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Abstract
The detection of weak time-dependent alternating signals in a strongly noisy background is an important problem
in physics and a critical task in metrology. Quantum lock-in amplifier can extract alternating signals within extreme
noises by using suitable quantum resources, which has been widely used for magnetic field sensing, vector light shift
detection, and force detection. In particular, entanglement-enhanced quantum lock-in amplifier can be realized via
many-body quantum interferometry. The many-body lock-in measurement provides a feasible way to achieve
high-precision detection of alternating signals, even in noisy environments. In this article, we review general
protocol, experiment progresses and potential applications of quantum lock-in measurements.
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1 Introduction
High-precision measurement of weak alternating signals
is a ubiquitous issue in fundamental science and a critical
task in practical technologies [1–6]. In practise, the target
signal to be measured is generally submerged in a noisy
background, which makes it hard to be detected. To ob-
tain a high signal-to-noise ratio (SNR), one has to suppress
the effect of noise and enhance the response to the target
signal, which are often in conflict. Lock-in measurement is
usually used in high-efficiency classical detector to extract
a signal from noises, which can be achieved via nonlinear
devices [7, 8]. In essence, a classical lock-in amplifier per-
forms a mixing process via generating the instantaneous
product of the target signal and the reference signal, and
then applies an adjustable low-pass filter for detection.

In analogy to the classical lock-in amplifier, quantum
lock-in amplifier can be realized by making use of quantum
non-commutativity [9, 10]. Utilizing the quantum lock-in
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measurement, one can also extract the weak alternating
signal from noise with a high SNR. Originated for protect-
ing qubits from decoherence, dynamical decoupling (DD)
method becomes one of the well-known quantum control
techniques [11–21] and has been extensively used to re-
alize the quantum lock-in measurement [10, 18, 22–27].
The first quantum lock-in amplifier with a single trapped
Sr+ ion has been demonstrated [9], in which DD manip-
ulations are performed to decouple the quantum probe
from noise while enhancing its response to the target sig-
nal. Meanwhile, the single-particle quantum lock-in am-
plifier has recently been used to frequency measurement
[9, 10], magnetic field sensing [9], vector light shift detec-
tion [28] and weak-force detection [24]. For quantum lock-
in measurement, the DD manipulations act as the refer-
ence signal, and the subsequent time-evolution act as the
filter which can filter out the noise spectral components
different from the reference frequency.

It is well known that many-body quantum entanglement
can improve the measurement precision. The quantum
lock-in measurement has also been developed from single-
particle system to many-body system [10]. Using multi-
ple entangled particles, one can realize the entanglement-
enhanced lock-in amplifier to achieve Heisenberg-limited
detection for weak alternating signals.
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In this review, we present the protocols of achieving
quantum lock-in amplifier via multi-pulse quantum inter-
ferometry to improve the SNR, from single particle system
to many-body system. In Sect. 2, we introduce the general
protocol for achieving quantum lock-in measurement in
analogy to a classical lock-in amplifier. In Sect. 3, we review
the protocol of single-particle quantum lock-in amplifier,
and its application in high-precision magnetometers, as
well as weak force sensors. In Sect. 4, we introduce the
general protocol of many-body quantum lock-in amplifier
and show how to achieve the Heisenberg-limited quan-
tum lock-in amplifier via the many-body quantum entan-
glement. Finally, we give a brief summary and outlook in
Sect. 5.

2 Quantum lock-in measurement
Lock-in measurement can be used to efficiently extract
a weak alternating signals with high SNR from an ex-
tremely noisy environment, which is widely used in pre-
cision measurement and sensing. Usually, a lock-in mea-
surement mainly includes a mixing process and a filter-
ing process. For classical lock-in measurement, multiplier
and integrator are used to realize the mixing and filter-
ing, respectively. While for quantum lock-in measure-
ment, the mixing and filtering are achieved via quantum
non-commutativity modulation and time-evolution of the
wavefunction. In this section, we first introduce the ba-
sic on classical lock-in measurement, and then show the
principle of quantum lock-in measurement.

2.1 Classical lock-in measurement
Classical lock-in amplifiers were invented in the 1930’s
[29–31] and are capable of extracting a weak alternat-

ing signals in extremely noisy environments. The clas-
sical lock-in amplifiers has been used as precision AC
voltage and AC phase meters, noise measurement units,
impedance spectroscopes, network analyzers, spectrum
analyzers and phase detectors in phase-locked loops [7, 8].
In general, the input signal in a classical lock-in amplifier
can be written as

Vs(t) = S(t) + No(t), (1)

and the reference signal is

Vr(t) = sin(ωmt). (2)

Here, S(t) = A sin(ωt) is the target signal with A the
strength of the signal and ω the oscillation frequency. No(t)
is the noise signal. The two time-independent parameters
(A,ω) are unknown to be measured. A classical lock-in am-
plifier generates the output signal via a mix-down process.
The input signal Vs(t) is multiplied by the reference signal
Vr(t) by an analog multiplier, and then integrated over an
integration time T . Eventually after a low pass filter, the
target signal can be extracted from the output signal

