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Abstract
Triangular lattice, with each site coordinating with six neighbors, is one most common network in two-dimensional
(2D) limit. Manifestations of peculiar properties in the lattice, including magnetic frustration and quantum spin liquid,
have been restricted to single-orbital tight-binding (TB) model so far, while the orbital degree of freedom is largely
overlooked. Here, by combining TB modeling with first-principles calculations, we demonstrate the rich electronic
structures of triangular lattice with multiple (px ,py ,pz) orbitals. Type I/II Dirac point, quadratic nodal point and
nodal-loops are observed, and the topological phase diagram is mapped out by manipulating the horizontal mirror
symmetry, spin-orbit coupling and energy position of relevant orbitals. Remarkably, we show that large-gap
quantum spin Hall phase (∼0.2 eV) can be realized in experimentally achievable systems by growing indium
monolayer on a series of semiconducting substrates, such as C/Si/Ge(111) and SiC(0001) surfaces, and the proposed
materials capture the TB parameter space well. Our work not only provides physical insights into the orbital physics
in 2D lattices, but also sheds light on the integration of novel quantum states with conventional semiconductor
technology for potential applications, such as dissipationless interconnects for electronic circuits.
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1 Introduction
In condensed matter physics and materials science, the
band theory serves as the cornerstone for understand-
ing and designing solid-state materials with the structure-
property relationship. This relationship highlights that the
physical properties of materials are determined by atomic
connectivity [1]. One prototypical example is the two-
dimensional (2D) carbon allotrope graphene [2], which is
characterized by sp2 hybridization of carbon that leaves
pz orbital in a hexagonal lattice, so that the conduction
and valence bands are linearly touched at the Brillouin
zone boundary, giving rise to massless Dirac fermions with
unique electronic properties, such as semi-metallicity, ul-
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trahigh carrier mobility and nontrivial topological proper-
ties [3–6]. During the past years, tremendous efforts have
been made to the exploration of other 2D Archimedean
lattices for new phenomena and diverse functionalities, in-
cluding but not limited to triangular, kagome, Lieb, dice
and square-octagon lattices [7–13].

Amongst them, triangular lattice is one most common
and generic network in the 2D limit. With each site coor-
dinating with six neighbors, the triangular lattice has at-
tracted considerable interest due to its ideal realization of
spin frustration that may lead to quantum spin liquid states
[14, 15]. It is also an attractive model to achieve uncon-
ventional superconductivity, as observed in the atomic Sn
layer deposited on Si(111)-R30◦(

√
3×√

3) surface [16, 17].
Conventional semiconductors, such as Si and Ge, have re-
constructed surfaces with triangular arrangement in (111)
orientation. From the simplest tight-binding (TB) model, a
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single orbital within triangular lattice gives a single energy
band [18], conforming to the angle-resolved photoemis-
sion spectroscopy (ARPES) and density functional theory
(DFT) results of the surfaces [19]. Recent progress of or-
bital physics, utilizing the orbital degree of freedom in ad-
dition to the charge and spin of electrons, opens up new
opportunities to realize richer extraordinary properties,
including metal-insulator transition, flat band and non-
trivial topology [7, 11, 20–27]. An interesting example is
the (px, py)-orbital hexagonal lattice model. With the co-
existence of flat and Dirac bands, this model possesses
spin-orbit coupling (SOC) arising from the on-site spin-
orbit interaction, so that the SOC strength can be much
enhanced [22, 23]. Indeed, our earlier proposal of epitaxi-
ally growing heavy atoms (such as Bi) on a semiconductor
substrate demonstrated quantum spin Hall (QSH) states
with a large gap of 0.8 eV, where the (px, py)-orbital hexag-
onal model is realized via an intriguing “substrate-orbital-
filtering” effect [23]. Later experiments confirmed the
proposal by scanning tunneling microscopy/spectroscopy
(STM/STS) and ARPES measurements [28]. Development
of topological phases based on semiconductor substrate
is important in a way that it not only facilitates experi-
mental characterization and manipulation of the topolog-
ical edge states, but also allows potential applications due
to the intrinsic compatibility with mature semiconductor
technology. In this regard, it is tempting to investigate the
triangular lattice with multiple orbitals and design new
topological materials supported on semiconductor sub-
strate.

