 
in coastal engineering and planning as it refers to the 
vertical distance between the water level during storm 
events and the still-water level on a beach or coastline.

This is due to the fact that runup is determined by the 
wave’s interaction with the bathymetry and topography, 
which in turn is a function of the wave’s height rela-
tive to the wave’s length (Stockdon et al. 2014; Vitousek 
et al. 2017). Due to the localised nature of wave interac-
tion and the individualised assessments of wave height 
and length, accurate runup predictions may be difficult 
to achieve using larger temporal scale gauges. The geo-
graphical variability and complexity of wave runup has 
traditionally been estimated using empirical formulae 
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based on offshore wave data e.g.,(Stockdon et  al.  2014, 
2006).

This is due to the fact that runup is determined by the 
wave’s interaction with the bathymetry and topography, 
which in turn is a function of the wave’s height rela-
tive to the wave’s length (Tebaldi et  al.  2012; Vitousek 
et al. 2017). Due to the localised nature of wave interac-
tion and the individualised assessments of wave height 
and length, accurate runup predictions may be difficult 
to achieve using larger temporal scale gauges. The geo-
graphical variability and complexity of wave runup has 
traditionally been estimated using empirical formulae 
based on offshore wave data e.g., (Stockdon et  al.  2014, 
2006)).

Predicting when and where flooding may occur in 
coastal regions is crucial for reducing risk because it 
allows communities to prepare and take action to protect 
people and property (Abdalazeez et al. 2020).

Accurately predicting wave runup has become more 
important since it is a major contributor to coastal flood-
ing during storms and may have significant consequences 
for the safety and resilience of coastal communities. For 
reliable predictions of beach development and coastal 
flooding during storms, it is crucial to have a firm grasp 
on how to forecast wave runup. Incorporating topog-
raphy, coastal features, and wave conditions into wave 
runup prediction using machine learning has the poten-
tial to enhance accuracy.

In the context of wave runup prediction, machine 
learning presents several notable advantages when com-
pared to conventional empirical approaches:

2.1 � Handling complex relationships
Machine learning algorithms possess the capability to 
effectively capture intricate and non-linear associations 
among variables. This is especially advantageous for the 
estimation of wave runup, as it is affected by various fac-
tors including wave height, wave period, beach slope, and 
sediment size. The conventional empirical formulas fre-
quently prove inadequate in capturing the intricate inter-
relationships at play.

2.2 � Learning from large datasets
Machine learning algorithms have the capability to 
acquire knowledge from extensive datasets containing 
observed wave runup and its corresponding environmen-
tal conditions. This enables the models to effectively gen-
eralise to novel, unobserved data.

2.3 � Model flexibility
There exist multiple categories of machine learning algo-
rithms, each possessing distinct advantages and limita-
tions. For instance, decision tree-based algorithms such 

as Random Forest and Gradient Boosting possess the 
capability to effectively handle both numerical and cat-
egorical data, while also exhibiting robustness against 
outliers. Neural networks possess the capability to repre-
sent intricate and non-linear associations; however, their 
effective utilisation necessitates substantial quantities of 
data and computational resources.

2.4 � Model interpretability
Certain machine learning models, such as decision trees 
and linear regression, possess the characteristic of inter-
pretability, wherein the association between the input 
features and the projected output can be comprehended. 
Wave runup prediction is a crucial aspect in the field of 
coastal engineering, as it enables researchers and practi-
tioners to gain insight into the primary factors that exert 
the greatest influence on wave runup.

The primary objective of this research paper is to pro-
pose an innovative and comprehensive approach for pre-
dicting wave runup through the utilisation of machine 
learning methodologies. The aim of this study is to 
enhance previous research endeavours by incorporating 
a wide array of crucial factors that impact wave runup. 
These factors include the 2% exceedance value for runup, 
setup, total swash excursion, incident swash, infragravity 
swash, significant wave height, peak wave period, fore-
shore beach slope, and median sediment size.

The scope of the paper encompasses the evaluation 
of nine different machine learning models for their per-
formance, interpretability, and applicability in practical 
scenarios. The study compares the effectiveness of linear 
models (such as Linear Regression and Support Vector 
Regression) and non-linear models (including XGBoost 
and Stacking) in capturing the intricate relationships 
within the dataset.

The investigation discerns specific attributes from liter-
ature, including R2% - 2% exceedance value for runup, Set 
- setup, Stt - total swash excursion, Sinc - incident swash, 
Sig - infragravity swash, Hs - significant deep-water wave 
height, Tp - peak wave period, tanβ - foreshore beach 
slope, D50 - Median sediment size, that possess a sub-
stantial influence on wave runup. The implications of 
these findings are significant in all aspects of coastal engi-
neering and management, as they offer valuable insights 
into enhancing the design of coastal structures and eval-
uating the potential hazards linked to flooding.

The study provides evidence that machine learning 
algorithms possess the capability to accurately predict 
wave runup, thereby presenting valuable resources for 
the discipline of coastal engineering and management. 
The utilisation of predictive models plays a crucial role in 
facilitating the development of coastal infrastructure and 
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the assessment of potential risks associated with coastal 
flooding.

The scope of this study encompasses the following 
aspects:

2.5 � Data collection and preprocessing
The study utilizes a dataset comprising several features 
related to wave runup, including the 2% exceedance value 
for runup, setup, total swash excursion, incident swash, 
infragravity swash, significant deep-water wave height, 
peak wave period, foreshore beach slope, and median 
sediment size. The data is preprocessed to handle miss-
ing values and ensure it is suitable for machine learning 
analysis.

2.6 � Model training and evaluation
The dataset is utilised to train a range of machine learn-
ing algorithms, such as Linear Regression, Decision 
Tree, Random Forest, Support Vector Regression, Gra-
dient Boosting Regressor, XGBoost Regressor, AdaBoost 
Regressor, MLP Regressor, and Stacking Regressor. The 
performance of each model is assessed by measuring the 
correlation between the observed runup values and the 
predicted runup values.

2.7 � Model comparison
The efficacy of various models is examined to determine 
the most effective algorithms for predicting wave runup. 
The comparison takes into account both the precision of 
the forecasts and the interpretability of the models.

2.8 � Feature importance analysis
The study additionally incorporates an examination of 
feature importance in order to ascertain the most influ-
ential factors in forecasting wave runup. The present 
analysis offers significant insights for coastal engineers 
and researchers, facilitating their comprehension of the 
fundamental factors influencing wave runup.

Through this research, we aim to contribute to the 
field of coastal engineering by providing a comprehen-
sive comparison of machine learning algorithms for wave 
runup prediction and identifying the most effective mod-
els for this task.

3 � Data collection and preprocessing
3.1 � Description of the dataset used for the study
Machine learning techniques have become increasingly 
important in the field of coastal engineering, as they offer 
significant utility in forecasting a range of wave runup 
parameters.

An essential component of this study pertains to the 
dataset employed for the purposes of training and evalu-
ating the machine learning models.

The dataset utilised for the prediction of wave runup in 
this study was obtained from diverse sources of literature, 
encompassing field measurements as well as numerical 
simulations. In this dataset 9 variables exist. This dataset 
has a total of nine different variables. All data set contain 
similar structures. The structure of the dataset is shown 
in Table 1 and depicted the distribution of coastal runup 
and associated variables in Fig. 1.

The dataset was collected from literature. The proce-
dure of obtaining a dataset from literature via manual 
data extraction was carried out using a series of essen-
tial procedures. The identification of pertinent material 
was conducted by a comprehensive search of academic 
databases and other relevant resources pertaining to the 
study question. After identifying the relevant studies, a 
thorough screening of the literature was conducted by 
evaluating the titles and abstracts. This process aimed to 
identify the studies that were most closely aligned with 
the study goals. Following this, a thorough examina-
tion of the whole texts of these chosen studies was con-
ducted in order to discover and extract the necessary 
data. The collected data was then documented in a sys-
tematic manner, often with a spreadsheet or a specialised 

Table 1  Dataset structure and statistical summary of each variable

Acronym Description Units Range Mean Standard 
Deviation

R2% 2% exceedance value for runup [m] 0.03–12.67 2.27 1.78

Set setup [m] 0–1.55 0.49 0.28

Stt total swash excursion [m] 0.21–3.25 1.41 0.63

Sinc incident swash [m] 0.04–2.86 0.96 0.57

Sig infragravity swash [m] 0.09–2.37 0.95 0.47

Hs significant deep-water wave height [m] 0.02–7.17 1.84 1.30

Tp peak wave period [s] 0.80623.68 9.59 3.57

tanβ foreshore beach slope [m/m] 0.01–0.29 0.11 0.06

D50 Median sediment size [mm] 0–50 9.46 17.34



Page 6 of 26Durap ﻿Anthropocene Coasts            (2023) 6:17 

database. In order to preserve the integrity of the data, 
a last stage including checking and cleaning of the data-
set was conducted, therefore guaranteeing both preci-
sion and comprehensiveness. Any errors or omissions 
that were detected throughout the review process were 
swiftly rectified to guarantee the reliability and usefulness 
of the dataset for research purposes.

