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Abstract
Zero-energy modes localized at the ends of one-dimensional (1D) wires hold great potential as qubits for
fault-tolerant quantum computing. However, all the candidates known to date exhibit a wave function that decays
exponentially into the bulk and hybridizes with other nearby zero-modes, thus hampering their use for braiding
operations. Here, we show that a quasi-1D diamond-necklace chain exhibits an unforeseen type of robust boundary
state, namely compact localized zero-energy modes that do not decay into the bulk. We find that this state emerges
due to the presence of a latent symmetry in the system. We experimentally realize the diamond-necklace chain in an
electronic quantum simulator setup.

Topological states of matter attracted a lot of interest in
previous years because of their potential use as qubits in a
quantum computer [1–4]. One of the difficulties concern-
ing quantum computing with topological states such as
the non-Abelian Majorana bound states in a Kitaev chain
[1, 4, 5] is their exponential decay into the bulk. When
a Kitaev chain is too short, the quasiparticle Majorana-
bound states at both edges hybridize and move away from
zero energy. Therefore, in order to have a proper quan-
tum computation, the length of the chain L should be long
in comparison with the characteristic coherence length ξ ,
such that the amplitude of the exponentially decaying wave
function (∝ exp(–L/ξ )) is small at the other side of the
chain. The exponential decay of electronic states is also a
problem for other systems, e.g. hybridization was exper-
imentally shown to be an important factor in a quantum
gate device [5] and for the poor man’s quantum gate based
on 0D boundary modes in the SSH model [6]. It would
therefore be beneficial to have robust states that are fully
localized on the ends of a 1D wire.
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Fully localized states are known to exist in the bulk of
certain lattices [7–16]. These states correspond to eigen-
states of the Hamiltonian that are completely localized in
a certain sub-region of the lattice and have strictly zero
amplitude otherwise. Due to their local character, these
compact localized states are protected against perturba-
tions outside the sites where they are located [13]. They
occur in crystalline flat-band systems, where often frus-
tration is causing the modes to be completely localized. As
a result, these compact localized states do not mix with
other bulk states and can be excited in a relatively easy
manner, as shown experimentally in Refs. [11, 12, 17]. Fur-
thermore, it has been recently proposed that these states
could be used in a quantum network to transfer informa-
tion in a proper and experimentally feasible manner [15].
Examples of fully localized bulk states can be found in
(quasi)-1D lattices such as diamond, stub or cross chains,
and in 2D, such as the Lieb lattice [8, 9, 11, 12, 16, 18–
21].

Here, we propose a model, namely non-interacting elec-
trons in a quasi-1D diamond-necklace chain, for which
robust compact localized states occur at the edges. This
chain bears some resemblance with the diamond chain,
although in the latter the compact localized states are bulk
modes [10, 13, 22–24]. The diamond-necklace chain has
been studied in the context of spin chains [25–27], where

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1007/s44214-023-00026-0
https://crossmark.crossref.org/dialog/?doi=10.1007/s44214-023-00026-0&domain=pdf
https://orcid.org/0000-0003-3201-7301
mailto:i.swart@uu.nl
mailto:C.deMoraisSmith@uu.nl
http://creativecommons.org/licenses/by/4.0/


Kempkes et al. Quantum Frontiers             (2023) 2:1 Page 2 of 10

it is known as the dimer-plaquette chain, and recently in
the context of flat bands in a non-interacting lattice [28].
The end modes that we find are doubly degenerate, have an
energy in the insulating bulk gap, are compactly localized
at the extremities of the lattice (no bulk decay) and are
robust against a large number of perturbations. Further-
more, we show that the amplitude of the wave function of
the zero mode can be fully controlled via either introduc-
ing anisotropies in the hopping amplitude or a flux in the
plaquettes. We examine these compact states in an exper-
imental setup and verify the theoretical proposal of com-
pact localized end states in the diamond-necklace chain.
These states open the path to the manipulation of bound-
ary zero modes without the problem of hybridization of
the end modes.

