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Abstract
The profound impact of excited magnetic states on the intricate interplay between electron and lattice behaviors in
magnetic materials is a topic of great interest. Unfortunately, despite the significant strides that have been made in
first-principles methods, accurately tracking these phenomena remains a challenging and elusive task. The crux of
the challenge that lies before us is centered on the intricate task of characterizing the magnetic configuration of an
excited state, utilizing a first-principle approach that is firmly rooted in the ground state of the system. We propose a
versatile self-adaptive spin-constrained density functional theory formalism. By iteratively optimizing the
constraining field alongside the electron wave function during energy minimization, we are able to obtain an
accurate potential energy surface that captures the longitudinal and transverse variations of magnetization in
itinerant ferromagnetic Fe. Moreover, this technique allows us to identify the subtle coupling between magnetic
moments and other degrees of freedom by tracking energy variation, providing new insights into the intricate
interplay between magnetic interactions, electronic band structure, and phonon dispersion curves in single-layered
CrI3. This new methodology represents a significant breakthrough in our ability to probe the complex and
multifaceted properties of magnetic systems.

Excited magnetic states possess longitudinal and trans-
verse perturbations of magnetic moments that deviate
from ground-state magnetic configurations. They are cru-
cial for understanding magnetic ordering, magnetic phase
transitions, and other magnetic phenomena. Further, mag-
netic excited states are prevalent in frustrated magnets
[1–4], multiferroics [5–8], superconductors [9–19], topo-
logical magnets [20], etc, and are of crucial importance to
phenomena such as superconductivity [9–19], quantum
critical point [21–24], quantum phase transition [25], and
the quantum anomalous Hall effect [26]. The above ex-
otic phenomena stems from the delicate interaction be-
tween spin and other degree of freedoms (DoF) such as
charge, orbital, and lattice. The elucidation of the micro-
scopic mechanism of these coupling effects need to evalu-
ate the second or higher order derivatives of the energy
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with respect to the magnetic moment and other DoFs.
In order to do so, the magnetic moment must be consid-
ered as a variable that can be altered independently from
the other DoFs. And the manifestation of its variation, i.e.
the excited magnetic states, is hence critical to understand
the mutual interactions, and is significantly challenging to
simulate despite its ubiquity.

However, the commonly used density functional theory
(DFT) [27] was originally developed to describe ground
states. In their seminal works, Dederichs et al. [28] and
Dudarev et al. [29, 30] introduced a Lagrange multiplier
λ to constrain the magnetic moments when solving the
Kohn-Sham equation as ∇φi L = 0 [28, 29, 31–34]. How-
ever, it is difficult to simultaneously reach the global min-
imum of Lagrangian and meet the constraint, and thus it
is not guaranteed that the magnetic moment M gets to its
constrained target. This situation is particularly severe in
itinerant metallic magnetic materials [35]. Therefore, the
magnetic moment is difficult to control and to be consid-
ered as a completely independent DoF, and the energy of
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corresponding system is difficult to identify. These uncer-
tainties escalate when the energy is differentiated by an in-
finitesimal variation of magnetic moment or other DoF, to
evaluate the coupling strength, such as the magnetoelec-
trical coupling constant.

Another unfavorable fact is that these methods require
the user to be highly proficient at interactively adjust-
ing the optimization strategy [30, 34], which makes these
methods highly prone to numerical error. This is because
that the optimization is conducted only in the electronic
energy functional minimization, where the constraining
parameter λ is set as a pre-defined constant. λ, when im-
properly chosen, leads the system to a local minimum
(λ too small) or to divergence (λ too big). In additional,
this fixed λ is difficult to adapt to actual spin fluctua-
tions where different magnetic components exhibit dif-
ferent deviations from the original ground state, which
also makes the Hamiltonian numerically unstable to be di-
agonalized. Recently, Hegde et al. [36] developed a self-
consistent method to impose spin constraints and sped
up the convergence significantly. However, this method
only deals with collinear magnetic orders, which hinder
the study of complex noncollinear spin fluctuations.