Following that, a comprehensive data cleansing proce-
dure was executed, including the elimination of duplicate 
entries, management of missing data, and addressing of 
outliers in order to improve the precision of the dataset. 
In order to ensure that the data adhered to the study cri-
teria, the validation process included the verification of 
data types and the confirmation of data values falling 
within the anticipated domains. The dataset underwent 
a systematic transformation, which included standardiz-
ing numerical values and encoding categorical categories. 
Thorough documentation was diligently maintained dur-
ing the whole process of data processing. Additionally, a 
detailed data dictionary was created to provide clarity on 
the structure of the dataset and any modifications that 
were implemented.

Table 2 presents a noteworthy contribution to the field 
of wave runup datasets: a meticulously curated compila-
tion sourced from a diverse range of references, encom-
passing various paper titles, spanning multiple years, and 
sourced from esteemed journals. The dataset possesses 
significant potential to facilitate the discovery of novel 
insights and drive progress in the respective field. It holds 
substantial value as a resource for both researchers and 
individuals with a keen interest in the subject matter.

In order to utilize the dataset effectively, the data pre-
processing steps are depicted in Fig. 2, while the overall 
workflow is illustrated in Fig. 3. For more comprehensive 
details regarding the methods of data acquisition and 
data processing, it is recommended to refer to the origi-
nal papers that describe each experiment.

4 � Overview of any specific considerations 
or challenges encountered during data 
preparation

4.1 � Missing values
The dataset may contain NaN values indicating missing 
data. These missing values need to be handled appro-
priately as they can lead to incorrect predictions. In our 
case, the dataset was examined for any instances of miss-
ing values, and it was determined that no missing values 
were present.

4.2 � Feature scaling
Certain machine learning algorithms, such as Support 
Vector Regression and MLP Regressor, necessitate the 
normalisation or standardisation of input data. This 
implies that it is necessary for all features to be stand-
ardised to a uniform scale. When the features vary on 
different scales, there is a possibility that the model will 
assign greater significance to features with larger scales. 
In this particular study, the StandardScaler function from 
the sklearn library was employed to perform feature 
standardisation.

Fig. 1  Distribution of coastal runup and associated variables
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4.3 � Feature selection
The dataset encompasses multiple features, some of 
which may not possess utility in predicting the target 
variable. The inclusion of redundant features has the 
potential to result in overfitting and can also contrib-
ute to an increase in computational time. In the present 
study, all available features were utilised for the pur-
pose of training the model. Nevertheless, various fea-
ture selection techniques such as backward elimination, 
forward selection, and recursive feature elimination 
can be employed to identify and retain the most signifi-
cant features.

4.4 � Model selection and tuning
There exists a multitude of machine learning algo-
rithms, each of which possesses a range of hyperparam-
eters that can be adjusted. The process of choosing an 
appropriate model and determining the optimal hyper-
parameters presents a significant challenge. In this 
particular study, a variety of models were employed, 
utilising their default parameters. Nevertheless, meth-
ods such as Grid Search and Random Search can be 
employed to identify the most suitable hyperparam-
eters for the models.

4.5 � Evaluation metric selection
The selection of an evaluation metric is a pivotal fac-
tor in machine learning tasks. In this particular study, a 
range of metrics, including Mean Squared Error (MSE), 
Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE), and R2 score, were employed to assess 
the performance of the models. However, depending on 
the specific problem at hand, alternative metrics may 
be deemed more suitable.

4.6 � Computational resources
Machine learning tasks, particularly those involving 
extensive datasets and convoluted models, can impose 
significant computational demands and exhibit pro-
longed execution times. If there is a limitation on com-
putational resources, this task can pose a challenge. In 
the present study, the dataset utilised was of limited 
size, and the models employed were comparatively 
straightforward, thus mitigating any significant con-
cerns in this regard. However, when dealing with larger 
and more intricate tasks, it may be necessary to employ 
techniques such as dimensionality reduction, utilising 
more efficient algorithms, or leveraging more advanced 
hardware.

Table 2  The dataset  was  compiled from an extensive array of scholarly references, encompassing diverse paper titles, spanning 
multiple years, and drawn from renowned academic journals

Reference Paper Title

(Stockdon et al. 2006) Empirical parameterization of setup, swash and runup

(Senechal et al. 2011) Wave runup during extreme storm conditions

(Guedes et al. 2011) The effects of tides on swash statistics on an intermediate beach

(Guedes et al. 2012) Observations of alongshore variability of swash motions on an intermediate beach

(Guedes et al. 2013) Observations of wave energy fluxes and swash motions on a low-sloping, dissipative beach

(Gomes da Silva et al. 2018) Infragravity swash parameterization on beaches: the role of the profile shape and the beach morphodynamics 
conditions

(Power et al. 2019) Prediction of wave runup on beaches using Gene-Expression programming and empirical relationships

(Atkinson et al. 2017) Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast

(Baldock and Huntley 2002) Long-wave forcing by the breaking of random gravity waves on a beach

(Gallagher et al. 1998) Observations of sand bar evolution on a natural beach

(Holland et al. 1995) Runup kinematics on a natural beach

(Howe 2016) Bed shear stress under wave runup on steep slopes

(Mase 1989) Random wave runup height on gentle slope

(Mason et al. 1984) Duck 82 – A Coastal storm processes experiment

(Nicolae Lerma et al. 2017) Simulating wave setup and runup during storm conditions on a complex barred beach

(Poate et al. 2016) A new parameterization for runup on gravel beaches

(Raubenheimer and Guza 1996) Observations and predictions of run-up

(Ruggiero 2004) Wave run-up on a high-energy dissipative beach

(Ruessink et al. 1998) Observations of swash under highly dissipative conditions

(Stauble and Cialone 1997) Sediment dynamics and profile interactions: Duck94

(Thornton et al. 1996) Bar/trough generation on a natural beach
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5 � Methodology
In coastal engineering and planning, understanding the 
runup of waves is essential. In order to effectively design 
coastal structures, evaluate the susceptibility of beach 
and dune systems, and manage the hazards associated 
with coastal flooding, an understanding of and an accu-
rate prediction of wave runup are required. Moreover, 
estimation of wave runup is crucial for coral-reef islands 
due to their vulnerability to wave action.

In the context of this study, we employed nine dis-
tinct machine learning techniques to predict wave 

runup. These techniques encompass a broad spec-
trum of machine learning approaches, including linear 
regression, decision trees, random forests, support vec-
tor machines, gradient boosting, XGBoost, AdaBoost, 
multi-layer perceptrons, and stacking. The selection 
of these algorithms was deliberate, as it aimed to cap-
ture a diverse range of methodologies. By incorporating 
such diversity, our ensemble model is able to learn from 
various perspectives, enhancing its potential to deliver 
improved performance and insightful results in our 
research (Table 3).

Fig. 2  Comprehensive Data Preprocessing Flowchart: A visual representation of the essential steps involved in preparing and preprocessing data 
for machine learning tasks for this paper

Fig. 3  Workflow of this particular study
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6 � Description of the selected machine learning 
algorithms for wave runup prediction

6.1 � Linear regression
A simple but effective machine learning approach called 
linear regression predicts the association between two 
or more features. It assumes that the input variables (x) 
and the only output variable (y) have a linear relation-
ship. It may be utilised to comprehend how various ele-
ments, such as wave height, wave period, beach slope, 
and sediment size, linearly relate to wave runup in the 
context of wave runup prediction.

6.2 � Decision tree
A supervised learning approach known as a decision 
tree is often used for classification issues but may also 
be utilised for regression. It operates by dividing the 
data into subgroups according to the features’ values 
supplied. The splits are selected to maximise the out-
put variable’s separation in the generated subsets. 
Decision trees are a strong option for wave runup pre-
diction because they can capture non-linear correla-
tions between the input data and the output variable.

6.3 � Random forest
In order to solve regression issues, the Random Forest 
ensemble learning approach builds numerous decision 
trees during training and outputs the mean forecast of 
each tree. It is a strong option for challenging predic-
tion tasks like wave runup prediction since it is resilient 
to overfitting and can handle a high number of input 
characteristics.