The experimental setup that we use to verify the the-
oretical calculations is based on the electronic quan-
tum simulator using CO adsorbed on a Cu(111) sample
[29–32]. A Cu(111) substrate exhibits a 2D electron gas
at its surface. The CO molecules act as repulsive scat-
terers for the surface electrons of the Cu(111) substrate,
confining them to the area between the CO molecules
[30, 31, 33, 34]. This method and similar ones have been
successfully used to fabricate flat-band models such as the
Lieb lattice [31, 35] and stub, diamond and cross lattices
[16]. Further, these setups have been used to show ro-
bust zero modes in an SSH model [35], in a 2D kagome
[34] and in a kekulé lattice [33]. However, in all these
previous examples the corner modes decay exponentially
into the bulk, contrarily to the modes identified here.

The experimental results are compared with tight-binding
and muffin-tin calculations, see methods for further de-
tails. In the remainder, we first discuss the diamond-
necklace chain in more detail and then describe the ex-
periment.

The quasi-1D diamond-necklace lattice is shown in
Fig. 1a. The lattice consists of 4 sites in a unit cell, con-
nected with a hopping t1. The Bloch Hamiltonian is given
by

H(k) =

⎛
⎜⎜⎝

ε –t1e–ik –t1 –t1
–t1eik ε –t1 –t1

–t1 –t1 ε 0
–t1 –t1 0 ε

⎞
⎟⎟⎠ , (1)

where k is the wave number and ε the onsite energy.
Apart from three dispersive bands, the spectrum shows a
flat band at energy E = ε corresponding to a wave func-
tion |ψ〉 = (0, 0, 1, –1)T , which is completely localized on
the sites 3 and 4. The spectrum with ε = 0 is shown in
Fig. 1b. Now, we can open a gap in the spectrum by in-
troducing a hopping t2 �= t1 between sites 1-4 and 2-3, as
shown in Figs. 1c-d. The localized state is no longer a so-
lution to the Schrödinger equation and there is a gap at
E = ε = 0.

In a finite chain consisting of N sites, this bandgap open-
ing gives rise to compact localized boundary states. The
finite chain is shown in Fig. 1e; the chain starts and ends
with a hopping t3, which allows us to tune the amplitude
of the localized wave functions. The spectrum of the finite

Figure 1 The quasi-1D diamond-necklace chain. (a) Periodic diamond-necklace chain with hopping t1 connecting the four lattice sites (numbering
indicated in grey). (b) Band structure for the lattice shown in (a). The band structure shows a flat band at E = 0. (c) The diamond-necklace lattice with
the hopping t2 between sites 1-4 and 2-3, and t1 otherwise. (d) Band structure for the lattice show in (c) with t2 = 2t1. When t2 �= t1, a band gap
opens up at E = 0. (e) Finite-size lattice ending on both sides with a bond t3. In this case, one can always find a degenerate state with E = 0 that is
compactly localized at the boundaries of the chain when t2 �= t1. The amplitudes of these wave-functions are schematically shown in red. They
depend on the hopping parameters t1, t2 and t3. (f) Spectrum of the finite-size lattice shown in (e), consisting of N = 82 sites and hopping
parameters t3 = t1. The zero-mode localized at the end of the chain is shown in red and is always compactly localized (no bulk decay) in the three
lattice sites at the boundaries when t2 �= t1
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chain as a function of t2/t1 is shown in Fig. 1f. In this fi-
nite chain, there is a zero-energy end mode, indicated in
red in the spectrum. These states are compactly localized
on sites 1, 4 and 5 on the left side of the chain and on sites
N – 2, N – 1 and N on the right side of the chain when
t2 �= t1, as schematically shown with red disks in Fig. 1e.
The modes can be understood as a hybrid of the compact
localized bulk states in a diamond chain [10, 13, 36] and
a boundary mode in the SSH model [37]. When consider-
ing the limit t3 = 0, there are two isolated sites on either
side of the chain, with a localized wave function at energy
E = ε. If t1 = t2, there are compact states in the bulk and
the end mode can hybridize with the compact states near
the boundary. When t1 �= t2, there is a gap in the spectrum
and therefore no state with the same energy in the bulk
to hybridize with the edge mode. In this sense, one could
expect an exponential decay from the end-localized states
into the bulk if the hopping t3 �= 0, in a similar way as it
occurs in the SSH model [37]. However, due to destruc-
tive interference, the zero mode does not decay exponen-
tially into the bulk but remains compactly localized at the
edges.