To address these deficiencies, in this letter, we proposed
a self-adaptive spin-constrained DFT scheme, where
Kohn-Sham orbitals and the constraining vectors are up-
dated iteratively to reach the global optimum of the La-
grangian and the target magnetic moments. In this
scheme, the on-site adaptable constraint {λI} are imposed
in the form of a local vector field. The amplitude and ori-
entation of the constraining vector field {λI} depend on
the local magnetic environment of atom I and vary from
component to component. Equipped with this strategy, the
magnetic moment can be altered independently from the
other DoFs in our non-collinear first-principles scheme.
Our approach now paves the way for the investigation of
spin fluctuation and its influence on other DoF. To exem-
plify this method, we then apply it to two scenarios. The
first is a spin configuration with confined rotation, using
ferromagnetic materials Fe and layered magnetic materials
CrI3 as examples. To simulate real-world fluctuations, it is
later generalized to study the electronic band structure of
CrI3 with random magnetic orientations.

1 Results
Self-adaptive spin-constraining algorithm. Our scheme is
sketched in Fig. 1. It is based on the optimization of the La-
grangian function L under the constraint that the magnetic
moment of atom I , that is, MI({φi}), is the same as the tar-
get value denoted by M∗

I . To implement this, we design two
nested loops updating the Kohn-Sham orbitals {φi} and the
Lagrangian multiplier {λI} respectively.

(i) Electronic loop: For a particular λI , we can solve

δEKS

δ〈φi| –
∑

I

λI · δMI

δ〈φi| = εi|φi〉 (1)

to obtain a self-consistent solution {φi(λI)} and the mag-
netic moment M({φi(λI)}). The atomic magnetic moment
MI is generally defined as MI({φi}) = Tr(ρσŴI), where ρ

is the density matrix, σ is the Pauli matrix, ŴI is a pre-
defined weight operator for atom I . Thus, Eq. (1) is ob-
tained as

ĤKS|φi〉 –
∑

I

λI · σŴI |φi〉 = εi|φi〉. (2)

Note that λI acts as a constraining field [28].
(ii) λ-loop: We can progressively update {λI} by optimiz-

ing

min
λI

∣∣M
({

φi(λI)
})

– M∗∣∣2, (3)

that is, the error �M between the current magnetiza-
tion and the target, using the nonlinear conjugate gradient
(NCG) method. For an updated λ∗

I , we can solve Eq. (2)
via diagonalization in the subspace spanned by the old or-
bitals {φi(λI)} to obtain a new set of orbitals {φi(λ∗

I )}, and
thus, the moment M(λ∗

I ). In this way, the optimization can
continue until a minimum is achieved. A perturbation-like
scheme similar to that in Ref. [36] was chosen, which sig-
nificantly reduced the computational cost compared to di-
agonalization in the entire basis set. In addition, the λ-
loop converged rapidly because the function M({φi(λI)}) =
∂2L/∂λ2

I is proved to be almost monotonous according to
the first-order perturbation theory (L(φi,λI , εi) is a concave
function of λI at 0 K [33]).

Certain details of the scheme deserve further discussion.
In the λ-loop, the gradient of the object function can be
approximated as 2(MI – M∗

I ) ∂MI
∂λI

, based on the assump-
tion that ∂MI′ �=I/∂λI , which is the non-local response to
the on-site constraining field, is negligible. ∂MI/∂λI can
be then obtained by lower-complexity estimation strate-
gies for the NCG iteration. To provide better convergence,
we control both �M =

√|M({φi(λI)}) – M∗|2 and the main
diagonal of the gradients ∂MI/∂λI in the λ-loop. We first
introduce a gradually tightened criterion εM for the former,
preventing the constraining field from reaching an early
stage local minimum. In case of the latter, the loop is pro-
grammed to stop when the local response was smaller than
an empirical value εloc (εloc ≈ 1 μ2

B/eV works well across
our limited tests). This criterion, which is based on the
aforementioned localization assumption, is of particular
importance. Additionally, the weight operator in Eq. (2) is
often an integral in a real-space ball of radius rcut with a
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Figure 1 Scheme of self-adaptive spin-constrained DFT method DeltaSpin. The outer electronic loop updates electron density ρ , while inner λ-loop
updates constraining multiplier λ. (Subscripts for indexing atoms and orbitals are omitted for clarity)

smoothed boundary as ŴI =
∫

drf (rcut – |r – rI |)|r〉〈r|. It
may take a different form such as the Mulliken partition-
ing in atomic orbital basis DFT [37].