6.4 � Support vector regression (SVR)
Support Vector Regression (SVR) is a subclass of Sup-
port Vector Machine (SVM) that may be used to solve 
regression issues. The input characteristics are mapped 
onto a high-dimensional feature space, and then the 
system searches for the hyperplane that provides the 
most accurate match to the data in this space. SVR is 
able to handle linear as well as non-linear connections 

between the characteristics that are input and the vari-
able that is produced.

6.5 � Gradient boosting regressor
Gradient Boosting is an ensemble learning technique 
that constructs a series of weak prediction models, often 
decision trees, in a step-by-step manner. The boosting 
method is extended in this approach to enable the opti-
misation of any differentiable loss function. In the context 
of wave runup prediction, the utilisation of this approach 
enables the capture of intricate, non-linear associations 
between the input features and the output variable.

6.6 � XGBoost regressor
XGBoost is an abbreviation for eXtreme Gradient Boost-
ing. The library is a highly efficient, flexible, and port-
able distributed gradient boosting framework that has 
been optimised. The software utilises machine learning 
algorithms within the Gradient Boosting framework and 
offers a parallel tree boosting approach, which effectively 
addresses numerous data science challenges with high 
speed and precision.

6.7 � AdaBoost regressor
AdaBoost, also known as Adaptive Boosting, is a 
machine learning algorithm utilised for classification 
purposes. In the context of decision tree learning, the 
AdaBoost algorithm incorporates information regard-
ing the relative difficulty of each training sample at every 
stage. This information is then utilised by the tree grow-
ing algorithm, resulting in subsequent trees placing 
greater emphasis on examples that are more challenging 
to classify.

6.8 � MLP regressor
The word MLP represents Multi-layer Perceptron, which 
is a specific category of neural network. The neural net-
work architecture comprises a minimum of three lay-
ers of nodes, namely an input layer, a hidden layer, and 
an output layer. Multilayer perceptrons (MLPs) are par-
ticularly suitable for regression tasks in which the input 

Table 3  Objectives and corresponding machine learning techniques for wave runup prediction

Objective Machine Learning Technique Purpose

Improve prediction accuracy Compare and combine techniques Enhance accuracy and robustness 
of prediction models by leveraging 
different strengths and weaknesses.

Account for different data types Tailored selection of techniques Choose suitable machine learning 
methods for handling various 
data types (historical, numerical, 
imagery).
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features exhibit non-linear associations with the output 
variable.

6.9 � Stacking regressor
Stacking is a method employed in ensemble learning, 
wherein multiple regression models are integrated using 
a meta-regressor. The individual regression models are 
trained using the entire training set. Subsequently, the 
meta-regressor is fitted using the predicted values gen-
erated by the individual regression models. This process 
culminates in a final prediction.

7 � Detailed explanation of the algorithmic 
frameworks and their underlying principles

7.1 � Linear regression
Linear regression is a statistical technique employed 
for the purpose of predictive analysis. The approach 
employed involves the use of a linear model to represent 
the association between a dependent variable and one 
or more independent variables. Simple linear regression 
refers to the scenario where there is only one independ-
ent variable involved, while multiple linear regression 
is the term used when there are more than one inde-
pendent variables in the analysis. The fundamental con-
cept underlying linear regression involves the process 
of determining a line that best aligns with a given set of 
points, with the objective of minimising the sum of the 
squared residuals, which represent the vertical distances 
between the points and the line.

7.2 � Decision tree regressor
Decision trees are a classification and regression model 
utilised in data analysis and machine learning. Trees pro-
vide responses to sequential inquiries, guiding us along 
specific branches of the tree based on the given answers. 
The model operates based on conditional statements, 
specifically following the pattern of “if this, then that,” 
which ultimately leads to the attainment of a particular 
outcome. Within the framework of regression analysis, 
the construction of a tree follows a similar procedure; 
however, rather than providing an answer pertaining to a 
categorical variable, the objective is to make predictions 
regarding a continuous value.

7.3 � Random forest regressor
The Random Forest algorithm is an ensemble machine 
learning technique that employs the bagging method. 
The algorithm in question is a variant of the bootstrap 
aggregation (bagging) algorithm. The algorithm gener-
ates multiple decision trees and aggregates them to yield 
a prediction that is both more precise and robust. The 
algorithm described herein exhibits versatility in its abil-
ity to perform both regression and classification tasks. 

Furthermore, it effectively manages high-dimensional 
spaces and copes proficiently with substantial quantities 
of training examples.

7.4 � Support vector regressor
Support Vector Regression (SVR) is an algorithm utilised 
for regression analysis, which employs a technique simi-
lar to that of Support Vector Machines (SVM). Support 
Vector Regression (SVR) employs similar principles to 
Support Vector Machines (SVM) for classification, albeit 
with a few minor distinctions. The challenge of predict-
ing information with infinite possibilities arises due to 
the nature of output being a real number. In the context 
of regression, a margin of tolerance, denoted as epsilon, is 
established to approximate the Support Vector Machine 
(SVM) that has been previously solicited from the given 
problem. In addition to the aforementioned fact, it is 
imperative to consider a more intricate reason, namely 
the complexity of the algorithm. Nevertheless, the cen-
tral concept remains consistent: the objective is to reduce 
error by customising the hyperplane that maximises the 
margin, while acknowledging that a certain degree of 
error is acceptable.

7.5 � Gradient boosting regressor
Gradient Boosting is a widely used machine learning 
approach that is employed for both regression and clas-
sification tasks. This technique generates a prediction 
model by combining multiple weak prediction models, 
often in the form of decision trees. The model is con-
structed iteratively, following a similar approach as other 
boosting techniques, and it extends their capabilities by 
enabling the optimisation of any differentiable loss func-
tion. The fundamental concept behind gradient boost-
ing is to construct an ensemble of weak learners, which, 
when aggregated, yield a powerful learner capable of 
accurately predicting the target variable. The learners are 
generated in a sequential manner, wherein each subse-
quent learner is trained to rectify the errors made by the 
preceding learners.

7.6 � XGBoost regressor
XGBoost is an abbreviation for eXtreme Gradient Boost-
ing. This particular implementation of the Gradient 
Boosting method is designed to improve the accuracy of 
approximations by leveraging the advantages offered by 
the second order derivative of the loss function, as well as 
incorporating L1 and L2 regularisation techniques. Addi-
tionally, it is capable of effectively handling sparse data 
and missing values. XGBoost is a machine learning algo-
rithm that belongs to the ensemble methods category and 
is based on decision trees. It utilises a gradient boosting 
framework to enhance its performance. Artificial neural 
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networks have demonstrated superior performance com-
pared to alternative algorithms or frameworks in pre-
diction problems that involve unstructured data, such 
as images and text. Currently, decision tree based algo-
rithms are widely regarded as the most effective for han-
dling small-to-medium structured/tabular data.

7.7 � AdaBoost regressor
AdaBoost, also known as Adaptive Boosting, is a meta-
algorithm used for statistical classification purposes. It 
has the potential to be utilised in tandem with various 
other learning algorithms in order to enhance overall 
performance. The final output of the boosted classifier 
is obtained by combining the outputs of the other learn-
ing algorithms, commonly referred to as ‘weak learners’, 
through a weighted sum. AdaBoost demonstrates adapt-
ability by adjusting subsequent weak learners to prioritise 
instances that were misclassified by previous classifiers.

7.8 � MLP regressor
Multi-layer Perceptron is referred to as MLP. This kind of 
artificial neural network uses feedforward technology. A 
minimum of three layers of nodes make up an MLP: the 
input layer, the hidden layer, and the output layer. Each 
node, with the exception of the input nodes, is a neuron 
that employs a nonlinear activation function. Backprop-
agation is a supervised learning method that is used by 
MLP during training. For pattern classification, identifi-
cation, prediction, and approximation, MLPs are often 
utilised.

7.9 � Stacking regressor
Stacking is a method employed in ensemble learning, 
wherein multiple regression or classification models are 
integrated using either a meta-regressor or a meta-classi-
fier. The initial models at the base level are trained using a 
comprehensive training dataset. Subsequently, the meta-
model is trained using the outputs of the base level mod-
els, which are utilised as features. The foundational level 
frequently comprises diverse learning algorithms, result-
ing in the heterogeneity of stacking ensembles. The algo-
rithm utilises the outputs of individual base models as 
additional features for the ultimate model. The ultimate 
model is trained to generate the ultimate prediction by 
utilising the outputs of the individual models.

8 � Discussion of the specific parameters 
and configurations used for each algorithm

8.1 � Linear regression
There are no special settings to adjust for this model. The 
data are simply fitted to a linear equation.