We can write down an exact form of the wave function
by making use of destructive interference [38–40]. We are
looking for a (not-normalized) wave function of the form
|ψ〉 = (1, 0, 0, r1, r2, 0, 0, . . . )T that has only an amplitude on
the sites 1, 4 and 5 and energy E = ε. When acting on our
trial wave function with the Hamiltonian corresponding to
the finite chain, we find:

H|ψ〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε –t3 0 0 0 0 · · ·
–t3 ε 0 –t1 –t2 0 · · ·
0 0 ε –t2 –t1 –t1 · · ·
0 –t1 –t2 ε 0 0 · · ·
0 –t2 –t1 0 ε 0 · · ·
0 0 –t1 0 0 ε · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
r1
r2
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
–(t3 + t1r1 + t2r2)/ε

–(t2r1 + t1r2)/ε
r1
r2
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The wave function is a solution to the Schrödinger equa-
tion when t3 + t1r1 + t2r2 = 0 and t2r1 + t1r2 = 0, which
gives r1 = t3t1/t and r2 = –t3t2/t, where t = t2

2 – t2
1 . The

eigenfunction with energy E is then given by |ψ〉 = (1, 0, 0,
t3t1/t, –t3t2/t, 0, 0, . . . )T and is completely localized. A simi-
lar calculation holds for the wave function localized on the
right side of the chain. When t2 = t1, the amplitude on site
1 becomes zero and we obtain the compact localized state

for the sites 4 and 5 corresponding to the states in the bulk
flat band shown in Fig. 1b.

Another way to open the bulk gap in the spectrum is to
introduce a flux in the diamond part of the necklace chain,
as it was experimentally realized for a diamond chain [13].
The Bloch Hamiltonian for the quasi-1D diamond neck-
lace chain is given by

H(k) =

⎛
⎜⎜⎝

ε –t1e–ik –t1e–iϕ –t1
–t1eik ε –t1 –t1
–t1eiϕ –t1 ε 0

–t1 –t1 0 ε

⎞
⎟⎟⎠ ,

where t is the hopping amplitude, k the wave number, ε

the onsite energy, and ϕ the flux per diamond. Introduc-
ing a nonzero flux in the diamond-necklace chain opens
a band gap at E = ε = 0, see Figs. 2a-d, similar to the
anisotropic hopping described above. A π-flux gives rise
to flat bands, in the same way as the Aharonov-Bohm
cages do in the diamond chain [13], see Fig. 2d. In a
finite-size lattice, a non-zero flux immediately gives rise
to compact states as well. Using the same wave function
as above, |ψ〉 = (1, 0, 0, r1, r2, 0, 0, . . . )T , we find r1 = 1/[1 –
exp(iϕ)] and r2 = –r1 for a compactly localized state, see
Figs. 2e-f.

Now, we examine some particular properties of these
end modes. Since these modes are compactly localized,
any perturbation outside of the boundary region will
not disturb them. More generally, these modes are pro-
tected against any perturbation that does not couple to
the sites 1, 4 and 5, and perturbations that preserve the
destructive interference when connecting to sites 1, 4
and 5.