Upon convergence, the magnetic effective field can be
obtained efficiently based on the Hellmann–Feynman the-
orem as

Beff
I = –

δL(M∗
I )

δM∗
I

= –λI . (4)

This suggests that by continuously updating the constrain-
ing field, �M is minimized and an increasingly accurate es-
timation of the magnetic effective field is obtained, which
turns out to be the constraining field λI itself. This esti-
mation shows good correspondence with the true value,
which is obtained via differentiation near the collinear
limit, and a relative error of up to 4% through the entire
path of non-collinear rotation (see Fig. S2 in the Addi-
tional file 1). This is because Eq. (4) is strictly correct only
if 〈φi|∇MI ĤKS|φi〉 is negligible [38].

Potential energy surface. A fine-grid potential energy
surface (PES) is of great significance, particularly the one
considering the spin DoF. While the previous quadratic
cDFT requires a predetermined multiplier λ and may col-
lapse during the early stage of the electronic loop (an anal-
ysis is presented in the Additional file 1), the proposed
method can self-adaptively update the multiplier and ex-
hibits a much better precision and efficiency. We studied
the magnetic PES of the bcc-Fe (Fig. 2). The two DoFs
scanned were the magnitude of atomic moments |M| and
the included angle between the nearest neighbors’ mo-
ments θ . In the calculations using former quadratic con-
straints, the root-mean-square error (RMSE) between the
obtained and desired spin configurations were stuck at ap-
proximately 10–2μB (blue lines in Fig. 2(b)). In comparison,
the DeltaSpin algorithm exhibited a much better conver-
gence, where the RMSE decreased rapidly to nearly zero
(10–8μB) for the same number of electronic iterations. We
found that the energy-favored magnitude increased when
the spins approached the ferromagnetic (FM) order and
decreased when approaching anti-ferromagnetic (AFM)
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Figure 2 Potential energy surface (PES) study of bcc-Fe with magnetic excitation. (a) Structure of bcc-Fe and spin configuration with deviated
included angle of two neighboring Fe magnetic moments θ = 〈MFe1 ,MFe2 〉 and magnitude |M|. (b) Comparison of convergence between DeltaSpin
and former quadratic cDFT method with different λ. X axis: number of electronic iterations. Y axis: root-mean-square error (RMSE) between the
obtained and the desired magnetization. (c) PES as a function of θ and |M|. Solid and dashed lines respectively denote single-variable PES and its
projection. Blue line indicates the PES with |M| fixed at ground-state value 1.54 μB (using radial Bessel function as ŴI in Eq. (2)). Red line indicates
the PES with energy-minimized |M|. Dashed lines are their projections. (d) PES relative to such energy-minimized path

Figure 3 Configuration dependency of bilinear and biquadratic exchange interaction in monolayer CrI3. X axis: canting angle θ , that is, the included
angle of two neighboring Cr magnetic moments. Y axis: the intensity of different exchange interactions. J1, J2, and J3 represent the interaction
between the first, second, and third nearest neighbors respectively (same with K1, K2, K3, indicated using different colors in the inset of (a)). (a)
Bilinear parameter Jij . The inset figure is an illustration of honeycomb CrI3 and the exchange interaction where Cr atoms are denoted by grey balls
and O atoms are omitted. (b) Biquadratic parameter Kij

order. Moreover, the magnitude-optimized energy curve
was the PES calculated using the former direction-only
constraining method, which is a subset of our V (|M|, θ )
PES.

Effects on magnetic interactions. One of the advantages
of this method is the ability to obtain the real on-site mag-
netic interaction around an arbitrary magnetic configura-
tion through simple calculations of the first derivative of
energy E with respect to M. This was not possible in pre-
vious studies as achieving precision for both E and δM
was challenging. In Fig. 3, we show the calculated Jij and
Kij as the bilinear exchange and biquadratic exchange pa-

rameters with variation in the magnetic configurations.
The effective Hamiltonian used was H = –

∑
i,j>i Jij(ei ·ej) –∑

i,j>i Kij(ei ·ej)2, where i, j is the atom index. Both J1 and K1
exhibited strong dependency on the local magnetic config-
urations, as shown in Fig. 3. Further, J1 from the previous
energy-mapping strategy, which is a constant at approx-
imately 3 meV [39], was between the maximum and the
minimum of the result obtained.