I(T) =
∫ T

0
Vs(t) × Vr(t) dt ≈ AT

2
sin[(ω – ωm)T]

(ω – ωm)T
, (3)

as shown in Fig. 1 (a). Obviously, if the two frequencies
ω and ωm are equal, the average value reaches the maxi-
mum, which is equal to half of the target signal amplitude.
However, if ω and ωm are different, the average tends to
zero. Meanwhile, if the frequencies of noise spectral com-
ponents are far from reference signal, the negative effect

Figure 1 (color online). The schematic of classical lock-in amplifier and quantum lock-in amplifier. (a) The classical lock-in amplifier. Vs(t) = S(t) + No(t)
is the input signal, where S(t) = A sin(ωt) is the target signal submerged within the noise No(t). Vr (t) is a known reference signal. Inputting the two
signals through the classical lock-in amplifier, the signal Vs(t) can be extracted. The amplitude A and frequency ω can be extracted after mixing with
a multiplier and filtering by integration. (b) The quantum lock-in amplifier. The coupling between the probe and the signal is described by
Ĥint = [S(t) + No(t)]Ĵz with the target signal S(t) and the stochastic noise No(t). The oscillating modulation term Ĥmix , which is analogue to the
reference signal Vr (t), does not commute with Ĥint . Hence the mixing process is achieved by such non-commutating operations, and the filtering
process is realized by time-evolution. Thus the quantum probe, obeying the Hamiltonian Ĥ = Ĥint + Ĥmix , can be used to realize a quantum lock-in
amplifier for extracting the signal S(t)
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will be averaged out in the integration. This is the basic of
a classical lock-in amplifier.

2.2 Lock-in measurement via quantum non-commutativity
The mix-down process is essential for the classical lock-in
measurement, which is used for generating the instanta-
neous product of the target signal with reference signal. It
is usually achieved by nonlinear electronic devices. Cor-
respondingly, one can realize a quantum counterpart of
lock-in measurement in quantum systems. The key is to
find a quantum analogue of the mix-down process. Due
to the linearity of Schrödinger’s equation, nonlinear dy-
namics of the wavefunction cannot be introduced directly.
However, the wavefunction dynamics will be proportional
to a product of Hamiltonian terms if the total Hamiltonian
does not commute with itself at different times [9, 10, 32].
Thus, the quantum mix-down process can be achieved by
quantum non-commutativity, and quantum lock-in mea-
surement can be achieved, see Fig. 1 (b).

To illustration the principle of quantum lock-in mea-
surement, we consider an ensemble of N identical two-
state bosonic particles, which includes the cases from
single-particle (N = 1) to many-body systems (N > 1). The
two states can be selected as any desired two levels la-
beled as spins |↑〉 and |↓〉, respectively. The system states
can be well characterized by the collective spin operators:
Ĵx = 1

2 (â†b̂+ âb̂†), Ĵy = 1
2i (â

†b̂– âb̂†), Ĵz = 1
2 (â†â– b̂†b̂), where

â and b̂ denote annihilation operators for spins |↑〉 and
|↓〉, respectively. The system states can be represented in
terms of the Dicke basis {|J , m〉}, where Ĵz|J , m〉 = m|J , m〉
with J = N

2 and m = –J , –J + 1, . . . , J – 1, J .
The coupling between the probe system and the external

field can be described by the Hamiltonian (we set � = 1
hereafter),

Ĥint(t) = M(t)Ĵz, (4)

where the external field M(t) = S(t) + No(t) consists of the
target signal S(t) = A sin(ωt) and the stochastic noise No(t).
The noise couple to the probe through the same physical
channel and will lead to random energy shifts of the tran-
sitions. To implement the quantum lock-in measurement,
one can mix the system with an induced modulation signal
that does not commute with Ĥint(t). For the signal term Ĵz ,
one can choose Ĵx, Ĵy, or other operators that do not com-
mute with Ĵz as the mixing term. Here, without loss of gen-
erality, we consider the mixing term is Ĥmix(t) = �(t)Ĵx and
the whole Hamiltonian becomes

Ĥ = Ĥint(t) + Ĥmix(t) = M(t)Ĵz + �(t)Ĵx. (5)

The Hamiltonian (5) does not commute with itself at dif-
ferent times. The non-commutativity of the two modula-
tion terms Ĥint and Ĥmix play an important role for lock-in

measurement. The time-evolution of system state |�(t)〉
obeys the Schrödinger equation,

i
∂|�(t)〉

∂t
=

[
M(t)Ĵz + �(t)Ĵx

]∣∣�(t)
〉
. (6)

For convenience, we move into the interaction picture re-
spect to Ĥmix, and the time-evolution is described by

i
∂|�(t)〉I

∂t
= M(t)

[
cos(α)Ĵz + sin(α)Ĵy

]∣∣�(t)
〉
I , (7)

where |�(t)〉I = ei
∫ t

0 Ĥmix(t′) dt′ |�(t)〉 and α =
∫ t

0 �(t′) dt′. At
time T , the system state is

∣∣�(T)
〉
I = T̂ e–i(ϕ1 Ĵz+ϕ2 Ĵy)∣∣�(0)

