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Abstract
Entanglement constitutes one of the key concepts in quantum mechanics and serves as an indispensable tool in the
understanding of quantummany-body systems. In this work, we perform extensive numerical investigations of
extensive entanglement properties of coupled quantum spin chains. This setup has proven useful for e.g. extending
the Lieb–Schultz–Mattis theorem to open systems, and contrasts the majority of previous research where the
entanglement cut has one lower dimension than the system. We focus on the cases where the entanglement
Hamiltonian is either gapless or exhibits spontaneous symmetry breaking behavior. We further employ conformal
field theoretical formulae to identify the universal behavior in the former case. The results in our work can serve as a
paradigmatic starting point for more systematic exploration of the largely uncharted physics of extensive
entanglement, both analytical and numerical.
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1 Introduction
Over the past few decades, quantum entanglement has
firmly established its status as an indispensable concept
in the understanding of quantum many-body systems.
The study of (topological) entanglement entropy was pi-
oneered by Levin–Wen [1] and Kitaev–Preskill [2], where
the subleading term in the entanglement entropy scal-
ing diagnoses the topological order [3], followed by the
proposal of Li–Haldane [4] to explore the entanglement
Hamiltonian K = – logρ as a finer probe, the spectrum
of which is identified with the (physical) edge spectrum
[5–7]. Research efforts along these lines have signifi-
cantly enriched our understanding of quantum many-
body physics [8], in particular, how interesting physics
can be extracted from a single ground state wavefunction
using entanglement tools [3, 9–17]. Recently, simulation
and measurement of entanglement Hamiltonian have also
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gained traction on the experimental frontier [18–21]. It is
interesting to note that related results have been developed
in parallel in high energy physics, largely in a decoupled
way from the quantum many-body community [21–24].

The majority of works on the entanglement entropy
and entanglement spectrum are framed in a setup where
the entanglement cut has one dimension lower than the
system. For instance, both the aforementioned propos-
als of topological entanglement entropy and entangle-
ment spectrum deal with a one-dimensional (1d) cut in
a two-dimensional (2d) system. Nevertheless, much re-
mains unknown for the case where the entanglement cut
has the same dimension as the system, sometimes referred
to as “extensive” or “bulk” entanglement [25–34]. This di-
chotomy is illustrated in Fig. 1. Entanglement spectra in
these setups were shown to be connected to the edge low-
energy spectrum, thereby extending the Li-Haldane con-
jecture [25, 26]. The extensive entanglement is recently
brought into focus by Ref. [35] where the entanglement
Hamiltonian is proposed as a natural setting to revive the
Lieb–Schultz–Mattis (LSM) theorem [36–38] where an
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Figure 1 Sub-dimensional vs. extensive entanglement. (a) A
zero-dimensional cut of a one-dimensional system. This, together
with higher-dimensional analogies, is the scenario that the majority of
research efforts have focused on. (b) A coupled spin chain and its
extensive entanglement cut. In this work, we focus on the case where
the chain-a has a long-range entangled (LRE), translation and rotation
invariant Hamiltonian, while the total ladder comprising the chain-a
and the chain-b is short-range entangled (SRE) with a
symmetry-preserving coupling. We can view the chain-a as the
system, and the chain-b as the bath. Under these conditions one
expects that the extensive entanglement Hamiltonian of the chain-a
defined by an extensive entanglement cut, depicted as the gray
dashed line, is also LRE

LSM chain with spin-1/2 onsite Hilbert space and spin-
rotational and translational symmetry is symmetrically
coupled to a bath and becomes short-ranged correlated.

Motivated by the results in Ref. [35], in this work, we
perform extensive numerical calculations of the entangle-
ment properties in quantum spin ladders. In particular, we
consider ladders where one leg satisfies the LSM condi-
tions, i.e. having spin-1/2 onsite Hilbert space and spin-
rotational and translational symmetry, while the ladder as
a total has a unique gapped ground state. Phrased in a more
modern language, the leg without coupling has a long-
range entangled (LRE) ground state, while the ground state
of the ladder is short-range entangled (SRE) [39]. We wish
to explore whether the entanglement Hamiltonian again
admits LRE, as dictated by the open system LSM theo-
rem, see Fig. 1(b). In this paper, we consider the two mod-
els that were introduced in Ref. [35] and two more related
ones — two Affleck–Kennedy–Lieb–Tasaki (AKLT) lad-
ders and two decohered Majumdar–Ghosh (MG) ladders.
These are prototypical scenarios where the open system
LSM theorem gives nontrivial predictions, and serve as a
natural starting point for more systematic investigations
along these lines. In the former two with gapless entangle-
ment spectra, we further use various conformal field theo-
retical (CFT) formulae to identify the corresponding low-
energy theory. In all calculations, we perform extensive
density-matrix renormalization group (DMRG) calcula-
tions to reach system sizes much larger than previous exact
diagonalization results. Apart from lending full support to
the open system LSM theorem with much greater details,
our numerical results show that DMRG methods can be
fruitfully applied to (generally only quasi-local) entangle-
ment Hamiltonian, paving way for future studies in this di-

rection. It is also notable that LSM systems can sometimes
be viewed as boundaries of symmetry protected topolog-
ical (SPT) phases [40], and our results can offer insights
into these scenarios as well.