The magnetic effective fields δE
δM and magnetic torques

δE
δe are generally considered as the indicators of magnetic
interactions and could be employed as the driving forces
in further dynamical simulations using real-time TDDFT
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or the Landau-Lifshitz-Gilbert(Bloch) method. There are
two different strategies to calculate them: (i) Finite differ-
ence approximation directly using the definition, that is,
taking derivatives of the total energy E with respect to M∗

I ;
(ii) Hellmann–Feynman approximation, that is, the con-
straining field, explained above.

We calculated such constraining-field-approximated
magnetic torques and compared them to the finite-
differentiated ones in bcc-Fe and monolayer CrI3 (see
Fig. S2). The maximum relative error was about 4%, which
was attributed to the non-collinear contribution in Kohn-
Sham functional 〈φi|∇MI ĤKS|φi〉, and perfectly acceptable
in some cases. Notice that the difference was negligible
in the collinear limit, that is, in the neighborhood of FM
and AFM order, both in Fe and in CrI3. It means that
Hellmann–Feynman approximation is a efficient and re-
liable choice given that the complexity of explicit differen-
tiation is at least O(N) (N is the number of atoms) whereas
to obtain constraining field only one calculation is needed.
In addition, if a delicate description instead of a crude es-
timate of magnetic dynamics is needed, one can always
apply an infinitesimal change to spin moments, recalcu-
late the total energy, and take the derivatives. This proce-
dure is also unachievable for λ-fixed constraining formal-
ism wherein the inadequate precision of energy leads to
poor precision of magnetic torques.

Effects on lattice dynamics. The variation in spin con-
figuration has a non-trivial influence on phonon behav-
iors, and this study proposed a straightforward method
to identify such couplings. This was performed by com-
bining the frozen phonon method [40] with DeltaSpin.
In particular, the system’s energy must be precisely calcu-
lated at the atomic and magnetic excitations. Simultane-
ously, the magnetic configuration must be prevented from

“drifting away”. DeltaSpin can limit the energy and on-site
moment error to 10–9 eV and 10–7 μB, respectively, while
maintaining efficiency with more than one hundred atoms;
to the best of our knowledge, it is the only method that
can access this type of phonon calculations. Four selected
spin-fluctuating states were obtained for CrI3 (Fig. 4). Only
the moments of chromium were constrained, while io-
dine atoms were fully relaxed, owing to the functional-
ity of DeltaSpin to selectively constrain atoms or compo-
nents. We found five modes that were significantly influ-
enced by magnetic excitation, all of which appeared in the
high-frequency branches where the Cr vibrations dom-
inated (Fig. 4(a)). Regardless of spin-orbit coupling and
anti-symmetric exchange, these frequency shifts can be
roughly explained by the change in the “Heisenberg-only”
force constant. [∂Jij/∂r][ei · ej]. The second term depends
on the spin configuration explicitly. The first term, which is
mainly contributed by the competition between the AFM
t2g -t2g and FM t2g -eg interactions [41], also experiences
considerable changes because of the different occupan-
cies of eg and t2g orbitals across all four configurations.
The existence of “collective-motion” modes, in which the
distance between any two Cr atoms remains unchanged
(Fig. 4(c), �–

2 + �–
3 ), indicates that the interaction between

Cr and I atoms, that is, the metal-ligand interaction, is also
strongly affected by only changing the on-site moments
of metal atoms. Moreover, the moments of I relax from
10–1μB to approximately zero as θ increases from 0◦ to
180◦, whose importance has been demonstrated by previ-
ous research [42–45]. Using this algorithm, we can obtain
the spin-lattice interaction information. Consequently, the
process starts from the objective of obtaining a particu-
lar magnetic configuration to determine a feasible method

Figure 4 Phonon structure of monolayer CrI3’s different magnetic states. (a) Overall phonon spectrum at θ = 0◦ , 60◦ , 120◦ , 180◦ . Dashed blocks
indicate five modes (indexed by roman numerals) with significant frequency change owing to magnetic excitation. Physically-irreducible
representations: I: M–

1 ; II: M+
1 ; III: �

–
2 +�–

3 ; IV: M
+
1 ; V: K1 . (b-e) Zoom image of mode I, II, III, IV, and V with the schematic atomic displacement on the

bottom side. Azure and white balls denote Cr and I atoms, respectively. The arrows indicate the instant direction of their motion, where the green
and orange ones represent two opposite directions
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Figure 5 Band dispersion near conduction band minimum (CBM) and valence band maximum (VBM), resulting from randomly fluctuated spin
configurations. (a) Schematic of monolayer CrI3 with randomly fluctuated spins. (b-c) Band dispersion for several selected branches. Solid curves
represent ground-state bands while scatters represent corresponding fluctuated ones. Different colors are used to indicate different branches

of selective excitation via lattice vibrations. Thus, this can
guide ultrafast THz experiments through resonant excita-
tion of infrared (IR) [46] or Raman-active phonons [47].