〉
I , (8)

with the time-ordering operator T̂ , the initial state
|�(0)〉I = |�(0)〉, and the two phase factors

ϕ1 = A
∫ T

0
sin(ωt) cos(α) dt +

∫ T

0
No(t) cos(α) dt, (9)

and

ϕ2 = A
∫ T

0
sin(ωt) sin(α) dt +

∫ T

0
No(t) sin(α) dt. (10)

According to Eq. (9) and Eq. (10), it is obvious that if one
apply a suitable modulation �(t) to make cos(α) and sin(α)
periodic and synchronized with the signal S(t), the phase
accumulated owing to S(t) can adds up coherently and sub-
sequently measured, whereas the phase accumulated ow-
ing to stochastic noise No(t) can be averaged away. Espe-
cially, if the frequencies of the noise spectral components
is far from the signal frequency ω, the noise spectral com-
ponents can be disappeared in the long-time integration.
Thus the SNR of the output can be significantly improved
via the quantum lock-in measurement.

In quantum control, DD method is a well-developed
technique, which can be used to decouple a quantum
probe from noise. In the past few years, the DD method has
been used in quantum lock-in measurement to improve
the SNR of quantum sensors for weak alternating signals
[9, 13–16, 19–21, 24, 25, 28, 33–41]. In the following, we
will introduce show to use the DD method to realize the
quantum lock-in amplifier.

3 Single-particle quantum lock-in amplifier
Single two-level quantum probes are widely used for per-
forming measurements with high sensitivity and preci-
sion, including a single nitrogen-vacancy center in dia-
mond [25, 42–47], a single trapped ion [9, 24, 48–52] and
so on. Utilizing the quantum lock-in measurement, single-
particle quantum lock-in amplifier can be realized and
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have been widely used for frequency metrology, magnetic
field sensing [10, 53–56], vector light shift detection [24],
and force detection for the quantum motion of magnetic
mechanical resonators [57–59]. In this section, we will first
introduce the general framework of single-particle quan-
tum lock-in amplifier [9, 24]. Then, we will review some
experimental demonstrations on single-particle quantum
lock-in amplifier for high-precision magnetometers and
force sensors.

3.1 General protocol
For a single-particle two-level quantum probe, the cou-
pling between the probe and the external signal is de-
scribed by the Hamiltonian Ĥint = 1

2 M(t)σ̂z. Initially, the
probe is prepared in the state |�〉in = (|↑〉 + |↓〉)/√2, which
is a vector along the x axis on the Bloch sphere. In general,
under the Hamiltonian Ĥint, states |↑〉 and |↓〉 acquire a rel-
ative phase, which is oscillating back and forth as a result
of the signal and is randomly varying owing to the effect of
noise. According to the theory in Sect. 2.2, one can realize
the quantum lock-in measurement via mixing the system
with an induced modulation signal Ĥmix(t) = �(t)Ĵx, which
does not commute with Ĥint. Here, we consider the modu-
lation �(t) is a sequence of equidistant sharp π pulses and
it written as

�(t) = π

L∑
l=1

δ(t – lτe) (11)

with δ(t) is the Dirac δ function, L is the pulse number.
Ignoring the noise signal No(t), and according to Eq. (8) ∼
(10), at time Tn = nτe, the output state in the Schrödinger
picture is

|�(Tn)〉 = ei(–1)L–1φn(ω)/2(|↑〉 + ei(–1)Lφn(ω)|↓〉)/
√

2. (12)

Here, the phase φn(ω) is

φn(ω) =
2A
ω

cos

[
nω · (τe – τ )

2

]
(13)

× cos

[
ω · (τe – τ )

2

]
sin[nω · (τe – τ )/2]
sin[ω · (τe – τ )/2]

.

where τ = π/ω is the half period of the target signal. Ob-
viously, φn is symmetric with respect to the lock-in point
τe = τ . Thus through modulating the pulse repetition pe-
riod τe, one can determine the lock-in point from the pat-
tern symmetry, and the amplitude can be extracted from
Eq. (13) via a fitting procedure [9]. Especially, in Ref. [9],
the target signal is a square waveform, see Fig. 2(b). In gen-
eral, the rectangular waveform signal can be divided into a

sum of weighted sin functions by the Fourier series expan-
sion. Here, we denote phase φn(ω) as φlock-in, and it is

φlock-in =
2
π

∞∑
k=1,odd

1
k
φn(kω) (14)

≈ ATn

2

∞∑
k=1,odd

1
k2 sinc

[
nkω(τ – τe)

]
,

with sinc(x) = sin(x)
x . Obviously, φlock-in is symmetric with

respect to the lock-in point τe = τ , as shown in Fig. 2(f ).
Similarly, through modulating the pulse repetition period
τe, one can determine the lock-in point from the pat-
tern symmetry, and the amplitude can be extracted from
Eq. (14) via a fitting procedure [9].