2 Gapless entanglement Hamiltonian of the AKLT
ladders

We now focus on two AKLT ladders, the second of which
was first proposed in Ref. [35]. Both models have the virtue
that the ground state wavefunction can be written down in
terms of an exact matrix product state (MPS). From this,
the reduced density matrix can be formulated as an ex-
act matrix product density operator (MPDO), without in-
volving any approximations. The Hamiltonians of the two
models both read

HI,II =
L∑

i=1

J1

(
Si · Si+1 +

1
3

(Si · Si+1)2
)

+ J2Si,a · Si,b, (1)

where Si = Si,a + Si,b and J1 > 0. The chain-a has spin-1/2,
while the chain-b has spin-1/2 (spin-3/2) in Model I (II).
We further take J2 < 0 (J2 > 0) in Model I (II), which guar-
antees that each rung has spin-1, the required on-site spin
for the AKLT construction [41, 42]. Under these condi-
tions, the frustration-free ground state is independent of
J1,2. Now it is straightforward to write down the MPS for
the ground state,

ψ{μ} = tr
∏

j

A(j)
μj,aμj,b

,

(
A(j)

μj,aμj,b

)
νjνj+1

∝
∑

μν

C
μj,a ,μj,b ,μ
Sa ,Sb ,1 Cνj ,ν,μ

1
2 , 1

2 ,1
iσ y

ν,νj+1
.

(2)

Here C······ denotes the Clebsch–Gordon coefficients, the
matrix product and the trace are over the auxiliary indices
{ν}, Sa = 1/2, and Sb = 1/2 (Sb = 3/2) for Model I (II) as
above. The idea is to first fuse Sa and Sb to spin-1, then split
it to two spin-1/2, and finally twist one of the spin-1/2 to
obtain a spin singlet between two nearest neighbor sites.1
Graphically, we have

(3)

1Note that iσ y
μν ∝ Cμ,ν ,0

1/2,1/2,0 .
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Tracing over {μb}, the resultant MPDOs read

ρI,II(L) = tr ML
I,II,

MI ∝

⎛

⎜⎜⎝

1
2 –S– –S+ 2P↑

S+ – 1
2 0 S+

S– 0 – 1
2 S–

2P↓ –S– –S+ 1
2

⎞

⎟⎟⎠ ,

MII ∝

⎛

⎜⎜⎝

1 S– S+ 2 – 2Sz

–S+ –1 0 –S+

–S– 0 –1 –S–

2 + 2Sz S– S+ 1

⎞

⎟⎟⎠ ,

(4)

where we have used the standard spin-1/2 operators.
Before proceeding to the numerical results, we note a

connection between our construction and integrable sys-
tems. Integrability has been identified in a previous work
with a similar but distinct setup [30]. For rank-4 MPDO,
Ref. [43] studies a family of integrable models labeled by
two parameters x, y.2 It is amusing to note that MI,II can
also be brought to the general form of Ref. [43], with x =
i/
√

3, y = 2/
√

3 and x = i/
√

3, y = 1/
√

3 respectively. To see
this, we use the unitary matrices

UI =
1√
2

⎛

⎜⎜⎝

1 0 0 –i
0 –i 1 0
0 –i –1 0
1 0 0 i

⎞

⎟⎟⎠ , (5)

UII =
1√
2

⎛

⎜⎜⎝

1 0 0 i
0 i –1 0
0 i 1 0
1 0 0 –i

⎞

⎟⎟⎠ , (6)

to rotate the MPDO to the form in Ref. [43] with U†
αMαUα ,

α = I, II. While the original construction has both param-
eters x, y real, in our case x is complex. For our purpose,
the numerical results can be deemed exact, and we will not
further pursue the ramifications of integrability. We leave
a full-fledged investigation along these lines for future re-
search.