Effects on electronic structure. Spin fluctuations have a
prominent effect on the electronic structure such as the
band structure and orbital character of the Fermi surface
[48–50]. First-principles calculations of electronic struc-
tures with spin fluctuations are a critical input for further
evaluating the many-body effect [51]. Here, we demon-
strate that the band structure is profoundly affected by
spin fluctuations using the constrained method (Fig. 5).
We modeled several spin-fluctuating configurations near
the ground state of monolayer CrI3, wherein magnetic mo-
ments were drawn at random from the uniform distri-
bution within the FM order ±10◦. Their “excited” Kohn-
Sham orbitals were then precisely calculated following
the DFT routine, which distinguished our method from
TDDFT utilizing the expansion of the ground state. Dif-
ferent branches from the obtained bands showed slightly
different broadening behaviors with amplitudes varying in
the range of 30-50 meV; consequently, the bandgap shifted.
In addition, we obtained several electronic states with dif-
ferent canting angles θ in the transition from the FM to
the Néel AFM phase of CrI3. These exhibited prominent
variation in the band gap, Fermi surface, and topologi-
cal features (see Fig. S4-5 in the Additional file 1). Thus,
this method can be a potentially useful strategy to access
a spin-renormalized band structure that fully considers
the coupling between spin and electronic DoF [11], which
is exceptionally useful for investigating fundamental low-
energy physics or exploring rich functionalities in dynamic
or optical properties.

The wave function is solved precisely via DeltaSpin for
spin-fluctuating states. Thus, we are able to depict more
detailed electronic structure. Strong interplay between
magnetism and topology of electronic states was found,
bringing forth rich functionalities in dynamical or op-
tical properties. The topological sensibility to the mag-
netic configuration was observed for the first time us-
ing cDFT. We modeled ten excited states with different
canting angles θ in the transition from FM to Néel AFM
phase of monolayer CrI3. They exhibited significant vari-
ation in band structure, band gap, and Fermi surface as
shown in Fig. 6. We noticed the splitting of every two-fold
degenerate band when θ went from 180◦ to 0◦, follow-
ing the parity-time (PT) symmetry breaking from AFM
to FM phase. It could be further demonstrated in Fermi
surface, where one hexagon-shape band in AFM phase
split into two concentric circle-shaped valence bands in
FM phase (Fig. 6(b)). This process happened on �-M
path first, then on �-K. Simultaneously, the band gap
went through a variation of about 50 meV. Moreover, we
demonstrated the change in Berry curvature F(k) and its
sensitivity ∂F(k)/∂θ throughout the process (see Fig. 6(d-
e)), These were calculated using Fukui’s formalism, defined
as F(k) ≡ ln[U1(k)U2(k + 1̂)U1(k + 2̂)–1U2(k)–1], where 1̂(2̂)
denotes the reciprocal basis vector and U1(2) represents
a purposely defined U(1) link variable [52]. However, the
Chern number [53], obtained by integrating the Berry cur-
vature over the Brillouin zone, shows no dependence on
the magnetic configuration because CrI3 is, as a whole, a
trivial insulator.
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Figure 6 Electronic structure of monolayer CrI3 of different canting angles θ . (a) Band structure near Fermi level. Ten band structures are in the same
figure, aligned according to their Fermi levels. The inset shows the two-fold splitting of VBM from FM phase (red, θ = 0◦) to Néel AFM phase (blue,
θ = 180◦). (b) Fermi surface in two dimensions with E = EF – 0.31eV. (c) Band gap as a function of θ . (d) Total Berry curvature and its gradient with
respect to θ as a function of k in reciprocal primitive cell at θ = 0◦ , 90◦ , 180◦ . (e) The derivative of Berry curvature with respect to θ as a function of k
in reciprocal primitive cell at θ = 0◦ , 90◦ , 180◦