3.2 Experiment realization
In the past few years, single-particle quantum lock-in am-
plifier have been widely used in quantum sensing, it in-
cludes high-precision magnetometers [9, 25], light shift
measurements [9, 28], as well as weak force measurements
[24]. Especially, the quantum lock-in measurement was
also used to evaluate the phase-noise spectral density of
an optical atomic clock [24].

The first quantum lock-in amplifier has been proposed
and demonstrated with trapped Sr+ ion for high-precision
magnetometry [9]. Using this technique, they have mea-
sured frequency shifts with a sensitivity of 0.42 Hz–1/2

corresponding to a magnetic field measurement sensitiv-
ity of 15 pTHz–1/2. They also perform light shift spec-
troscopy of a narrow optical quadrupole transition as
an application of quantum lock-in amplifier. In the ex-
periment, the two spin states of the electronic ground
level of a single 88Sr+ ion, |↑〉 = |5s1/2, J = 1/2, MJ = 1/2〉
and |↓〉 = |5s1/2, J = 1/2, MJ = –1/2〉 are served as a two-
level quantum probe, see Fig. 2(a). State initialization
and measurement are performed by optical pumping and
state-selective fluorescence, respectively. The initial state
|�〉in = (|↑〉 + |↓〉)/√2 are prepared by a π/2 pulse onto
|↓〉. To modulate the ion probe, a train of π pulses equally
spaced τe apart are applied, which can be expressed as
Eq. (11). Especially, at the lock-in point with τe = τ , accord-
ing to Eq. (14), φlock-in is proportional to the signal magni-
tude A. To measure the probe phase φlock-in, an additional
π/2 rotation following the sequence are imposed with a
relative phase φrf with respect to the initial π/2 pulse. At
last, one can evaluate φlock-in by detecting the probability of
the ion in the state |↑〉 with P↑ = 1

2 + C
2 cos(φrf –φlock-in). By

scanning φrf , φlock-in and the fringe contrast C can be re-
trieved via a fitting procedure, see Fig. 2 (c). Ideally C = 1,
but in practice, the cosine fringe is reduced in the pro-
cess of averaging noise term: C = 〈cos(φNo )〉 with φNo =∫

No(t) cos[α(t)] dt, where angle brackets denote an aver-
age over different noise. Assuming the noise is composed
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Figure 2 (color online). The measurement scheme and results of single-ion quantum lock-in amplifier. (a) Level diagram of a 88Sr+ ion. (b) The
quantum lock-in measurement pulse scheme. (c) Probability of finding the ion in the |↑〉 state versus φrf at a lock-in period of 2τe = 2 ms. (d) Fringe
contrast C versus half lock-in modulation period, τe , in the absence of any modulated signal. (e) The columns are lock-in fringe scans, similar to that
in (c), for different values of τe . (f ) Lock-in signal, φlock–in , versus τe , extracted from (e) as explained in (c). Reproduced from Ref. [9]

mainly of discrete frequency components, fk = ωk/2π , with
corresponding amplitudes Bk , the fringe contrast C can be
written as

C(n, τe) =
∏

k

J0

(
–4gμB

�

Bk

ωk
sin2

(
ωkτe

2

)

× sin((n – 1)ωkτe)
sin(ωkτe)

)
. (15)

Here J0(x) is the zeroth Bessel function of the first kind, g
is the Landé g-factor and μB is the Bohr magneton. For a
lock-in sequence with n = 18, the experimental results of
C (filled circles) and a best fit to Eq. (15) (solid line) are
shown in Fig. 2 (d). The lock-in measurement of a small
modulated square signal are shown in Fig. 2 (e) and (f ).

Meanwhile, the quantum lock-in amplifier also has been
used for weak force measurement with trapped Sr+ ion
[24]. Using the quantum lock-in measurement, they were
able to measure force magnitude of 8.64 ± 0.03 × 10–19 N,
at frequency of 1 kHz, three orders of magnitude below the
trap resonance. In particular, it was reported that the fre-
quency force detection sensitivity can be as low as 2.8 ×
1020 NHz1/2. An optical atomic clock transition S1/2 – D5/2

is used for force measurement, |↓〉 = |S, – 1
2 〉 and |↑〉 =

|D, 1
2 〉 are served as a two-level quantum probe, as shown

in Fig. 3 (a). In experiment, the ion is initialized in an equal

superposition of the clock states via a π/2 pulse onto |↓〉,
i.e., |�〉in = (|↑〉 + |↓〉)/√2. Subsequently, the modulation
sequence of n echo pulses is applied as shown in Fig. 3(b).
After the modulation sequence, a second clock laser π/2
pulse with laser phase φrf relative to the initial π/2 pulse
phase is applied to conclude the sequence. After the Ram-
sey process, the ion state was detected using state-selective
fluorescence. Similarly, the probability of finding the ion in
the state |D, 1

2 〉 is P↑ = 1
2 + C

2 cos(φrf – φn) and one can ob-
tain the φn by scanning φrf .