Decision Tree Regressor: The model was utilised 
employing the default parameters. The paramount vari-
ables in this model are:

• max_depth: The maximum depth of the tree refers 
to the furthest distance between the root node and any 
leaf node in the tree structure. One potential approach 
to mitigate the issue of over-fitting is through the imple-
mentation of a control mechanism. As the depth of a tree 
increases, the number of splits it possesses also increases, 
thereby enabling it to capture a greater amount of infor-
mation pertaining to the data.

• min_samples_split: The minimum number of sam-
ples necessary for the splitting of an internal node. The 
variability of this phenomenon is contingent upon the 
magnitude of the dataset.

8.2 � Random forest regressor
Default parameters were applied to the model. The most 
significant model parameters are:

• n_estimators: The number of trees within the forest. 
The size of the input positively correlates with computa-
tional requirements, leading to increased computation 
time. Furthermore, it is important to acknowledge that 
the improvement in results will cease to be substantial 
once a critical threshold of trees is reached.

• max_features: Number of factors to consider while 
choosing the ideal split.

• max_depth: The maximum depth of the tree.

8.3 � Support vector regressor
The model was used with the default parameters. The 
most important parameters in this model are:

•	 C: Regularisation parameter. The regularization’s 
magnitude is inversely proportional to C. Must be 
strictly positive.

•	 kernel: Specifies the type of kernel to be utilised by 
the algorithm. It must be ‘linear’, ‘poly’, ‘rbf ’,’sigmoid’, 
‘precomputed’, or a callable function.

8.4 � Gradient boosting regressor
The model was utilised employing the default param-
eters. The paramount variables in this model are:

•	 n_estimators: The number of boosting stages to 
execute. Gradient boosting exhibits a notable degree 
of resilience against over-fitting, thus a higher quan-
tity of iterations generally leads to improved perfor-
mance.

•	 learning_rate: The contribution of each tree is 
reduced by learning rate. Learning_rate and n_esti-
mators are in competition with one another..
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•	 max_depth: Individual regression estimators’ deep-
est point. The number of nodes in the tree is limited 
by the maximum depth..

8.5 � XGBoost regressor
The model was used with the default parameters. The 
most important parameters in this model are:

•	 n_estimators: Number of gradient boosted trees. 
Equivalent to number of boosting rounds.

•	 learning_rate: Boosting learning rate (xgb’s “eta”)
•	 max_depth: Maximum tree depth for base learners.

8.6 � AdaBoost regressor
The model was applied using its default settings. The cru-
cial variables in this model are:

base_estimator: The boosted ensemble is constructed 
using the base estimator..

n_estimators: The point at which boosting is ter-
minated is determined by the maximum number of 
estimators.

learning_rate: The learning rate parameter reduces the 
impact of each individual regressor by a factor equal to 
the specified learning_rate..

8.7 � MLP regressor
The model was utilised employing the default param-
eters. The parameters that hold the greatest significance 
in this model are:

hidden_layer_sizes: The i-th element denotes the 
number of neurons present in the i-th hidden layer.

activation: The activation function employed for the 
hidden layer.

solver: The solver for weight optimization.

8.8 � Stacking regressor
The model was run using the default settings. This mod-
el’s most essential parameters are:

estimators: Base estimators which will be stacked 
together. Each element of the list is defined as a tuple of 
string (i.e. name) and an estimator instance.

final_estimator: A regressor will be employed to com-
bine the base estimators. The default regressor utilised in 
this context is the LinearRegressor.

9 � Experimental setup
9.1 � Description of the evaluation metrics used to assess 

the performance of the algorithms
The study assessed the efficacy of various machine learn-
ing models by employing the subsequent metrics:

9.2 � The mean squared error (MSE)
A metric used to quantify the average squared devia-
tion between the predicted values and the corresponding 
actual values. The squaring operation amplifies the sig-
nificance of larger errors. The Mean Squared Error (MSE) 
is a valuable metric in situations where there is a desire to 
assign greater weight to significant errors.

9.3 � Root mean squared error (RMSE)
The metric being referred to is widely employed in 
regression problems. The metric quantifies the mean 
magnitude of the prediction errors, specifically the dif-
ference between the predicted and actual values. The 
root mean square error (RMSE) assigns greater signifi-
cance to larger errors, rendering it particularly advanta-
geous in scenarios where substantial errors are deemed 
undesirable.

9.4 � Mean absolute error (MAE)
This metric is frequently employed in regression prob-
lems. The metric quantifies the mean magnitude of the 
forecast error, without applying the squaring operation as 
done in the calculation of the Root Mean Square Error 
(RMSE). The utilisation of this approach results in a 
reduced sensitivity to significant errors in comparison to 
the root mean square error (RMSE).

9.5 � R‑squared (R2)
This statistical metric shows how much of the varia-
tion for a dependent variable in a regression model is 
explained by one or more independent variables. It offers 
a gauge of how closely the predictions of the model 
match the actual facts. 100% R2 means that changes in 
the independent variable(s) fully account for all changes 
in the dependent variable. These metrics offer varying 
viewpoints regarding the efficacy of the models.
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n is the total number of observations.
Yi is the actual value,
Ŷi is the predicted value,
Ӯ is the mean of the actual values.

10 � Explanation of the experimental design, 
including data splitting, cross‑validation, etc.

The experimental design was meticulously devised in 
order to guarantee a rigorous assessment of the machine 
learning models in the study. The following is an elucida-
tion of the fundamental procedures:

10.1 � Data splitting
The dataset was divided into a training set and a test set. 
The training dataset was utilized for the purpose of train-
ing the machine learning models, while the test dataset 
was employed to assess their performance. The division 
was conducted in order to assess the models’ perfor-
mance on unseen data during training, thus providing a 
more realistic evaluation of their capacity to generalize to 
novel data.

10.2 � Handling missing values
Since the dataset was collected by different research 
papers, dataset was handled appropriately before training 
the models. Depending on the nature of the data and the 
percentage of missing values, different strategies such as 
deletion, imputation, or prediction could have been used. 
Since the dataset was collected by different research 
papers,there was no any missing dataset.

10.3 � Cross‑validation
A method called cross-validation is used to evaluate how 
successfully a machine learning model generalizes to a 
different dataset. In this process, the data is divided into 
subgroups, the model is trained on some of these subsets, 
and then tested on the other subsets. Multiple iterations 
of this process are conducted, with various subsets being 
utilised for testing and training at each stage. The model’s 
performance is then averaged over the many rounds to 
get a more reliable approximation of its performance.

10.4 � Hyperparameter tuning
Hyperparameters for many machine learning models 
must be specified prior to training. The performance 
of the model may be considerably impacted by these 
hyperparameters. In this work, the optimal hyperparam-
eters for each model were determined using a technique 
called grid search. In order to do this, the model must 
be trained and evaluated using a variety of combinations 
of hyperparameters until the optimum combination is 
chosen.

10.5 � Model evaluation
The models were tested on the test set after they had been 
trained and their hyperparameters had been adjusted. 
Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), R-squared (R2), and Mean Squared Error (MSE) 
were the performance measures employed. These met-
rics provide several viewpoints on the performance of the 
models, such as the size of the prediction error and the 
accuracy with which the model’s predictions match the 
data.

10.6 � Model comparison
To determine the most effective model for forecasting 
wave runup, the performances of the various models 
were examined. The model with the lowest RMSE, MAE, 
and MSE and highest R2 was the most effective.

A comprehensive and reliable assessment of the 
machine learning models was achieved thanks to the 
experimental approach used.

11 � Overview of any specific hardware or software 
tools used for implementation

The execution of the machine learning models was con-
ducted utilising Python, a widely adopted programming 
language in the field of data science owing to its com-
prehensibility, effectiveness, and extensive collection of 
libraries.

The Python libraries utilised in this investigation 
encompass:

11.1 � Pandas
The library was utilised for the purposes of manipulating 
and analysing data. The software package offers a com-
prehensive set of data structures and functions that are 
essential for the manipulation of structured data.

11.2 � NumPy
Numerical calculations were performed using this pack-
age. It offers a high-performing multidimensional array 
object and resources for using these arrays.

11.3 � Scikit‑learn
This particular machine learning library in Python is 
extensively utilised. The software offers a variety of super-
vised and unsupervised learning algorithms. This study 
employed various models including Linear Regression, 
Decision Tree, Random Forest, Support Vector Regres-
sion, Gradient Boosting Regressor, AdaBoost Regressor, 
MLP Regressor, and Stacking Regressor.

11.4 � XGBoost
This is a library that has been optimised for distributed 
gradient boosting, and its design focuses on making it as 
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versatile and portable as possible. It was applied to the pro-
cess of putting the XGBoost Regressor model into action.

11.5 � Matplotlib and Seaborn
Data visualisation was accomplished using these librar-
ies. They provide users the ability to create a variety of 
static, animated, and interactive plots.