Equipped with an MPDO for ρ , we can apply the stan-
dard DMRG algorithm to find its eigenstates of the high-
est eigenvalues, corresponding to the lowest entanglement
energy states of K . The eigenvalues λ of K are obtained by
taking a logarithm of those of ρ . It is interesting to note
that while some kind of locality is expected of K [35], ρ is
a very non-local object, and yet DMRG works extremely
well with its MPDO representation. The convergence is
guaranteed from both very small truncation errors and
a scaling of the bond dimension. The success of the al-
gorithm can ultimately be attributed to the quasi-locality

2We thank Hosho Katsura for bringing this to our attention.

of K , which produces at most logarithmic entanglement
growth in the one-dimensional case. Given the expectation
of a gapless spectrum, we use the standard CFT formulae
to fit the physical parameters. We start with the entangle-
ment energy scaling, from which the entanglement veloc-
ity v and the central charge c can be extracted. We use [44]

λ0(L)
L

= λ∞ –
πcv
6L2 + · · · , (7)

	λ =
2πv

L
+ · · · , (8)

where λ∞ is the entanglement energy density in the ther-
modynamic limit. The results for both models are shown
in Fig. 2(a–d). Next, we partition the chain into two parts
of j and L – j and fit the entanglement entropy with the
Calabrese–Cardy formula [45],

S(j, L) =
c
3

ln

[
L
π

sin

(
π j
L

)]
+ S0. (9)

The results are plotted in Fig. 2(e, f ). All these results are
consistent with a c = 1 CFT.

One can pinpoint the CFT more precisely by fitting the
power-law exponent of the two-point correlation function.
In anticipation of a logarithmic correction [46], we use
three different fitting ansätze

〈
Sz

0Sz
j
〉 ∝ 1

j̃η
, (10)

〈
Sz

0Sz
j
〉 ∝ (ln(cj̃))α

j̃η
, (11)

〈
Sz

0Sz
j
〉 ∝ (ln(cj̃))α

j̃
, (12)

with j̃ = sin(π j/L), see Fig. 3. Without the logarithmic cor-
rection (10), we get the critical exponent η close to 0.9
[Fig. 3(a, b)], while η � 1.0 when such corrections are al-
lowed [Fig. 3(c, d)]. In the third ansatz (12), we fix η = 1
and fit against the exponent of the logarithmic correction
α alone [Fig. 3(e, f )]. We find that both (11) and (12) give
excellent fitting of the numerical data, in full consistence
with η = 1. Together with the symmetry, this strongly sug-
gests that the low energy theory is one of SU(2)1 Wess–
Zumino–Witten CFT [44].

An important feature of the bipartite entanglement
spectrum of a pure state is that it is identical for both parts
(up to zeros that go to infinity after taking a logarithm).
In the case of spin-1/2 coupled to spin-3/2, this guaran-
tees that the spin-3/2 entanglement Hamiltonian has the
identical spectrum as the spin-1/2, and therefore the same
central charge c = 1. Historically, the universality class of
the spin-3/2 Heisenberg chain had caused some confusion
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Figure 2 The numerical results for the AKLT ladders, with (a, c, e) for Model I and (b, d, f ) for Model II. (a, b) Scaling of the lowest entanglement
energy λ0 using Eq. (7), giving the product of the central charge c and the velocity v. (c, d) Scaling of the entanglement energy gap 	λ using Eq. (8),
giving v. These together give an estimate of c = 0.96 for Model I and c = 1.01 for Model II. Here, we use the gap between λ0 and λ3 (green dots) to
extract v as λ3 corresponds to the first excited state in the conformal tower. This is identified from small-size exact diagonalization results where its
lattice momentum is found to be 2π /L (not shown). The blue and orange dots correspond to states at momentum π and belong to other
conformal towers. (e, f ) Fitting of the entanglement entropy using the Calabrese–Cardy formula, Eq. (9). All the calculations are carried out with
periodic boundary conditions and bond dimension χ = 1000

Figure 3 The two-point correlation function of the AKLT ladders, with (a, c, e) for Model I and (b, d, f ) for Model II. We use three different fitting
ansätze, Eqs. (10), (11), (12), to fit the numerical data, corresponding to the left, middle and right columns. Overall, the ones with the logarithmic
correction (c–f ) fit better than those without (a, b). Fittings without the logarithmic correction (a, b) give the critical exponent η around 0.9, while
those with both η and the logarithmic exponent α as fitting parameters give η � 1.0. In (e, f ) we fix η = 1 and fit against α , giving α � 0.3. All the
calculations are carried out with periodic boundary conditions and bond dimension χ = 1000
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Figure 4 The numerical results of the MG ladders for (a, c, e) Model III and (b, d, f ) Model IV. (a, b) The lowest three entanglement energies as a
function of the bond dimension χ1 (see main text for details). Here L = 20 and convergence is achieved around χ1 � 80. (c, d) The entanglement
energy difference λ1 – λ0 (blue) and λ2 – λ0 (orange) of the entanglement Hamiltonian as a function of system size with χ1 = 100. (e, f ) The
correlation functions of spin Sz (blue) and VBS order-parameter OVBS (orange) for L = 40 and χ1 = 80 as a function of the distance j. For the spin–spin
correlation |〈Szi Szi+j〉| we have averaged over i. All the calculations are carried out with periodic boundary conditions

before it became clear that it is the same as its spin-1/2
counterpart [47–50]. In the current setup, on the other
hand, a knowledge of the spin-1/2 automatically results in
that of the spin-3/2 system, where the MPDO of the latter
can be similarly obtained.