Motivated by the concept of quantum lock-in measure-
ment, one can realize quantum heterodyne (Qdyne) de-
tection to achieve high frequency resolution beyond the
constraints of the sensor’s coherence time [25, 47]. In the
Qdyne detection scheme, the qubit sensor probes an ac
signal X(t) = A cos(ωt) in intervals of the sampling pe-
riod Ts = Ta + Tr + Td , as shown in Fig. 4 (a). Each sam-
pling instance k consists of sensor initialization (green), a
phase measurement using quantum lock-in detection (red
pulses), and sensor readout (yellow). At time stamp Tk =
kTs, the sensor output Yk is proportional to the quantum
phase k and the instantaneous value of X(Tk) (blue dots).
In the meantime, the under-sampled signal X(t) (gray os-
cillation) is contained in the time trace {Yk}N

k=1 of sensor
outputs. At every measurement time Tk , the sensor phase
is k = 2ATa

π
cos[δ(Tk – Ts)], where δ = ω – ωe and ωe(Ts)
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Figure 3 (color online). The weak-force measurement scheme of single-ion quantum lock-in amplifier. (a) Level diagram of a 88Sr+ ion. (b) The
quantum lock-in measurement pulse scheme. Reproduced from Ref. [24]

Figure 4 (color online). The quantum heterodyne (Qdyne) detection with a single NV center. (a) Qdyne detection scheme. The qubit sensor
stroboscopically probes an ac signal X(t) in intervals of the sampling period Ts . Reproduced from Ref. [47]. Each sampling instance k consists of three
stags: sensor initialization (green), a phase measurement using quantum lock-in detection (red pulses), and sensor readout (yellow). (b) Spectroscopy
of magnetic fields with a single NV center by applying Qdyne detection. (c) The precision of frequency estimation with Qdyne detection, which
scales as T–3/2. Reproduced from Ref. [25]

is a function of Ts. The measurement time Tk is inde-
pendent of the qubit probe and limited by the stability of
local oscillator which determines the accuracy of ω. The
Qdyne detection has been demonstrated with nitrogen–
vacancy (NV) centers for high-precision frequency esti-
mation [25, 47]. In addition, by applying an 880 nT mag-
netic field oscillating near 1 MHz to a NV center and then
recording the magnetic spectrum via Qdyne detection,
one can observe a spectrum with a linewidth of 607 μHz,
which is just limited by the stability of a quartz crystal os-
cillator [25], as shown in Fig. 4 (b). Especially, the precision
of frequency estimation scaling with time as T–3/2 for clas-
sical oscillating fields, as shown in Fig. 4 (c). The Qdyne
detection method allows for the detection of an oscillat-

ing magnetic field with a frequency precision of 70 micro-
hertz across a bandwidth of one megahertz. Additionally, it
achieves an SNR exceeding 104 when measuring a 170 nT
test signal for a duration of one hour. In addition, one also
can use Qdyne detection to obtain clear nuclear magnetic
resonance (NMR) spectra with high resolution. In experi-
ment [60], NMR spectral resolution of about one hertz and
NMR scalar couplings in a micrometre-scale sample vol-
ume of approximately ten picolitres are both observed.

4 Many-body quantum lock-in amplifier
It is well known that many-body quantum entanglement
is a useful resource to offer a significant enhancement of
measurement precision [39, 61–66]. For N individual par-
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Figure 5 (color online). The general protocol of a many-body quantum lock-in amplifier for detecting an AC magnetic field. (a) The many-body
quantum interferometry consists of three stages: (i) preparation, (ii) signal interrogation, and (iii) readout. In the initialization stage, an input state
|�〉in is prepared. Then, the input state undergoes an interrogation stage for signal accumulation. At this stage, the system state interacts with the
magnetic field, and a train of π -pulses with specific equidistant spacing τi is applied. In the readout stage, a certain unitary operation Û is applied for
recombination, and the half-population difference is measured. (b) The half-population difference versus the detuning ω –ωe can tell the lock-in
point ω =ωe . Reproduced from Ref. [10]

ticles, such as spin coherence state (SCS), the measure-
ment precision just scales as the standard quantum limit
(SQL) i.e., ∝ 1/

√
N . However, the SQL can be surpassed by

using entangled multiparticle states. Especially, entangled
non-Gaussian states (ENGSs), such as spin cat states or
even Greenberger-Horne-Zeilinger (GHZ) states, which
set a benchmark for beating the SQL in quantum metrol-
ogy. The measurement precision can be increased to the
Heisenberg limit, i.e., ∝ 1/N . In this section, we intro-
duce the quantum lock-in amplifier in many-body quan-
tum systems [10]. Firstly, we give the general protocol of
the many-body quantum lock-in amplifier. Then, we intro-
duce how to realize the entanglement-enhanced quantum
lock-in amplifier. At last, we discuss the experiment feasi-
bility with cold atoms.