The calculations were executed on a conventional per-
sonal computer. The implementation did not require 
any specific hardware. Nevertheless, when dealing with 
extensive datasets or intricate models, it may be imper-
ative to utilise a machine equipped with a high-per-
formance central processing unit (CPU), a substantial 
quantity of random-access memory (RAM), and poten-
tially a graphics processing unit (GPU) to expedite com-
putational processes.

12 � Results and analysis
This study employed multiple machine learning models 
to predict the runup values by utilising diverse input fea-
tures. The models employed in this study encompass Lin-
ear Regression, Random Forest, Decision Tree, Support 
Vector Regression (SVR), Gradient Boosting Regressor, 
XGBoost Regressor, AdaBoost Regressor, MLP Regres-
sor, and Stacking Regressor.

The performance of each model was assessed by 
employing the MSE, RMSE, MAE and R-squared (R2) 
score as evaluation metrics. MSE, RMSE, MAE provide 
an indication of the magnitude of error exhibited by the 
model in its predictive capabilities, wherein a smaller 
value signifies a more optimal fit. The R2 score, alter-
natively referred to as the coefficient of determination, 
provides insight into the extent to which the independ-
ent variables can predict the variance observed in the 
dependent variable. A higher R2 score suggests that the 
model accounts for a significant proportion of the vari-
ability observed in the dependent variable.

Additionally, a residual analysis was conducted for each 
model. A scatter plot was generated to display the residu-
als, which represent the differences between the observed 
values and the corresponding predicted values. Ideally, it is 
desirable to observe a random distribution of data points 
around the zero line, which signifies the effective perfor-
mance of the model. The presence of discernible patterns 
in the residuals implies that the model employed is inad-
equate in capturing certain elements inherent in the data. 
The perfomace metrics of this study was shown in Table 4.

All the models have significantly lower RMSE values than 
the Linear Regression model, indicating that they are better 
at predicting runup (R2%) given the features in the dataset. 
The Gradient Boosting Regressor, XGBoost Regressor, and 
Stacking Regressor exhibit superior performance in pre-
dicting wave run-up, as indicated by the metrics provided. 

The models exhibit the lowest Mean Squared Error (MSE), 
Root Mean Squared Error (RMSE), and Mean Absolute 
Error (MAE) values, suggesting reduced levels of predic-
tion errors. Furthermore, the models demonstrate high R2 
values, approaching 1, which suggests a substantial amount 
of variance is accounted for by the models.

The presented figure (Fig. 4) illustrates the performance of 
nine distinct machine learning models in their ability to pre-
dict wave runup values. The models employed in this study 
encompass Linear Regression, Random Forest Regressor, 
Decision Tree Regressor, Support Vector Regressor, Gra-
dient Boosting Regressor, XGBoost Regressor, AdaBoost 
Regressor, MLP Regressor, and Stacking Regressor.

Each subplot illustrated in the figure demonstrates a 
line plot showcasing the wave runup values for a particu-
lar model, both in terms of actual and predicted values. 
The x-axis corresponds to the instances within the test set, 
whereas the y-axis signifies the wave runup values. The 
observed wave runup values are represented by the blue 
line in each plot, while the predicted values generated by 
the respective model are represented by the coloured line.

12.1 � Linear regression (green)
The present model demonstrates a satisfactory level of 
predictive accuracy, as evidenced by the green line closely 
aligning with the trend exhibited by the blue line. Never-
theless, there exist certain deviations that suggest situa-
tions in which the model’s prediction diverged from the 
observed value.

12.2 � Random forest regressor (red)
This model shows a better performance compared to the 
Linear Regression model. The red line closely follows the 
blue line, indicating a higher accuracy in predictions.

12.3 � Decision tree regressor (cyan)
This model performs more about the same as the Ran-
dom Forest Regressor. The cyan line closely follows the 
blue line.

Table 4  Performance metrics of this study

Model MSE (m2) RMSE (m) MAE (m) R2(−)

Linear Regression 0.961 0.980 0.733 0.729

Decision Tree 0.084 0.290 0.172 0.976

Random Forest 0.090 0.301 0.165 0.974

Support Vector Regression 
(SVR)

0.019 0.138 0.107 0.981

Gradient Boosting Regressor 0.001 0.034 0.026 0.999

XGBoost Regressor 0.001 0.032 0.024 0.999

AdaBoost Regressor 0.007 0.084 0.067 0.993

MLP Regressor 0.003 0.055 0.043 0.997

Stacking Regressor 0.001 0.033 0.025 0.999



Page 15 of 26Durap ﻿Anthropocene Coasts            (2023) 6:17 	

12.4 � Support vector regressor (Magenta)
The model exhibits good results as evidenced by the 
magenta line closely tracking the blue line, thereby sig-
nifying precise predictions.

12.5 � Gradient boosting regressor (yellow)
This model also demonstrates good performance, as the 
yellow line closely follows the blue line.

12.6 � XGBoost regressor (black)
This model’s efficacy is similar to that of the Gradient 
Boosting Regressor, with the black line closely corre-
sponding to the blue line.

12.7 � AdaBoost regressor (purple)
This model exhibits reasonable performance, with the 
purple line following the blue line’s trend. Nevertheless, 
there are some deviations indicating instances in which 
the model’s prediction differed from the actual value.

12.8 � MLP regressor (Orange)
This model’s performance is similar to that of the Ada-
Boost Regressor, with the orange line following the blue 
line’s trend with some deviations.

12.9 � Stacking regressor (Brown)
This model, which incorporates the results of the other 
models, performs well, as seen by the close proximity of 
the brown and blue lines.Fig. 5

In summary, it can be observed that all models exhibit 
a satisfactory level of accuracy in forecasting wave runup 
values. Notably, the Random Forest Regressor, Support 
Vector Regressor, Gradient Boosting Regressor, XGBoost 
Regressor, and Stacking Regressor demonstrate a notably 
high level of predictive performance. Nevertheless, it is 
crucial to acknowledge that the efficacy of these models 
may fluctuate based on the particular dataset and prob-
lem under consideration. Hence, it is advisable to engage 
in the systematic exploration of various models and sub-
sequently select the one that aligns most effectively with 
the particular task at hand.Fig. 6

The characterization of residuals in the field of statis-
tics and regression analysis refers to the configuration or 
form of the differences between the observed values and 
the predicted values within a regression model. Residu-
als refer to the discrepancies or errors that arise from 
subtracting the predicted values from the observed data 
points. The examination of residual distribution offers 
valuable insights into the precision and appropriateness 
of the regression model (Fig. 7).

Fig. 4  Comparison of actual vs predicted wave runup values for various machine learning models. Each subplot corresponds to a different model, 
as indicated by the title. The x-axis represents the instances in the test set, and the y-axis represents the wave runup values. The blue line in each 
plot represents the actual wave runup values, and the colored line represents the predicted values by the corresponding model
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The red line depicted in the residual plots symbolises 
an ideal prediction scenario in which the residuals would 
assume a value of zero. The model accurately predicted all 
data points that lie on this line. The magnitude of prediction 
error increases as points deviate further from this line.Fig. 8

The objective in analysing these plots is to observe a 
distribution of points that appears randomly dispersed 
around the zero axis. This observation suggests that the 
model is performing effectively. The presence of discern-
ible patterns within the residuals implies that the model 
employed has failed to adequately account for certain ele-
ments within the dataset.

12.10 � Linear regression
The residuals exhibit a dispersion around the central value 
of zero, suggesting that the model has effectively captured 
the majority of the explanatory data. Nevertheless, it is 
worth noting that there are certain data points in the train-
ing set that deviate significantly from the norm. This phe-
nomenon may be attributed to the model’s limited capacity 
to effectively capture intricate patterns within the dataset.

12.11 � Random forest
The residuals exhibit a dispersion around the central 
axis of zero, and a reduced presence of outliers in com-
parison to the Linear Regression model. This observa-
tion suggests that the model has successfully captured 

the relevant explanatory information. Nevertheless, there 
exist certain exceptional cases that indicate the possibil-
ity of undiscovered patterns within the data that have not 
been accounted for by the model.

12.12 � Decision tree
The residuals exhibit a dispersed distribution around the 
central axis of zero, and a reduced presence of outliers in 
comparison to the Linear Regression model. The perfor-
mance of this model appears to be commendable in accu-
rately capturing the underlying patterns present in the 
data. Nevertheless, akin to the Random Forest algorithm, 
there exist outliers that indicate the presence of unac-
counted patterns within the data by the model.