We consider two different types of perturbations, on-site
and higher-order hopping. Since the compact localized
state resides on 3 sites, it is unaffected by on-site disorder
at different sites. This may be seen in Fig. 3a, which shows
the spectrum for on-site disorder at site 2: the zero-energy
mode remains intact. On the other hand, Fig. 3b depicts
the spectrum for on-site disorder at site 4, which breaks
the compact localized state. Finally, Fig. 3c shows the spec-
trum for on-site disorder sitting in the bulk cells of the
diamond-necklace chain. This type of disorder does not
influence the compact localized state. However, it does de-
form the bulk spectrum in such a way that it may become
possible to scatter into the bulk. Next, we analyze which
perturbations are allowed to keep the boundary mode lo-
calized and pinned to zero energy. Therefore, we investi-
gate what happens with the wave function when applying
the general perturbations a, b, c, d, . . . , o (other perturba-
tions are zero) in combination with different hopping pa-
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Figure 2 Flux in the diamond-necklace chain. (a) Unit cell of the diamond-necklace chain with hopping t and flux ϕ . (b) Band structure with ϕ = 0
and ε = 0. (c) Band structure with ϕ = π /2. A gap opens up at E = 0. (d) Band structure with a π -flux. All the bands are completely flat. (e) Schematic
of a finite-size lattice with a flux. The compact localized states are indicated by the red circles. (f) Band structure of a finite chain consisting of N = 82
sites. A non-zero flux opens up a gap at zero energy and gives rise to states compactly localized on sites 1, 4 and 5, and N – 2, N – 1 and N

Figure 3 Spectrum of the diamond-necklace chain shown in Fig. 1f upon inclusion of perturbations and for t3 = 1. (a) Spectrum for an on-site
perturbation with strength v = 1 at site 2 (and similarly at the other end of the chain). The compact localized state is unaffected. (b) On-site
perturbation with strength v = 1 at site 4 (and similarly at the other end of the chain). The compact localized state vanishes. (c) On-site bulk
perturbation with strength v = 1 at sites 8, 12, 16 . . . , which leaves the compact localized state unaffected. (d) General hopping perturbation f = 1,
which preserves the compact localized state. (e) General hopping perturbation b = 1, which destroys the compact localized state. (f) Schematic of
the allowed perturbations a, f and g with general hopping parameters in the diamond-necklace chain (perturbations h and i are not included in this
image to prevent clumpering)
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rameters (t1 to t6, see Fig. 3f ). We find

H|ψ〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε –t1 a b c d e · · ·
–t1 ε f –t2 –t3 g h · · ·
a f ε –t4 –t5 –t6 i · · ·
b –t2 –t4 ε j k l · · ·
c –t3 –t5 j ε m n · · ·
d g –t6 k m ε o · · ·
e h i l n o ε · · ·
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
r1
r2
0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε + br1 + cr2
–t1 – t2r1 – t3r2
a – t4r1 – t5r2
b + εr1 + jr2
c + jr1 + εr2

d + kr1 + mr2
e + lr1 + nr2

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

From the latter expression, we observe that the wave-
function amplitude on sites 1, 4 and 5 depends on the per-
turbing constants b, c, and j. To find the solution that obeys
the Schrödinger equation with this eigenstate and energy
ε, we need to solve 7 equations simultaneously (one for
each line). There is no general solution for these equations.
To simplify the problem, we set the constants that perturb
the sites 1, 4 and 5 to zero, i.e. b = c = j = 0. Further, there is
no general solution when the equations in the last two lines
are present in the general form d+kr1 +mr2 and e+lr1 +nr2.
We therefore set those parameters d, k, m, e, l and n to zero
as well, such that we have

H|ψ〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε –t1 a 0 0 0 0 · · ·
–t1 ε f –t2 –t3 g h · · ·
a f ε –t4 –t5 –t6 i · · ·
0 –t2 –t4 ε 0 0 0 · · ·
0 –t3 –t5 0 ε 0 0 · · ·
0 g –t6 0 0 ε o · · ·
0 h i 0 0 o ε · · ·
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
r1
r2
0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε

–t1 – t2r1 – t3r2
a – t4r1 – t5r2

εr1
εr2
0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

at3–t1t5
t2t5–t3t4at2–t1t4
t3t4–t2t5

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where the values for r1 = (at3 + t1t5)/(t3t4 – t2t5) and r2 =
–(at2 + t1t4)/(t3t4 – t2t5) were substituted into the last
equality. In this way, we find an analytic expression for
the compact boundary states. These couplings and al-
lowed perturbations a, f and g are schematically shown
in Fig. 3f. We further note that other perturbations are
allowed if the destructive interference is preserved. For
example, take line 6 in Eq. (3): d + kr1 + mr2 = 0. This
line corresponds to connecting sites 1, 4 and 5 to site 6.
From the analysis of the perturbation, we know that r2/r1 =
–(at2 + t1t4)/(at3 + t1t5) ≡ A. When the constants are cho-
sen such that d = –(k + mA)r1, these perturbations will not
affect the compact localized state. A similar analysis leads
to e = –(l + nA)r1 for the perturbation in line 7 of Eq. (3),
where sites 1, 4 and 5 are connected to site 7, and similar
expressions follow in general for all sites connecting to the
sites 1, 4, and 5. For the diamond necklace chain, this im-
plies that any perturbation (hopping or on-site) that does
not couple to sites 1, 4 or 5 preserves the compact localized
edge state. The same analysis can be done for the compact
state localized on the right side of the chain (sites (N , N – 1
and N – 2). Therefore, we conclude that these modes are
robust against many perturbations. We do however note
that because of the perturbation, the bulk spectrum may be
deformed, such that the zero modes are no longer gapped
out.

The compact nature of these end modes makes them ro-
bust against any kind of disorder in the bulk of the crys-
talline lattice. Since the end-localized zero mode has no
exponential decay into the bulk, these states cannot hy-
bridize with each other and gap out. Therefore, these states
are not affected by finite-size effects, and the states remain
strictly at zero energy for all chain lengths. Finally, we note
that the wave function amplitude at sites 1, 4 and 5 can be
tuned at will. The amplitudes on sites 4 and 5 only depend
on the strength of the hopping parameters t1, t2, and t3 at
the boundaries, and are not influenced by variations of the
parameters in the remainder of the chain.

We verified that the robust nature of the compact lo-
calized boundary state is not a result of a symmetry pro-
tected topological phase. Rather, it is a consequence of la-
tent symmetry. Latent symmetry is intimately connected
to a symmetry between possible paths on a graph (walks of
a particle along the different sites in a lattice). Since (free)
tight-binding Hamiltonians may be represented by graphs,
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the framework of latent symmetry is useful to study their
symmetries. In the upcoming paragraph, we follow the ar-
gument presented in Ref. [41]. Any free Hamiltonian may
be partitioned in S and its complement S, such that

H =
(

HSS HSS
HSS HSS

)
.

Performing a so-called isospectral reduction (ISR) allows
to reduce the system to one with only S degrees of freedom,

RS(H , E) = HSS + HSS(E – HSS)–1HSS,

which preserves the spectral properties of H , i.e.

RS(H , E)|φ〉 = E|φ〉,

with |φ〉 = |�〉S , the projection of the eigenvector |�〉 of H
on S. In the context of condensed-matter physics, the ISR is
better known as an effective Hamiltonian for the S degrees
of freedom. A Hamiltonian possesses a latent symmetry
if one of the three following (equivalent) statements hold
true:

[
RS(H , E), T

]
= 0,

[(
Hk)

SS, T
]

= 0

∀k ∈ {1, . . . , N},∃Q = T ⊕ Q such that [Q, H] = 0,

where T and Q are normal matrices. Since T commutes
with RS(H , E), we have T |φ〉 = t|φ〉, with t an eigenvalue of
T . Moreover, since Q commutes with H , all eigenvectors
|�〉 either obey T |φ〉 = t|φ〉, or vanish on S [41].