4.1 General protocol
The coupling between the probe and the signal is de-
scribed by the Hamiltonian (4). For an AC magnetic field,
A = γ B, where B corresponds to the magnetic field ampli-
tude and γ is the gyromagnetic ratio. The goal is to de-
termine the frequency ω and the amplitude B via a many-
body quantum lock-in amplifier. According to the theory
in Sect. 2.2, one can realize the quantum lock-in mea-
surement via mixing the system with an induced modula-
tion signal Ĥmix(t) = �(t)Ĵx, which does not commute with
Ĥint. Similar to single-particle quantum lock-in amplifier,
the many-body quantum lock-in amplifier can be imple-
mented via use of a sequence of π pulses with equidistant
spacing τe, which can be expressed as Eq. (11). The carrier
frequency ωe ≡ π

τe
is analogous to the carrier frequency for

the classical lock-in amplifier. When ωe = ω, the π pulses
are applied at every peak and valley of the target signal

A = γ B resulting in a tiny accumulated phase, which can be
used for frequency locking. Meanwhile, the phase accumu-
lated owing to the stochastic noise No(t) can be averaged
away. Through modulating the carrier frequency ωe, one
can extract the frequency ω of the AC magnetic field from
the measurement. For a given frequency ωe, one can use
a many-body quantum interferometry to obtain the mea-
surement information. Here, the many-body quantum in-
terferometry includes three stages: (i) initialization, (ii) in-
terrogation, and (iii) readout (see Fig. 5). In the initializa-
tion stage, an input state |�〉in is prepared. Then, the in-
put state undergoes an interrogation stage for signal accu-
mulation. At this stage, the system state interacts with the
signal field S(t), and a train of π-pulses with an equidis-
tant spacing are applied at the same time. In the readout
stage, a certain unitary operation Û is applied for recom-
bination, and the half-population difference is measured.
To describe the protocol intuitively, one can change our
description from the Schrödinger picture to the interac-
tion picture. The two pictures are connected via a unitary
transformation UTr = eiαĴx = eiLπ Ĵx . Thus, the final state in
the interaction picture before half-population difference
measurement can be written as

|�〉final = Ûe–iφ Ĵz |�〉in, (16)

with the accumulated phase φ = 2γ B
π

1–cos[(ω–ωe)T]
ω–ωe

. The ex-
pectation of the half-population difference measurement
on final state is

〈Ĵz〉f =final 〈�|Ĵz|�〉final. (17)
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Furthermore, to eliminate the influence of the pulse num-
ber, one can define a measurement signal Jz as

Jz = (–1)K 〈Ĵz〉f. (18)

with K = 0 for even L and K = 1 for odd L. According to
Eq. (18), When ω – ωe → 0, the accumulated phase φ →
γ B(ω–ωe)T2

π
≈ 0, the values of Jz is time-independent, while

Jz is time-dependent for ω – ωe �= 0. Thus, the pattern of
half-population difference measurement at the time t = T
versus the detuning ω – ωe can tell us the lock-in point ω =
ωe (the red cross in Fig. 5). Similar to a classical amplifier,
one can determine the lock-in point from the pattern of the
time-integral of half-population difference measurement,
that is

J̃z =
1

T2 – T1

∫ T2

T1

Jz dt. (19)

These patterns depend on the input states and will have
influences on the measurement precisions. In the next
subsection, we discuss how to realize a entanglement-
enhanced many-body lock-in amplifier within this frame-
work.

4.2 Entanglement-enhanced many-body lock-in amplifier
Here, we show the measurement precisions of the many-
body quantum lock-in amplifier and show how quantum

entanglement can improve the measurement precisions.
For individual particles without entanglement, the mea-
surement precisions can just approach the SQL. For en-
tangled particles in a spin cat state, the measurement pre-
cisions can be improved to the Heisenberg limit.

For individual particles without any entanglement, sup-
pose all N particles are prepared in the spin coherent state
(SCS) |�〉SCS = e–i π

2 Ĵy |N/2, –N/2〉. In this situation, one can
choose Û = e–i π

2 Ĵy . Thus, according to Eq. (18), the mea-
surement signal Jz is given as

Jz =
N
2

cos(φ). (20)

Further, one can obtain the time-averaged signal J̃z . As
shown in Fig. 6(a), (d), (g), the two measurement signals
Jz and J̃z both are exactly symmetric with respect to the
lock-in point ω – ωe = 0. Thus one can determine the lock-
in point from the pattern symmetry, and the amplitude
can be extracted via a fitting procedure. Utilizing the error
propagation formula [1, 67–69], one can obtain the mea-
surement precisions for ω and B via the half-population
difference measurement. However without entanglement,
the optimal measurement precisions �ω and �B only ex-
hibit the SQL scaling, as shown in Fig. 7 (a). For entan-
gled particles, one can use spin cat states to realize the
entanglement-enhanced quantum many-body lock-in am-
plifier. Spin cat state, as a kind of non-Gaussian entangled

Figure 6 (color online). The lock-in signal of the many-body quantum lock-in amplifier. The measurement signal Jz versus the detuning ω –ωe for
(a)(d) SCS, (b)(e) spin cat state |�(θ = π /8)〉CAT , and (c)(f ) GHZ state |�(θ = 0)〉CAT under different evolution times T . The time-averaged signal

J̃z = 1
T2–T1

∫ T2
T1

Jz dt versus the detuning ω –ωe for (g) SCS, (h) spin cat state |�(θ = π /8)〉CAT , and (i) GHZ state |�(θ = 0)〉CAT , with T1 = π and

T2 = 3π . Both Jz and J̃z are symmetric (or antisymmetric) with respect to the lock-in point ω –ωe = 0 which are also consistent with the analytic
expressions
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Figure 7 (color online). Log-log scaling of the optimal measurement
precisions (a) �ω and (b) �B versus total particle number. The circles
are the results for a SCS. The squares and triangles denote the results
for spin cat state |�(θ = π /8)〉CAT and GHZ state |�(θ = 0)〉CAT ,
respectively. The lines are the corresponding fitting curves.
Reproduced from Ref. [10]

state, is one of the promising candidates for entanglement-
enhanced metrology [64, 70–74].