In this work, we theoretically explore the electronic
properties of triangular lattice with multiple (px, py, pz) or-
bitals. For heavy main-group elements, such as In, Pb and
Bi, px, py and pz orbitals are normally treated as the valence
states since the s orbital is located relatively deep in en-
ergy. By systematically comparing the lattice with a single
p orbital, (px, py) and (px, py, pz) orbitals within TB model-
ing, we show the rich electronic structures, including type
I/II Dirac point, quadratic nodal point, nodal-loops. QSH
states can be achieved by regulating the horizontal mir-
ror symmetry, SOC magnitude and relative position of or-
bitals. Combined with DFT based first-principles calcu-
lations, we demonstrate the realization of QSH phases by
epitaxial growth of In atoms on a series of semiconductor
substrates, including cubic C/Si/Ge(111), 4H-SiC(0001)
and InAs(111) surfaces, to form a multi-(px, py, pz) orbital
triangular lattice. The topological gap can reach ∼0.2 eV,
feasible for room-temperature characterization. Impor-
tantly, the DFT calculated results capture well the salient
features of the mapped topological phase diagram in the
TB parameter space. As the proposed systems are ex-
perimentally available [29], we expect the present study
to stimulate immediate attention to regulate the prop-
erties of semiconductor-supported topological materials

via carrier doping, external strain, electrical and magnetic
fields.

2 Methods
2.1 First-principles calculations
DFT-based first-principles calculations were performed
by using the Vienna ab initio simulation package (VASP)
[30, 31]. The projected augmented wave (PAW) method
was employed for the ion-electron interactions [32]. The
exchange-correlation energy was modeled by the gen-
eralized gradient approximations (GGA) in the form of
Perdew-Burke-Ernzerhof (PBE) formulism [33]. An en-
ergy cutoff of 500 eV was adopted for the plane-wave ba-
sis. The convergence threshold of energy and force was
set to 1 × 10–6 eV and 0.01 eV/Å, respectively. SOC was
treated as a perturbation term [34]. The Wannier90 soft-
ware was used to obtain the maximally-localised Wannier
functions (MLWFs) and topological properties [35–37].
To simulate the substrate supported systems, a surface
slab of eight atomic layers were included, with the bot-
tom four layers fixed at bulk positions and all other atoms
fully relaxed. The Brillouin zone integration was sampled
by a 17 × 17 × 1 �-centered k-mesh. To avoid the interac-
tion between neighboring slabs, a vacuum region of ∼20 Å
was adopted perpendicular to the surface plane. STM im-
age was simulated based on the Tersoff-Hamann theory
[38]. The formation energy of In monolayer on substrate
is defined by, Ef = (Etot – n × EIn – Esub)/n, where Etot, EIn
and Esub are the energies of the supported system, single
In atom and substrate, respectively. n is the number of In
atoms.

2.2 Tight-binding modeling
To model the triangular lattice with multiple orbitals, the
SK hopping parameters are constructed to describe the
NN p-p interactions [39],

Ei,j = 〈i |H| j〉 = –ninj(Vppπ – Vppσ ),

Ei,i = 〈i |H| i〉 = n2
i Vppσ +

(
1 – n2

i
)
Vppπ ,

(1)

where Vppπ and Vppσ are SK π /σ hybridization parame-
ters, and ni,j represents the direction cosine parameters
with i �= j ∈ {x, y, z}. The SK π /σ hybridization parameters
can also be written in terms of hopping parameters, t1, t2
and tz. SOC is treated by, 〈i|λSOCS · L|j〉, with S (L) denot-
ing the spin (orbital) angular momentum.