2 Discussion
This study proposes a self-adaptive spin-constrained DFT
method wherein the spin fluctuations or magnetic excita-
tion were incorporated along with spin-orbit coupling and
non-collinear magnetic configurations, capable of deal-
ing with full degrees of freedom of the amplitude and ro-
tation angle from both magnetic and ligand atoms [45].
This enabled us to gain further insight into spin fluctua-
tions from the electron, lattice, and magnetic perspectives,
and also get access to the wave function of magnetic ex-
cited states. Here we demonstrate the broading of band be-
cause of the random perturbations of magnetic moments,
while this can be easily scaled to different temperature and
the broading with k dependence can be an indicator to
real coupling between spin and other DoFs such as elec-
tron and lattice. In addition, the obtained precise atomic
forces and magnetic effective fields could be employed as
the driving forces in further dynamical simulations such
as Landau–Lifshitz–Gilbert (or Landau-Lifshitz-Bloch) or
TDDFT [54, 55]. Moreover, the rapid calculation of en-
ergy and its corresponding derivatives indicate its ability
as a systematic data generator for machine learning surro-
gate models [56–60] and is expected to be revolutionary
with its ability to obtain arbitrary spin-lattice configura-
tions with first-principles precision and high efficiency.

3 Methods
Spin-constrained approach. The spin-constrained DFT
calculations have been performed using the self-adaptive
spin-constraining algorithm DeltaSpin, which has been
implemented as a loadable module for Vienna Ab initio
Simulation Package (VASP) [61–63]. The tolerance εM for
all the constrained local magnetic moments was 10–8μB. In
Fe bulk, the magnetic moments of all Fe atoms were con-
strained to required values. In CrI3, only the magnetic mo-
ments of Cr atoms were constrained and those of I atoms
were set to be fully relaxed. For the finite difference cal-
culations of magnetic effective fields, a 10–3 rad interval
was used to approximate an infinitesimal variation when
calculating �E/�e.

Density functional theory calculations. All the struc-
tural optimization and electronic structure calculations
have been performed with VASP at the level of den-
sity functional theory with the Perdew-Burke-Ernzerhof
(PBE) functional. The energy cut off was 600 eV for the
plane-wave basis of the valence electrons in bulk Fe and
520 eV for monolayer CrI3. The DFT + U approach with
U = 5.3 eV is applied for Cr in CrI3. Total energy tolerance
for electronic structure minimization was 10–8 eV and a �-
centered mesh with k-spacing 0.06π Å–1 was applied for
both two systems. The VASPBERRY code [64] was used to
calculate Berry curvature and Chern number directly from
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the output of VASP. For the phonon calculations, Phonopy
was used to create a 3×3×1 supercell structure for mono-
layer CrI3 and VASP was then employed to calculate the
force constants.

Local mapping of the spin Hamiltonian. Inspired by the
energy-mapping method [65], we defined “canting angle” θ

in honeycomb-like MX3 as Fig. S3. We fit a “local” second-
order polynomial around θ∗ to the total energy of certain
configurations with different θ as follows:

H = –
∑

i<j

Jij(êi · êj) –
∑

i<j

Kij(êi · êj)2 (5)

= a0
(
θ∗) + a1

(
θ∗) · cos θ + a2

(
θ∗) · cos2 θ , (6)

where θ is in the neighborhood of θ∗, that is, θ ∈ (θ∗ –
δθ , θ∗ + δθ ). Notice that all coefficients of the polynomial
implicitly depends on the centered θ∗. After deduction,
θ∗-centered pair-wise exchange parameters from the first
nearest neighbor (1-NN) up to 3-NN can be solved via

⎛

⎝
6 0 6
2 8 6
4 8 0

⎞

⎠

⎛

⎝
J1, K1
J2, K2
J3, K3

⎞

⎠ = –

⎛

⎜⎝
aN

1 , aN
2

aZ
1 , aZ

2

aS
1, aS

2

⎞

⎟⎠ , (7)

where the dependency of all quantities on θ∗ are omitted.
N for Néel, Z for Zigzag, S for Stripy. These exchange pa-
rameters can be treated as the local exchange parameters
at θ∗.
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