Under some conditions, the spin cat states can be written
as

|�(θ )〉CAT =
1√
2

[ J∑
m=–J

cJ
m(θ )(|J , m〉 + |J , –m〉)

]
. (21)

where cJ
m(θ ) =

√
(2J)!

(J+m)!(J–m)! cosJ+m( θ
2 ) sinJ–m( θ

2 ). Especially
when θ = 0, the spin cat state |�(0)〉CAT = 1√

2 (|J , J〉+ |J , –J〉)
corresponds to the well-known GHZ state. In this situa-
tion, one can choose Û = ei π

2 Ĵx ei π
2 Ĵ2

z ei π
2 Ĵx . After some alge-

bra, the measurement signal Jz is

Jz = –
m=J∑

m=–J

(–1)J–mm|cJ
m(θ )|2 sin(2mφ). (22)

Due to the entanglement, the oscillation of the measure-
ment signal Jz becomes related to 2m. When θ = 0, the
measurement signal for the GHZ state is Jz = – N

2 sin(Nφ).
Similarly, one can obtain the time-averaged signal J̃z . As
shown in Fig. 6(b), (c), (e), (f ), (h), (i), the two measure-
ment signals Jz and J̃z both are exactly antisymmetric with
respect to the lock-in point ω – ωe = 0. Thus, one can de-
termine the values of ω and B via the two measurement
signals. Further, the optimal measurement precisions for
spin cat states can exhibit the Heisenberg-limited scaling,
as shown in Fig. 7 (b).

4.3 Robustness against stochastic noise
The goal of quantum lock-in amplifier is to detect time-
dependent signal from stochastic noise No(t). For white
noises, No(t) ∈ [–η,η] with η denoting the maximum fluc-
tuation strength of the fluctuating field, their long-time in-
tegration No(t) = 0. Consider a set of sharp π pulses, we

have α =
∫ t

0 �(t′) dt′ = Lπ , this means that cos(α) = ±1 and
sin(α) = 0. Thus we have

∫ T
0 No(t) cos(α) dt ≈ 0, ϕ1 ≈ φ and

ϕ2 = 0. This means that the effect of stochastic noise No(t)
is canceled out through the time integral. However, the
contribution of the target signal S(t) is imprinted into the
phase φ. In Fig. 8 (a) ∼ (c), the measurement precision of
�ω versus detuning under different stochastic noises No(t)
is shown. Even though stochastic noise exists, the quantum
many-body lock-in amplifier can still be used for weak al-
ternating signal detection with a high SNR.

From another perspective, the noise No(t) coupled to the
probe through the same physical channel of S(t) would re-
sult in random shifts of the probe’s transition frequency.
These random shifts caused by No(t) lead to dephasing
in the many-body system and may influence the measure-
ment precision. Dephasing is one of the main types of de-
coherence [75–78], which can be caused by many noise
sources such as stray fields, collisions, and laser insta-
bilities. Recent experimental breakthroughs with closely
spaced particles such as atoms in optical lattices, ions
stored in linear Paul traps [79–81] show that the correlated
dephasing is one of the major sources of decoherence in
quantum sensing systems.

When the noise No(t) uniformly affects all particles in
the probe in the same way as Eq. (4), the dephasing is
correlated. The influences of correlated dephasing can be
well described by the master equation [75–78]. In some
circumstances, the time evolution of density matrix un-
der correlated dephasing is equivalent to the ones using
unitary dynamical evolution e–iĤt under Hamiltonian of
Eq. (4) with No(t) being a stochastic noise [75–78], which
is the cases studied in Fig. 8. That is, the many-body quan-
tum lock-in amplifier in noisy environment is somehow
closely related to the many-body Ramsey interferometry
under correlated dephasing. According to the results of
robustness against stochastic noise, one can find that the
quantum many-body lock-in amplifier measurement that
using periodic pulses is effective and robust against corre-
lated dephasing.