In the case of t1 = t2 = t3 in Fig. 1a, there is a clear reflec-
tion symmetry over the top and bottom sites forming the
diamonds (for example sites 4 and 5). Upon performing an
ISR over sites 4 and 5, we have T = P =

( 0 1
1 0

)
. If we take

Q to be the identity over S, the operator Q then permutes
the sites 4 and 5, while leaving the rest of the system un-
touched. The eigenvalues of P are ±1, and correspond to
an even (1, 1)T and odd (–1, 1)T parity eigenvector. Since
[Q, H] = 0, we find that for any eigenvector that is odd un-
der Q, |�〉i = –|�〉i = 0 for all i ∈ S, such that there is a
compact localized state on S. We note that the discussion
in this paragraph holds for any diamond in the chain: the
top and bottom site of any diamond could have been cho-
sen, and all of them host a compact localized state.

When t1 = t3 �= t2, the ISR over the top and bottom site of
a diamond no longer possesses a latent symmetry T . How-
ever, a less obvious latent symmetry is now present only for
the diamonds at the boundaries and regards sites 1, 4 and
5 (or N , N – 1 and N – 2). This symmetry is only present
when the diamond chain is terminated in an extra link,

as considered in this work. For this reason compact local-
ized states do not exist in the bulk any longer. Moreover,
the symmetry T is now parameter dependent and given
by [42]

T =

⎛
⎝

1 – (τ – τ–1)2 –1 + τ 2 –τ + τ–1

–1 + τ 2 1 – τ 2 τ

–τ + τ–1 τ 0

⎞
⎠ ,

where we introduced τ = t1/t2. Note that for t1 = t2 (i.e.
τ = 1), T reduces to a permutation of sites 4 and 5. Again
we take Q to be the identity over S to construct Q. The
matrix T has three eigenvectors:

⎛
⎝

–τ /(τ 2 – 1)
0
1

⎞
⎠ ,

⎛
⎝

τ 2/(τ 2 – 1)
1
0

⎞
⎠ and

⎛
⎝

τ – τ–1

–τ

1

⎞
⎠ ,

with eigenvalues 1, 1 and –1 + 2τ–2 – 2τ 2. Here, the third
eigenvector takes the role of the odd parity eigenvector.
Using a similar argument, it follows that |�〉i = (–1+2τ–2 –
2τ 2)|�〉i = 0 for all i ∈ S, such that we have a compact local-
ized state on S. The same reasoning holds upon including
t3 – t6, but the representations for the symmetry operators
become more complicated. The presence of a latent sym-
metry is in one-to-one correspondence with the existence
of compact localized states. Consequently, any perturba-
tion conserving latent symmetries preserves the compact
localized boundary state [14, 15, 43]. Much like topologi-
cally protected phases, the edge states described here re-
main for a wide range of parameter choices and are robust
against any type of disorder respecting the latent symme-
try.

The theory presented is now confronted with exper-
iment. Figure 4a shows a constant-current image of a
diamond-necklace chain realized by positioning CO mole-
cules on a Cu(111) surface using the tip of an STM (Sci-
entaOmicron LT-STM) operating at T = 4K . Each CO
molecule (black contrast) has been moved individually and
is positioned using a procedure described in the litera-
ture [44–46]. The confined regions define atomic sites, see
Fig. 4a. The boundary hopping t3 is controlled by position-
ing the highlighted COs (black dots surrounded by white
circles) as shown in Figs. 4b-d. In Fig. 4b, the highlighted
CO molecules are far away from each other (1.28 nm),
leading to a strong coupling between the neighboring sites
(i.e. large t3). In contrast, the highlighted COs are closer
to each other (1.024 nm) in Fig. 4d, which decreases the
boundary hopping amplitude t3. The experimental spec-
tra corresponding to the LDOS for the sites indicated in
Figs. 4b-d are given in Figs. 4e-g (solid lines). Note that we
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Figure 4 Experimental configuration and LDOS of the quasi-1D diamond-necklace chain. (a) Constant-current STM image of the diamond-necklace
chain realized with CO molecules on a Cu(111) surface. Artificial atom sites and hopping terms are indicated by pink and purple circles and lines
respectively. Thicker (thinner) lines represent stronger (weaker) hopping. (b)-(d) STM images of the diamond-necklace chain with a strong (a),
intermediate (b) and weak (c) hopping t3. The CO adsorbates are shown in black, of which four COs are highlighted. The highlighted COs determine
the strength of the boundary hopping t3. (e)-(g) Experimental spectra (solid lines) compared to the tight-binding (dotted lines) and muffin-tin
(dashed lines) spectra of the sites indicated in (b)-(d), for the strong (e), intermediate (f), and weak (g) hopping parameters, respectively. Here,
t1 = 0.095 eV, t2 = 0.1t1, and t3 goes from 0.8t1 (e), to 0.5t1 (f) and 0.3t1 (g). Vertical gray lines in (e) indicate the energies at which the differential
conductance maps, shown in Fig. 5, were taken