3 Results and discussions
3.1 Single and multi-orbital models of triangular lattice
Triangular lattice has only one site in a unit cell and each
site coordinates with six neighbors in the 2D plane (see
Fig. 1a), which differs significantly from the honeycomb
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Figure 1 Single and multi-orbitals in a 2D triangular lattice. (a) Schematic of a 2D triangular lattice, the Brillouin zone with high-symmetry points,
and the px , py and pz orbitals. Unit cell is indicated by red arrows. (b) Band structure of a single p-orbital triangular lattice with D6h symmetry.
(c) Band structure of a (px ,py )-orbital triangular lattice with D6h symmetry. The Dirac point at K and quadratic point at � can be gapped by SOC. The
resulting Z2 invariants are 0 for each band. (d) Band structure of a (px ,py ,pz )-orbital triangular lattice with D6h symmetry. pz band introduces a type-II
Dirac point (green circle) and two nodal-loops circling K and � . With SOC, crossing points are gapped and Z2 invariants are 0. (e) Same as (d) but
with C6v symmetry (without SOC). The dashed line denotes the energy of the Dirac point. (f) Same as (b) but with C6v symmetry. λR varies from 0 to
0.8. (g) Same as (c) but with C6v symmetry. λSOC varies from 0 to 2.8. The resulting Z2 invariants are 0. (h) Band structure of a (px ,py ,pz )-orbital
triangular lattice with C6v symmetry. λSOC varies from 0 to 2.8, and the calculated Z2 invariants are 1, –1, 0 for the bottom, middle and top band,
respectively. For (b) and (f), t1 = –0.3. For (c) and (g), t1 = 1.55, t2 = 0.78. For (d), (e) and (h) tz = –0.6 while t1 and t2 are the same as that in (c) and (g).
λSOC = 0.8 in (c) and (d)

graphene structure. With a D6h point group symmetry,
the lattice involves two-fold rotation symmetry C2z, three-
fold rotation symmetry C3z, inversion symmetry P and
in-plane two-fold rotation symmetry C2xy. As the sim-
plest case, we first consider a single orbital on each site.
The symmetry restricted TB Hamiltonian can be written
as, H1 = 2t1[cos(k1) + cos(k2) + cos(k1 + k2)], with t1 de-
noting the nearest-neighbor (NN) hopping. This Hamil-
tonian produces a single band within the Brillouin zone,
and partial-filling will give rise to a metallic band structure
(Fig. 1b). With the presence of SOC (the SOC strength is
denoted by λSOC), this single band remains intact, while
the inclusion of additional terms in the Hamiltonian, such
as correlation and exchange energies, may give rise to
unconventional superconductivity and magnetic frustra-
tion. This has been well-documented in literature [15–
17].

Next, we consider the (px, py)-orbital triangular lattice.
With D6h symmetry, the Hamiltonian can be expressed as,

Hxy = Exy ⊗ τ0 +
[

Exx Exy
E∗

xy Eyy

]
, (2)

in which τ0 is the identity Pauli matrix operating on the
orbital degree of freedom. Exy is the onsite energy of
(px, py)-manifold. The off-diagonal term, describing the
coupling between px and py orbitals, can be written as,
Exy = –2t2 cos(k1) + 2t2 cos(k1 + k2), where t2 is the (px, py)
NN hopping parameter. The diagonal integrals, denoting
the single band Hamiltonians, are modified based on H1
[see more details in Additional file 1 Note 1]. Diagonal-
ization of Eq. (2) gives two energy bands that cross each
other, forming a Dirac point at K and a quadratic nodal
point at � (Fig. 1c). SOC splits the two points, and the two
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gapped bands are topologically trivial, with the topological
Z2 invariant calculated to be 0 (Fig. S1).

Further inclusion of pz orbital in the model leads to the
(px, py, pz)-orbital triangular lattice, for which the block di-
agonal Hamiltonian is constructed as,

Hxyz = Exy ⊗ τ0 ⊕ Ezz +
[
Hxy 0

0 Ezz

]
, (3)

where Ezz is the onsite energy and Ezz is the single-band
Hamiltonian of the pz orbital. The Ezz integral can be
written as, Ezz = 2tz cos(k1) + 2tz cos(k2) + 2tz cos(k1 + k2)
wherein tz describes the NN hopping of pz orbital. As
shown in Fig. 1d, compared to the (px, py)-orbital trian-
gular lattice, here pz crosses (px, py) bands, leading to the
formation of a type-II Dirac point with large tilted coni-
cal dispersion. Interestingly, the emergent Dirac points re-
sult in two nodal loops circling K and � points (also see
Fig. S2). With SOC, these crossed points are split, and the
calculated Z2 is 0 for all bands, so that the system remains
topologically trivial.

The above results suggest that in weak SOC limit, multi-
orbital triangular lattice can exhibit many interesting band
structures, including type I/II Dirac point, quadratic nodal
point and nodal loops. These properties may lead to a
variety of intriguing physical phenomena, such as large
magnetoresistance, Klein tunneling, drumhead states, and
even high transition temperature superconductors [40–
42]. However, the SOC induced band gap opening does not
contribute to a topological phase, and the multi-orbital tri-
angular lattice with D6h symmetry remains topologically
trivial.