When the noise No(t) is not uniformly coupled to all of
the particles in the probe, the resultant dephasing is un-
correlated. This is also commonly observed in systems like
trapped-ion and spin-based sensors. Differently, the un-
correlated dephasing independently affects the particles
within a probe. However, how the uncorrelated dephas-
ing influences the performance of a many-body quantum
lock-in amplifier is still an open question. The effect of un-
correlated dephasing on quantum many-body lock-in am-
plifier can also be studied via adding an inhomogeneous
noise or solving the master equation [75–78], which is
deserved further investigation. However, from the results
of many-body interferometry under dephasing, one may
deduce the influences of uncorrelated dephasing. It was
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Figure 8 (color online). The robustness of the many-body quantum amplifiers against stochastic noise. The measurement precision �ω versus
versus the detuning ω –ωe for (a) SCS, (b)spin cat state |�(θ = π /8)〉CAT , and (c) GHZ state |�(θ = 0)〉CAT . The blue solid line are the results without
stochastic noise (η = 0). The red dashed line and green dotted line are the results under stochastic noise with η = 5γ B and η = 25γ B, respectively.
These results are averaged over 20 times. Reproduced from Ref. [10]

shown that using a GHZ state for typical Ramsey interfer-
ometry, the decoherence timescale of evolved state are dif-
ferent for correlated and uncorrelated dephasing [75]. For
uncorrelated dephasing, the decoherence timescale is pro-
portion to 1/N . While for correlated dephasing, the deco-
herence timescale is proportion to 1/N2, which also called
‘superdecoherence’ [75]. That is, the influence comes form
the correlated dephasing is in principle more negative than
the ones with uncorrelated dephasing. Since the many-
body quantum lock-in amplifier is robust against corre-
lated dephasing, it is believed that the many-body quan-
tum lock-in amplifier would also be robust against uncor-
related dephasing. But this should be carefully analyzed
and studied in future.

4.4 Experiment feasibility
Finally, we discuss the experimental feasibility of achieving
the many-body quantum lock-in amplifier. To realize the
quantum lock-in amplifier, one has to apply multiple rapid
π pulses in the interrogation stage. The precise implemen-
tation of π pulses is a mature technology in quantum con-
trol [16, 20, 33, 39, 40, 82, 83]. In further, to achieve a
entanglement-enhanced many-body quantum lock-in am-
plifier, the preparation of the desired spin cat state and
the implementation of an interaction-based readout are
two key processes. Owing to the well-developed tech-
niques in quantum control, various multi-particle entan-
gled states have been generated in several systems, includ-
ing nitrogen-vacancy defect centers [84], Bose condensed
atoms [36, 85–88] and ultracold trapped ions [39, 89].

As an example, for an ensemble of Bose condensed
atoms occupying two hyperfine levels, it is feasible to pre-
pare the desired spin cat state via dynamical evolution
[36, 85, 86, 90] or adiabatic process [63, 64, 66, 87, 88, 91,
92], and achieve the interaction-based readout via tuning
the atom-atom interaction. The system can be described
by a symmetric two-mode Bose-Josephson Hamiltonian

Ĥtwist = χ Ĵ2
z + �Ĵx. The non-negative parameter � is the

Josephson coupling strength, and χ denotes the nonlin-
ear atom-atom interaction. The strength and the sign of
the nonlinearity χ can be tuned by adjusting the spatial
overlap between different spin components via applying a
spin-dependent force [90, 93], or by modifying the s-wave
scattering lengths via a Feshbach resonance [36, 90, 94].

5 Conclusion and outlook
In this review, we have given an introduction on the prin-
ciple and implementation of quantum lock-in measure-
ments from single-particle to many-body system. In anal-
ogy to a classical lock-in amplifier, a quantum lock-in
amplifier can extract weak alternating signals with high
SNR from an extremely noisy environment. Using quan-
tum non-commutativity and time-evolution, one can re-
alize quantum lock-in measurements. In particular, quan-
tum lock-in amplifier can be realized via quantum inter-
ferometry under a periodic multi-pulse sequence. Fur-
ther, utilizing suitable quantum entanglement, one can
realize entanglement-enhanced quantum lock-in ampli-
fier and achieve the Heisenberg-limited measurements
of alternating signals. Based on the state-of-the-art tech-
niques, the quantum sensing protocols with quantum
lock-in measurement pave a practical way to achieve high-
precision time-dependent signal measurements, which
can be widely applied in the field of frequency metrology
[9, 16, 25], magnetic field sensing [9], vector light shift de-
tection [28], and force detection [24].

There are still many open problems in the field of quan-
tum lock-in measurements. First, a target alternating sig-
nal usually has an unknown initial phase, it is generally
hard to extract complete information of amplitude, fre-
quency and phase of a target signal. For classical probes,
one can resolve this issue via a double lock-in amplifier.
How to realize a quantum counterpart to the classical dou-
ble lock-in amplifier for alternating signals measurement?
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Further, how to realize the quantum double lock-in ampli-
fier based on the typical synthetic quantum systems such
as cold atoms and trapped ions? Second, vector alternating
signal estimation is yet another crucial problem for practi-
cal sensing technology. A main challenge for a vector alter-
nating signal estimation is the incompatibility of optimal
measurements for different vector components. How to
realize vector alternating signal estimation with the aid of
quantum lock-in measurement? Third, there are many dif-
ferent types of noise in realistic experiments, such as color
noise, depolarization noise, radio frequency noise and so
on. How to resist different types of noise via applying suit-
able quantum non-commutative modulations? The explo-
ration of these problems will hopefully promote the devel-
opment of practical quantum sensing technologies in the
near future.
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