only show the spectra on the left side of the chain, since the
spectra on the right are similar by rotational symmetry.

Upon inspection, we observe that the red spectrum (sites
1 and N , respectively) always has a peak-like structure
around the onsite energy V = –0.1 V, whereas the bulk sites
exhibit a gap-like structure around that energy (green site
in Fig. 4b). We note that the intensity of the compact lo-
calized state is lower in experiment and muffin-tin simu-
lations than in the tight-binding results. We tentatively at-
tribute this to a non-negligible next-nearest-neighbor cou-
pling (not taken into account in the tight-binding calcula-
tions). Broadening, due to scattering of surface state elec-
trons by the CO molecules, leads to a less well-developed
gap in the experimental data. However, all qualitative fea-
tures of the tight-binding model are observed in the exper-

imental data, demonstrating the experimental realization
of the diamond-necklace chain.

By positioning the highlighted CO molecules differently,
one can change the LDOS of the blue site from exhibiting
a peak (Fig. 4e) to having a dip (Fig. 4g) around V = –0.1 V.
Hence, the amplitude of the wave function on that site can
be modified via minor changes in the coupling strength
t3. The experimental observations are verified by a finite-
size tight-binding and muffin-tin calculations (dotted and
dashed lines in Figs. 4e-g, respectively). In addition to the
strong hopping parameter t1 = 0.095 eV and the weak hop-
ping t2 = 0.1t1 presented in Fig. 1e, we introduce the hop-
ping t4 = 0.4t1 that connects the diamonds. To make the
comparison with the experimental spectra, we only change
the boundary hopping parameter t3 from 0.8t1 (e), to 0.5t1
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Figure 5 (a) Experimental (left) and muffin-tin (right) local density of states maps for the chain with strong boundary hopping at V = –0.213 V. The
tight-binding result is indicated on top of the experimental map with red dashed circles. The radius of the circle scales linearly with |ψ |2 on the
indicated site. (b) Same as (a) but now for V = –0.122 V. The amplitude of the wave function is nowmainly localized at the ends of the chain. We note
that due to imperfections in the determination of the sample tilt, the maps show deviations between the left and right sides of the chain. (c)-(d)
Zoom in on the edge of the strong (c) and the weak (d) boundary hopping chain at V = –0.122 V. Left and right panels correspond to experimental
and muffin-tin simulated maps, respectively

(f ) and 0.3t1 (g) (and orbital overlap in a similar way, see
method section). In the tight-binding LDOS, we clearly
observe a large change in the blue spectra, whereas the
other spectra remain similar.