3.2 Triangular lattice with broken horizontal mirror
symmetry

With Z-direction confined to (sub)nanometer thick, 2D
materials always require a certain substrate during growth,
characterization or device setup. Therefore, the horizon-
tal mirror symmetry (Mh) will be broken since the two
surfaces of the structure become asymmetric when sup-
ported on substrate. The original point group symmetry
is D6h, where the horizontal mirror symmetry can be de-
fined as, Mh = C2zP. When Mh is removed, the point group
will be reduced to C6v. As a result, the TB Hamiltoni-
ans need to be modified, especially when SOC is taken
into account. For the single-orbital triangular lattice, the
Hamiltonian should be revised in the form of H1 ⊗ σ0 +
H′(λR) ⊗ σy + H′′(λR) ⊗ σx, with σ acting on the spin
space. The Hamiltonians H′(λR) and H′′(λR) denote the
additional interactions determined by effective SOC λR.
Here, the off-diagonal integrals are extrinsic rather than
intrinsic SOC. The calculated band structures are shown
in Fig. 1f. Clearly, the spinful bands become split with SOC,
while at high-symmetry points, they remain doubly degen-
erate. This type of splitting originates from the well-known

Rashba effect, which has been widely discussed in inver-
sion symmetry-breaking systems, such as surface struc-
tures, heterostructures and gated 2D materials [43–45]. It
should also be noted that Rashba splitting tends to have
detrimental effect on the topological phase. However, if
the Rashba effect is not so strong compared to intrinsic
SOC, the topological phase can be maintained, as revealed
in the hexagonal Bi layer grown on semiconductor surface
[23, 28]. Therefore, we will mainly focus on the intrinsic
SOC effect in the following discussions.

For the (px, py)-orbital triangular lattice, breaking of Mh
symmetry respects the original Hamiltonian Hxy (Eq. (2)),
so that the band structure with C6v symmetry retains the
same as that with D6h, as indicated in Figs. 1c and 1g.
Note that although SOC splits the Dirac point at K and
the quadratic nodal point at �, and the size of opened
gaps increases with larger SOC strength, the bands are
still topologically trivial with Z2 = 0. This could be under-
stood by the fact that separately either the Dirac point or
the quadratic nodal point can give rise to nontrivial topol-
ogy induced by SOC; however, counting the two points to-
gether, the total effect leads to a trivial phase. Interestingly,
further reducing C6v to C3v symmetry destroys the Dirac
point at K point, and a topological phase with Z2 = 1 can
be achieved by introducing SOC that splits the quadratic
nodal point at � [20, 46].

Now, we turn to discuss the case of (px, py, pz)-orbital
triangular lattice. With D6h symmetry, the Hamiltonian
(Eq. (3)) is block diagonal, so that the (px, py)-manifold
does not hybridize with pz orbital. However, with C6v sym-
metry, hybridization between them will occur, and the re-
sulting band structure differs significantly from that with
D6h symmetry. As shown in Fig. 1e, the nodal-loops disap-
pear and a clear Dirac point is left at K point. SOC opens
an energy gap between the two Dirac bands, and the gap
size increases with stronger SOC. Importantly, the calcu-
lated Z2 invariants of the two bands are ±1, indicative of a
topologically nontrivial phase. Thus, Mh symmetry break-
ing triggers a topological phase transition in the (px, py, pz)-
orbital triangular lattice.

3.3 Topological phase diagram and edge states in
(px , py , pz)-orbital model

As Mh symmetry has significant influence on the band
properties of (px, py, pz)-orbital triangular lattice, we then
delve into the fundamental mechanisms by analysing the
TB Hamiltonian. To describe the hybridization between pz
and (px, py) orbitals, we introduce two terms, Exz and Eyz ,
which depict the interactions between px and pz , py and pz
orbitals respectively, in the Hamiltonian Hxyz (Eq. (3)). As
such, the revised Hamiltonian with C6v symmetry reads,