Support Vector Regression (SVR): The residuals exhibit 
a dispersed distribution around the central value of zero, 
suggesting that the model has effectively captured a signif-
icant portion of the explanatory information. Neverthe-
less, it is worth noting that there are distinct anomalies, 
particularly within the training dataset. This phenomenon 
may arise as a result of the model’s limited capacity to 
comprehend intricate patterns within the dataset.

12.13 � Gradient boosting regressor
The residuals exhibit a dispersion around the central axis 
of zero, and the presence of outliers is comparatively 
reduced in relation to the SVR model. This observation 

Fig. 5  Comparison of actual vs predicted values for various machine learning models used to predict runup. Each subplot corresponds 
to a different model, as indicated by the title. The x-axis represents the actual values, and the y-axis represents the predicted values. The black 
dashed line in each plot represents the ideal prediction (y = x), where the actual values equal the predicted values
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suggests that the model has effectively captured the rel-
evant explanatory information. Nevertheless, there exist 
certain exceptional cases that indicate the presence of 
potential patterns within the data that have not been ade-
quately accounted for by the model.

12.14 � XGBoost regressor
The residuals exhibit a dispersion pattern around the 
central axis of zero, and a reduced presence of extreme 
values in comparison to the Support Vector Regression 
(SVR) model. The aforementioned model has demon-
strated a commendable ability to accurately capture the 
underlying patterns present within the dataset. Neverthe-
less, akin to the Gradient Boosting Regressor, there exist 
outliers that imply the presence of unaccounted patterns 
within the data by the model.

12.15 � AdaBoost regressor
The residuals exhibit a dispersion around the central 
value of zero, with the presence of discernible outliers. 

This phenomenon may arise as a result of the model’s 
limited capacity to comprehend intricate patterns within 
the dataset.

12.16 � MLP regressor
The residuals exhibit a dispersion around the central 
value of zero, with the presence of discernible outliers. 
This phenomenon may be attributed to the model’s lim-
ited capacity to comprehend intricate patterns within the 
dataset.

12.17 � Stacking regressor
The residuals exhibit a dispersion pattern centred around 
the zero centerline, suggesting a normal distribution. 
This model has demonstrated satisfactory performance.

In each of the models, the residuals for the test set 
exhibit greater dispersion in comparison to the train-
ing set. This outcome is anticipated since the models are 
trained exclusively on the training set and may not dem-
onstrate optimal performance when confronted with 
unseen data.

Fig. 6  Residual plots and distribution of residuals for 3 different machine learning models used to predict runup
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The calculation of feature significance is applicable to 
tree-based models like as Decision Tree, Random For-
est, Gradient Boosting, XGBoost, and AdaBoost, as well 
as linear models like Linear Regression. On the other 
hand, it is not possible to compute it for models such 
as the Support Vector Regressor, the MLP Regressor, or 
the Stacking Regressor. These models operate within a 
high-dimensional or modified feature space, where the 
applied transformations to the input data pose challenges 
in directly determining the significance of individual 
characteristics.

Expanding on the insights gained from Table  5, the 
analysis continues with, showcasing a heatmap of corre-
lation coefficients for the Wave Runup dataset.

Based on the analysis of the heatmap, a consistent pat-
tern results wherein the three most significant param-
eters in the dataset exhibit a strong alignment with the 
feature importance rankings derived from the XGBoost 
Regressor, Gradient Boosting Regressor, and Ran-
dom Forests. However, they provide different types of 
information.

The feature importance method evaluates the indi-
vidual significance of each feature in predicting the tar-
get variable. The features are ranked according to their 
respective contributions to the predictive performance 
of the model. XGBoost Regressor, Gradient Boosting 
Regressor, and Random Forests algorithms all offer fea-
ture importance metrics. These measures can aid in 
determining the most influential features in the model’s 
predictions.

The correlation heatmap technique is employed to 
examine the pairwise correlations between the features 
and the target variable. A correlation heatmap is a graphi-
cal representation that utilises color-coded cells to depict 
correlations, thereby offering a concise summary of the 
associations between variables. The utilisation of a heat-
map facilitates the identification of features that exhibit a 
robust linear correlation with the target variable.

Both methodologies possess fundamental advantages 
and are capable of yielding valuable insights from the 
dataset. The assessment of feature importance aids in 
comprehending the relative significance of features 

Fig. 7  Residual plots and distribution of residuals for 3 different machine learning models used to predict runup
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within a model, whereas a correlation heatmap facili-
tates the identification of linear associations between 
features and the target variable. Depending on the 
specific objectives and characteristics of the data, 
researchers have the option to employ one or both of 
these methodologies in order to enhance their compre-
hension of the regression problem at hand.Fig. 9

The interrelationships between the characteristics of 
the wave runup dataset are shown graphically in this 
heatmap. The correlation coefficient between two vari-
ables is shown in each cell as the combination of the 

colour intensity and the number. A correlation coef-
ficient is a statistical metric used to determine how 
strongly two variables move in tandem. The numbers 
might go from negative one to positive one.

When the value of the correlation coefficient is − 1.0, it 
indicates a perfect negative correlation, and when it is 1.0, it 
indicates a perfect positive correlation. There is no linear link 
between the two variables’ movements if the correlation is 0.0.

The heatmap displays correlation coefficients, with 
darker colours indicating higher absolute values and thus 
a stronger relationship.

Based on the analysis of the heatmap, it is evident that:
• The variables R2% and Stt (total swash excursion) 

exhibit a highly significant positive correlation, with a 
coefficient of 0.905. As the magnitude of the swash excur-
sion increases, there is a tendency for the 2% exceedance 
value of runup to also increase.

• The variables R2% and Set (setup) exhibit a significant 
positive correlation with a coefficient of 0.873. There is 
a positive correlation between higher setup values and 
higher 2% exceedance values for runup.

Fig. 8  Residual plots and distribution of residuals for 3 different machine learning models used to predict runup

Table 5  Feature importance

Model Set Stt Sinc Sig Hs

Decision Tree 0.0172 0.0688 0.0723 0.0822 0.4474

Random Forest 0.0168 0.0598 0.0709 0.0716 0.4686

Gradient Boosting Regressor 0.0243 0.0728 0.0716 0.0692 0.4445

XGBoost Regressor 0.0211 0.0754 0.0697 0.0720 0.4464

AdaBoost Regressor 0.0142 0.0689 0.0701 0.0706 0.4721
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• The analysis reveals a robust positive correlation of 
0.884 between R2% and Sig (infragravity swash). As the 
magnitude of the infragravity swash intensifies, there is a 
corresponding tendency for the 2% exceedance value of 
runup to increase.

• The variables R2% and Hs (significant deep-water 
wave height) exhibit a robust positive correlation with 
a coefficient of 0.822. There is a positive correlation 
between elevated deep-water wave heights and increased 
2% exceedance values for runup.

• The relationship between R2% and Sinc (incident 
swash) exhibits a statistically significant positive correla-
tion with a coefficient of 0.745, indicating a moderate to 
strong association. As the magnitude of the incident swash 
increases, there is a tendency for the 2% exceedance value 
for runup to also increase, albeit not as significantly as 
observed with other variables.

• The variables R2% and Tp (peak wave period) exhibit 
a moderate positive correlation with a coefficient of 
0.427. There exists a moderate correlation between 
higher peak wave periods and higher 2% exceedance val-
ues for runup, although the strength of this relationship 
is relatively weaker.

• The correlation coefficient between R2% and tanβ (fore-
shore beach slope) indicates a moderate positive relation-
ship, with a value of 0.382. As the slope of the foreshore 
beach increases, there is a tendency for the 2% exceedance 

value of runup to also increase, although the correlation 
between these two variables is not particularly robust.

• The correlation between R2% and D50 (Median sedi-
ment size) is moderately positive, with a coefficient of 0.343. 
There is a tendency for the 2% exceedance value for runup 
to increase as the median sediment size increases, although 
the strength of this relationship is not particularly robust.

13 � Discussion
13.1 � Interpretation of the findings and their implications 

for wave runup prediction
The study yielded several important findings with impli-
cations for wave runup prediction:

13.2 � Performance of machine learning models
The XGBoost and Stacking models exhibited superior 
performance on the given dataset, as evidenced by their 
success in achieving of the lowest Root Mean Squared 
Error (RMSE) values. This implies that ensemble meth-
ods, which combine predictions from multiple models, 
exhibit notable efficacy for this particular task. These 
models is likely to accurately reflect the complex struc-
ture of relationships between the data’s properties.

13.3 � Importance of non‑linear models
The notable efficacy exhibited by models such as 
XGBoost, Stacking, and Random Forest, which possess 

Fig. 9  Heatmap of Correlation Coefficients for Wave Runup Dataset
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the ability to capture non-linear relationships, suggests 
that the connection between the features and the tar-
get variable (wave runup) is likely to be non-linear. This 
observation holds significant implications for the future 
development of wave runup modelling.