Next, we present local density of states maps of the cre-
ated lattices with strong and weak coupling t3 in Fig. 5.
In Fig. 5a, we show the experimental (left) and muffin-tin
(right) simulated maps for the strong boundary coupling
chain at V = –0.213 V. The LDOS computed from tight
binding is represented as circles on top of the experimen-
tal data, where the circle radius scales linearly with |ψ |2.
At this energy, the electronic LDOS is mainly localized in
the bulk of the chain (bright colors), whereas it is absent
in the end sites (dark colors). When increasing the volt-
age to V = –0.122 V, the LDOS becomes more pronounced
at the end sites of the quasi-1D chain, especially at sites 1
and 4. Other sites, and in particular site 2, show less inten-
sity. A closer inspection of the end modes in the strong and
weak boundary-hopping chain is shown in Figs. 5c and d,
respectively. The end mode is more pronounced on site 4
(top of the first diamond) in the strong boundary bonding
(Fig. 5c) configuration, and less pronounced in the weak
boundary bonding (Fig. 5d). Both theoretical methods pre-
dict the same trend, c.f. left (red circles) and right panels
in Figs. 5c and 5d.

To conclude, we have theoretically and experimentally
introduced the notion of robust compact localized bound-
ary states. These states are present in the insulating bulk-

band gap and are completely localized at the bound-
ary of the diamond-necklace chain. We have shown how
to change the wave-function amplitude of the boundary
mode by controlling the boundary-hopping parameter,
both in theory and in an experiment. Since these states
are doubly degenerate and do not decay into the bulk, they
might be the ideal candidates for quantum operations and
to store and transfer information in the same way as the
topological 0D modes in an SSH chain, with the differ-
ence that the chains do not need to be long in comparison
with the decoherence length of the zero modes. It would
be worthwhile to investigate whether compact Majorana
bound states can be realized in such a quasi-1D chain with
the same non-Abelian properties as the ones in the Kitaev
chain, and to perform braiding operations with those com-
pact localized edge modes.

1 Methods
1.1 Scanning tunneling microscopy experiments
The tunneling spectra in Fig. 4 were acquired at constant
height, by placing the tip above a single site. The feed-
back loop is disconnected and a modulated voltage is ap-
plied to the tunneling junction. The tunneling current I
and conductance dI/dV are measured simultaneously. The
differential conductance is obtained with a lock-in am-
plifier (rms modulation of 10 mV at 769 Hz). All spectra
were averaged using at least 18 dI/dV sets of reproducible
curves, followed by applying a 5-point running averaging
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filter. Density-of-state maps have been performed by dis-
abling the feedback loop and activating the external volt-
age modulation of the lock-in. The energy has been care-
fully chosen from the LDOS curves (see Fig. 4), and the
current has been set to 1 nA by adjusting the tip-surface
distance.

1.2 Muffin-tin simulations
The experimental platform can be simulated by describing
the surface state of the Cu(111) as a 2D electron gas that is
patterned with circular potential barriers (CO molecules)
with a height of V = 0.9 eV and a radius R = 0.3 nm25. We
determine the energies and wave functions of this system
by numerically solving the Schrödinger equation. To ac-
count for the coupling between the surface- and bulk states
of copper, a Lorentzian broadening with a FWHM of 0.08
eV is applied to the theoretically computed energy levels.

1.3 Tight-binding calculations
A Lorentzian broadening of 
 = 80 meV is applied to the
spectra to take the scattering with the bulk states into ac-
count. Further, we solve the finite-size tight-binding model
with four hopping parameters t1 – t4, as mentioned in the
main text. Here, t1 is the strong hopping within a diamond,
t2 is the weak hopping within a diamond, t3 is the hop-
ping to the boundary site and t4 is the hopping connect-
ing the diamonds. The parameters used in Figs. 4e-g are
(all in eV): es = –0.1, t1 = 0.095, t2 = 0.1t1, t4 = 0.4t1, and a
nearest-neighbor orbital overlap of s1 = 0.1, s2 = 0.1s1, and
s4 = 0.4s1. Further, the hopping parameters t3 (overlap s3)
are t3 = 0.8t1 (s3 = 0.8s1) in Fig. 4e, t3 = 0.5t1 (s3 = 0.5s1) in
Fig. 4f and t3 = 0.3t1 (s3 = 0.3s1) in Fig. 4g.
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