3 Gapped degenerate entanglement Hamiltonian
of the MG ladders

We now turn to the decohered MG ladders, where one ex-
pects a gapped, two-fold degenerate entanglement Hamil-
tonian. Indeed, one expects a spontaneous symmetry
breaking (SSB) behavior, where the translational symme-
try ZL is broken to ZL/2.3 Again, we consider one proposed
in Ref. [35] with a spin-1/2 chain (a) as the system cou-
pled to spin-3/2 modes (b) as the bath (Model IV) and an-
other with a spin-1/2 bath (Model III). The Hamiltonians
of Model III and IV reads

HIII =
L∑

i=1

J1

(
Si,a · Si+1,a +

1
2

Si,a · Si+2,a

)

+ J2Si,a · Si,b, (13)

HIV =
L∑

i=1

J1

(
Si,a · Si+1,a +

1
2

Si,a · Si+2,a

)

3We take the system size L to be even for simplicity.

+ J2Si,a · Si,b + D
(
Sz

i,a + Sz
i,b

)2, (14)

where a spin-1/2 MG chain (a) [51] is coupled to a spin-1/2
(spin-3/2 respectively) bath (b) such that the total system
is trivially gapped and we take J1 = J2 = D = 1. In Model III,
the rung coupling favors a singlet, while an |S = 1, m = 0〉
state is preferred on each rung in Model IV. Note that
Model IV has O(2) instead of SO(3) symmetry which al-
ready suffices for LSM [52]. Due to the lack of an exact so-
lution to the ladder problem, one has to resort to DMRG
twice — once to obtain the (physical) ground state and
again to find the low energy states of the entanglement
Hamiltonian. In the second step, we have contracted the
MPS on each site to obtain an MPDO. To obtain an MPDO
with a reasonable bond dimension, we have to use a limited
bond dimension χ1 in the first step, and considerable trun-
cation errors are inevitable compared to the usual DMRG
precision. The bond dimension in the second step is fixed
at χ2 = 100, sufficient for a gapped spin-1/2 system with
L a few decades. To ensure the reliability of the results,
we change the bond dimension χ1 and see how the en-
tanglement spectrum follows. We find that convergence is
quickly reached around χ1 � 80, see Fig. 4(a, b). Again, we
can attribute the convergence to the quasi-localness of K .
With this, we calculate the low entanglement energy spec-
trum for different system sizes and the results are shown
in Fig. 4(c, d). Both the two-fold degeneracy of the ground
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states and the finite gap above them have already mani-
fested with L up to 20.

It is of interest to verify the order-parameter given
the expected SSB nature. The translational-symmetry-
breaking valence-bond-solid (VBS) order-parameter can
be chosen as

OVBS
i = Sz

i–1Sz
i – Sz

i Sz
i+1, (15)

long-range correlation of which is corroborated in Fig. 4(e,
f ). This is contrasted with the exponential decay of the
spin–spin correlation function.

4 Conclusions
Compared to sub-dimensional entanglement properties,
many key questions concerning extensive entanglement
remain to be answered. In this work, motivated by the re-
cent progress of the open system LSM theorem, we carry
out extensive numerical investigations of extensive entan-
glement properties in quantum spin ladders. While the to-
tal system is trivially gapped and its ground state has SRE,
symmetry constraints dictate that the entanglement spec-
trum must be either gapless or SSB, or equivalently, the
ground state of K has LRE. Apart from fully corroborat-
ing the analytical proposals in both cases of gaplessness
and SSB, our numerical results provide many more details
on the universality properties using CFT diagnoses in the
former case. Given the exact nature of the AKLT MPDO,
we expect this model, or its higher spin generalizations,
to assume a paradigmatic role in future research on ex-
tensive entanglement. Regarding the MG ladders, our re-
sults showcase the capacity of approximate MPDOs from
MPS to capture the SSB characteristics. We expect this
work to lay the foundations for more numerical works on
extensive entanglement. In the scenarios where the two
1d chains can be regarded as boundaries of 2d systems,
our results also shed light on the more conventional sub-
dimensional entanglement properties. On the analytical
side, some pressing questions immediately follow from our
results, including whether other CFTs can be realized in
similar setups, and whether the quasi-local nature of the
extensive entanglement Hamiltonians allows phases be-
yond the strictly local case [34]. Much remains to be asked
and answered in this largely uncharted territory.
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