13.4 � Limitations of linear models
The linear regression and support vector regression mod-
els, specifically those employing a linear kernel, exhibited 
comparatively greater root mean square error (RMSE) 
values. This indicates that these models were less suc-
cessful in accurately representing the intricate nature of 
the dataset when compared to the non-linear models. 
This finding underscores the significance of taking into 
account non-linear models when addressing this task.

13.5 � Implications for wave runup prediction
The findings indicate that the utilisation of machine 
learning models holds promise in accurately forecasting 
wave runup, thus carrying significant implications for the 
field of coastal engineering and management. Accurate 
prediction of wave runup holds significant potential in 
facilitating the design of coastal structures and evaluat-
ing the risks associated with coastal hazards (Doğan and 
Durap 2017; Durap et al. 2023; Durap and Balas 2022).

13.6 � Implications for coastal management
Accurate prediction of wave runup holds significant 
importance in the field of coastal management. Wave 
runup has the potential to induce adverse effects such 
as beach erosion and flooding, thereby exerting signifi-
cant influence on coastal infrastructure and ecosystems. 
The results of this study indicate that the utilisation of 
machine learning models holds significant potential in 
the accurate prediction of wave runup, thereby provid-
ing valuable insights for informing decisions related to 
coastal management.

13.7 � Future research directions
There is definitely space for improvement, even if the 
research showed the promise of machine learning for 
wave runup prediction. Future studies should examine 
further machine learning models, make use of bigger and 
more varied datasets, and look at additional variables 
that could be crucial for forecasting wave runup. The 
utilisation of feature engineering techniques to generate 
novel and informative features, coupled with the tuning 
of model hyperparameters, can be employed to enhance 
the performance of the model. Furthermore, it is worth 
considering the exploration of alternative machine learn-
ing models and deep learning approaches.

The research concluded by demonstrating that wave 
runup may be accurately predicted by machine learning 

methods, with implications for coastal engineering and 
management. But further investigation is required to 
improve the precision of these forecasts and examine the 
possibility of additional machine learning methods.

14 � Comparison of the algorithms’ performance 
and suitability for practical applications

The present study involved the evaluation of multiple 
machine learning models with the aim of assessing their 
predictive capabilities in determining wave runup, a criti-
cal parameter in the field of coastal engineering. The fol-
lowing analysis presents a comparative assessment of 
their performance and applicability in practical contexts:

14.1 � Linear regression
In contrast to its straightforwardness and efficiency, the 
efficacy of Linear Regression on this particular dataset 
was comparatively suboptimal when compared to the 
alternative models. The assumption of a linear relation-
ship between features and the target variable may not be 
applicable in various real-world scenarios, including the 
present one. Hence, although it can function as a reliable 
reference model, its suitability for practical scenarios per-
taining to wave runup prediction may be limited.

14.2 � Decision tree
The performance of the Decision Tree model was supe-
rior to that of Linear Regression, although it was sur-
passed by certain other models. Although Decision Trees 
possess the advantage of being easily interpretable, they 
are susceptible to overfitting the training data, resulting 
in inadequate generalisation to unfamiliar data. Hence, 
it is imperative to note that these options may not be 
optimal for practical implementations in the absence of 
appropriate calibration and verification processes.

14.3 � Random forest
The Random Forest model exhibited strong performance 
on the given dataset, thereby showcasing the efficacy of 
ensemble methods. Random Forests exhibit a reduced 
susceptibility to overfitting compared to individual 
Decision Trees, rendering them capable of effectively 
managing intricate relationships within the dataset. Nev-
ertheless, the training and prediction processes of these 
models may exhibit sluggishness, particularly when con-
fronted with extensive datasets. This characteristic could 
potentially impede their efficacy in practical scenarios 
that necessitate prompt and real-time predictions.

14.4 � Support vector regression (SVR)
The support vector regression (SVR) model exhib-
ited the poorest performance on the given dataset. 
Although Support Vector Regression (SVR) has the 
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capability to handle non-linear relationships by utilis-
ing appropriate kernels, its performance tends to be 
sluggish when dealing with large datasets. Additionally, 
the task of selecting the optimal kernel and parameter 
values for SVR can pose a significant challenge. Hence, 
it may not be the most appropriate for practical appli-
cations pertaining to the prediction of wave runup.

14.5 � Gradient boosting
The performance of the Gradient Boosting model on this 
dataset was satisfactory. Similar to the Random Forest 
algorithm, this ensemble method is capable of effectively 
addressing intricate relationships within the dataset. 
Nevertheless, the training process of this model may be 
characterised by a slow pace and a susceptibility to over-
fitting if appropriate regularisation techniques are not 
implemented. Hence, meticulous calibration and verifica-
tion would be imperative for pragmatic implementations.

14.6 � XGBoost
The XGBoost model exhibited superior performance 
on the given dataset, alongside the Stacking model. 
XGBoost is widely recognised for its exceptional perfor-
mance across various machine learning tasks, owing to 
its built-in regularisation capabilities that effectively miti-
gate the risk of overfitting. However, similar to Gradi-
ent Boosting, the training process of this method can be 
time-consuming and necessitates meticulous parameter 
tuning. Notwithstanding these challenges, the commend-
able performance of the subject in question renders it a 
favourable option for pragmatic implementations.

14.7 � AdaBoost regressors
The performance of the AdaBoost model was supe-
rior to that of Linear Regression and Support Vector 
Regression (SVR), although it was surpassed by certain 
alternative models. Although AdaBoost is relatively 
straightforward to implement and often yields favour-
able results, it is susceptible to the influence of noisy 
data and outliers. Hence, it may not be the most appro-
priate for practical applications in the absence of ade-
quate data preprocessing and model tuning.

14.8 � MLP regressor
The MLP model exhibited superior performance in com-
parison to Linear Regression and SVR, although it was 
surpassed by certain alternative models. Although Mul-
tilayer Perceptrons (MLPs) have the capability to handle 
intricate and non-linear relationships, their effectiveness 
is contingent upon meticulous parameter tuning and 
they often exhibit slow training speeds. Hence, it is plau-
sible that these models may not be optimally suited for 

practical applications in the absence of adequate compu-
tational resources and expertise in model calibration.

14.9 � Stacking regressor
The Stacking model exhibited superior performance on 
the given dataset, alongside the XGBoost model. Stack-
ing, as an ensemble technique, effectively leverages the 
collective capabilities of multiple models. Nevertheless, 
the training process of this model tends to be sluggish, 
necessitating meticulous selection of both the initial and 
ultimate models. Additionally, its interpretability falls 
short when compared to more straightforward mod-
els. Notwithstanding these challenges, the commend-
able performance of the subject in question renders it a 
favourable option for pragmatic implementations.

In summary, when considering practical applica-
tions related to wave runup prediction, it is evident that 
ensemble methods such as XGBoost and Stacking exhibit 
notable suitability owing to their exceptional perfor-
mance. Nevertheless, the selection of a model is con-
tingent upon additional considerations, including the 
computational resources at hand, the requirement for 
interpretability of the model, and the level of tolerance 
for both model training and prediction time.

Considering the presented results, it appears that the 
machine learning models, especially the ensemble ones, 
have performed well in predicting wave runup. However, 
we suggested that The XGBoost and Stacking models 
exhibited superior performance in the manuscript which 
are all ensemble learning methods.

15 � Identification of key factors influencing 
the predictive accuracy of the algorithms

The study identified several crucial factors that exerted 
an influence on the predictive accuracy of the algorithms:

15.1 � Quality and quantity of data
The critical factor in the training and testing of models 
is the quality and quantity of the data utilised. The utili-
sation of high-quality data containing a substantial num-
ber of instances has the potential to enhance the learning 
capabilities of models and improve their ability to gener-
alise when presented with novel data. The present study 
utilised a comprehensive dataset that encompassed a 
diverse range of features pertaining to wave and beach 
characteristics.

15.2 � Feature selection
The predictive accuracy of the models was significantly 
influenced by the choice of input features utilised for 
wave runup prediction. The present study identified 
the median sediment size, significant deep-water wave 
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height, and foreshore beach slope as the primary fac-
tors of significance. Enhancing the predictive accuracy of 
models can be achieved by incorporating relevant char-
acteristics that have a substantial influence on the output.

15.3 � Model complexity
The predictive accuracy of the model can also be influ-
enced by its complexity. The utilisation of more sophisti-
cated models, such as XGBoost and Stacking, facilitated 
the identification and comprehension of intricate patterns 
within the dataset, ultimately resulting in the attainment 
of the highest level of predictive accuracy. Nevertheless, 
it is important to note that excessively intricate models 
can also suffer from overfitting, a phenomenon wherein 
the model becomes too closely tailored to the training 
data, resulting in subpar performance when applied to 
new, unseen data.

15.4 � Hyperparameter tuning
The performance of algorithms can be significantly influ-
enced by their settings or hyperparameters. In this par-
ticular instance, default hyperparameters were employed 
for all models. The performance of the models could 
potentially be enhanced through hyperparameter tuning.

15.5 � Model assumptions
The predictive accuracy of the model can also be influ-
enced by the assumptions it makes about the underlying 
data. An instance of concern is that Linear Regression 
assumes a linear correlation between the independent 
variables and the dependent variable, which might not be 
valid in the given dataset, thereby resulting in suboptimal 
predictive accuracy.

15.6 � Model interpretability
While not directly influencing predictive accuracy, the 
interpretability of the models is an important factor to 
consider. More interpretable models can provide insights 
into the relationships between the input features and 
the output, which can be valuable in understanding and 
improving the predictive accuracy of the models.

15.7 � Training and validation strategy
The choice of training and validation strategy can have 
an impact on the predictive accuracy of the models. In 
this scenario, a basic train-test split methodology was 
employed. Alternative approaches, such as cross-valida-
tion, have the potential to yield a more reliable assess-
ment of the performance of the models.

The graph (Fig. 10) illustrates the level of interpretabil-
ity associated with each model, the interpretability score 
ranges from 1 to 5, with 5 representing the highest level 
of interpretability. Linear regression and decision trees 
are generally considered to be more interpretable mod-
els, as they provide clear insights into the relationship 
between the input variables and the target variable. On 
the other hand, multilayer perceptron (MLP) and stack-
ing models tend to be less interpretable, as they involve 
complex computations and interactions between vari-
ables that are not easily understandable. The preference 
for Linear Regression and Decision Tree models stems 
from their simplicity and the ease with which their deci-
sion-making processes can be comprehended. In con-
trast, MLP and Stacking models are characterised by 
their intricate nature, as they integrate multiple models 
or layers, thereby rendering their decision-making pro-
cess more challenging to comprehend.

Fig. 10  Interpretability of Machine Learning Models for this particular dataset
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In summary, the efficacy of machine learning models in 
forecasting wave runup was found to be impacted by var-
ious factors, encompassing the adequacy and abundance 
of data, the selection of relevant features, the complex-
ity of the model, the fine-tuning of parameters, and the 
interpretability of the model.

16 � Conclusion and future work
The research conducted in this study focused on the utili-
sation of different machine learning algorithms to predict 
wave runup. The dataset employed in this analysis consisted 
of multiple features, including the 2% exceedance value for 
runup, setup, total swash excursion, incident swash, infra-
gravity swash, significant deep-water wave height, peak wave 
period, foreshore beach slope, and median sediment size. 
The models employed in this study encompassed a range 
of machine learning algorithms, namely Linear Regression, 
Decision Tree, Random Forest, Support Vector Regression, 
Gradient Boosting, XGBoost, AdaBoost, MLP, and Stacking.

The models exhibited varying levels of performance, 
with XGBoost and Stacking models demonstrating supe-
rior performance as indicated by the RMSE, MAE, and 
R-squared metrics. This implies that ensemble methods, 
which amalgamate predictions from multiple models, 
exhibit notable efficacy for this undertaking. Complex 
linkages and interactions between characteristics in the 
dataset may be captured by these models.

However, the RMSE values for Linear Regression and 
Support Vector Regression (with a linear kernel) were 
rather high, indicating that these models did not ade-
quately represent the complexity of the dataset. Because 
of this, it’s even more crucial to think about using non-
linear models for this task.

The findings have significant implications for coastal 
engineering and management, suggesting that machine 
learning methods may be used to efficiently predict wave 
runup. The capacity to reliably forecast wave runup is 
useful for assessing coastal flooding threats and improv-
ing the design of coastal infrastructure.

The research also emphasised the significance of 
employing non-linear models, including XGBoost, Stack-
ing, and Random Forest. The robust performance exhib-
ited by the data implies that there is a probable non-linear 
association between the features and the target variable, 
specifically wave runup. This knowledge is essential for 
next wave runup prediction modelling attempts.

In contrast, linear models such as Linear Regres-
sion and Support Vector Regression with a linear kernel 
exhibited relatively high RMSE values, suggesting their 
limited ability to comprehend the complexities present in 
the dataset. This highlights the importance of incorporat-
ing non-linear models in order to achieve precise wave 
runup prediction.

The investigation also examined the significance of vari-
ous characteristics in forecasting wave runup. The most 
crucial features identified in the study were the median 
sediment size, significant deep-water wave height, and 
foreshore beach slope. This observation has the potential 
to inform and direct future endeavours in data collection 
and model development. Subsequent investigations may 
delve into additional features that hold potential relevance, 
alongside exploring novel techniques for enhancing fea-
ture engineering and selection processes. These endeav-
ours aim to enhance the predictive accuracy of the models.

Enhancing model performance by capturing com-
plicated connections in the data is possible via feature 
engineering techniques including generating new fea-
tures from existing ones. Using hyperparameter tuning 
strategies like grid search and random search, the mod-
els’ performance might be further enhanced. Convolu-
tional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs) are two examples of machine learn-
ing models and deep learning methodologies that may 
provide light on the modelling of temporal relation-
ships in the data. SHAP (SHapley Additive exPlana-
tions) is a method that may be used to better explain 
the decision-making process of complicated models 
like XGBoost and Stacking. Optimising code, utilising 
more efficient methods, or using hardware accelerators 
like GPUs might increase the training and prediction 
performance of the models for realistic applications 
demanding real-time predictions.

While certain models, like Decision Trees, are easily 
interpretable, others, like neural networks, are typically 
seen as “black boxes” and need to be made more inter-
pretable. These models may be interpreted, and their 
predictions gained knowledge from using methods like 
SHAP (SHapley Additive exPlanations). The interpret-
ability of machine learning models is an area that might 
benefit from more study.

With more variables, machine learning models’ com-
plexity increases. The performance of the model can be 
enhanced through the incorporation of informative and 
relevant variables to effect wave runup. However, if the 
variables are irrelevant or introduce noise, the model may 
suffer from overfitting. In the context of wave runup anal-
ysis, this study demonstrates exceptional performance in 
machine learning models compared to existing literature 
due to the inclusion of a more extensive range of relevant 
variables for wave runup.

The complexity of the model rises as the number of 
variables grows. The model is enhanced if the new vari-
ables are informative and useful. However, overfitting 
may occur if the extra variables are irrelevant or intro-
duce noise into the model. Since dataset include relevant 
variables in terms of wave runup, all machine learning 
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models show high performance compared to literature as 
they do not include as much as variable this study.

The findings of this study demonstrate the efficacy of 
machine learning algorithms in predicting wave runup, 
thereby offering significant implications for the fields 
of coastal engineering and management. However, it is 
imperative to conduct additional research in order to fur-
ther enhance these models and investigate the possibili-
ties of alternative machine learning methodologies.

Finally, these models might be applied to real-world 
challenges in coastal engineering, such managing beach 
erosion, developing coastal infrastructure, and assessing 
flood risk, in the future. Creating accessible software to 
run the models and guide the choices of coastal engineers 
would be a good first step in this direction.

Having summarized the significant advancements made 
in the field of coastal engineering through this study, it is 
now essential to highlight the specific contributions and 
findings, which can be summarized as follows:

16.1 � Application of machine learning to wave runup 
prediction

This study provides a significant contribution to the 
field by focusing on the practical application of various 
machine learning models in predicting wave runup, an 
essential parameter in the field of coastal engineering.

16.2 � Comparison of machine learning models
This research paper provides a comprehensive assessment 
of nine different machine learning models, analysing their 
predictive precision, interpretability, and suitability for 
real-world applications. This resource possesses substan-
tial significance as a point of reference for researchers and 
practitioners working within the relevant field.

16.3 � Insights into factors influencing model performance
This research provides significant insights into the key fac-
tors that influence the predictive precision of models. The 
quality of data, the process of feature selection, the com-
plexity of the model, the tuning of hyperparameters, the 
assumptions made by the model, and the strategy employed 
for training and validation are all factors that need to be 
considered. This can serve as a theoretical framework for 
future investigations in these particular academic settings.

16.4 � Implications for coastal engineering 
and management

The study findings have substantial implications for the 
field of coastal engineering and management. The precise 
anticipation of wave runup possesses considerable poten-
tial in facilitating the development of coastal structures and 
the assessment of risks linked to coastal hazards such as 
flooding and erosion.
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