HC6v
xyz = Exy ⊗ τ0 ⊕ Ezz +

⎡

⎣
Exx Exy Exz
E∗

xy Eyy Eyz
E∗

xz E∗
yz Ezz

⎤

⎦ , (4)
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Figure 2 Symmetry breaking and topological phase diagram of (px ,py ,pz )-orbital triangular lattice. (a) Band structure evolution with different ζxyz .
Nodal loops are broken by non-zero ζxyz (squares). (b) Band structures with different SOC (ζxyz = 0.9). The Z2 invariants are also indicated.
(c) Topological phase diagram with different ζxyz and λSOC , including the trivial, QSH I and QSH II phases. (d) Topological edge states corresponding
to (b) (λSOC = 0.8). t1 = 1.55, t2 = 0.78, tz = –0.4. All bands are shifted with reference to the energy of the Dirac point (EDP)

in which the introduced integrals can be derived from
the modified Slater-Koster (SK) hopping parameters [39],
based on SK π /σ hybridization integrals Vppπ and Vppσ .
Thus, Exz and Eyz can be written as, Exz = i ζxyz

2 (Vppσ –
Vppπ )[2 sin(k1) – sin(k2) + sin(k1 + k2)] and Eyz = i

√
3ζxyz
2 ×

(Vppσ – Vppπ )[sin(k1 + k2) + sin(k2)], respectively. Here, the
parameter ζxyz denotes the hybridization strength. In prac-
tice, it is related to the binding between 2D material and
the substrate, which can be infinitesimal or very large,
corresponding to weak van der Waals interaction and
strong chemical bonding, respectively. Moreover, when
supported on a substrate, the energy of pz orbital may also
change its relative position with respect to that of (px, py)
orbitals, i.e. Ezz �= Exy. Without losing generality, we fix
Vppσ and Vppπ integrals and focus on the evolution of band
structures against the hybridization strength and SOC.

Figure 2a presents the evolution of band structures
with increasing ζxyz. Clearly, hybridization between pz and
(px, py) orbitals splits the nodal points and destroys the
nodal-loops with appearance of energy gaps, so that a
clean Dirac point can be obtained at K point. Note that
the gap opening derives from symmetry breaking rather
than SOC. With the inclusion of SOC, both the Dirac point
at K and the quadratic point at � are opened that leads
to a QSH phase (Fig. 1h). Interestingly, with the increase

of ζxyz, there is a phase transition from one topological
phase (QSH I) with Z2 invariants of 1, –1, 0 for the three
gapped bands (from bottom to top), to another topological
phase (QSH II) with Z2 invariants of 1, 0, –1 for the three
bands, respectively (Fig. 2b). We can map out the topo-
logical phase diagram by adjusting ζxyz and λSOC, which is
shown in Fig. 2c. With finite ζxyz and a small value of λSOC,
the system is topologically nontrivial. Increase of SOC first
closes the nodal loop and then reopens a gap, inducing a
transition from nontrivial to trivial phase (see more de-
tails in Fig. S3). Increase of ζxyz initiates a trivial to non-
trivial phase transition (QSH I). Further increase of ζxyz
changes QSH I to QSH II (Fig. S4). To confirm the topol-
ogy, we construct a semi-infinite nanoribbon with the 2D
(px, py, pz)-orbital triangular lattice and calculate the topo-
logical edge states by iterative Green’s function approach
[47]. The edge states for the QSH I and QSH II phases
are shown in Fig. 2c and Fig. S5, respectively. The edge-
resolved bands could be clearly seen, which intersect at �̄

and connect the conduction and valence bands.
Then we consider changing the relative position of pz or-

bital with reference to that of (px, py) and explore the band
evolution. When pz is lower than the Dirac point formed
by the (px, py) bands at K (Fig. 3a), increase of ζxyz splits
the nodal-loop around � and opens an energy gap. Along
M - K, a tilted Dirac point is formed that cannot be gapped
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Figure 3 Topological phase diagram with modified energy position of pz . (a) Band evolution with different ζxyz , so that D6h symmetry is reduced to
C6v . Nodal loops are broken by non-zero ζxyz (squares). (b) Band structure with SOC, with Z2 invariants indicated. (c) Topological edge states.
(d) Topological phase diagram with different Ezz and λSOC , including the trivial, QSH I and QSH II phases. t1 = 1.55, t2 = 0.78, tz = –0.4, ζxyz = 0.5 and
λSOC = 0.4. For (a)–(c), Exy = 0, and Ezz = –5

by ζxyz. With the presence of SOC, a topological phase
arises with Z2 invariants of 1, –1, and 0 for the three bands
(Fig. 3b). The nontrivial band topology is also confirmed by
the edge state calculations (Fig. 3c). When pz is shifted be-
low (px, py) bands, the system becomes topologically triv-
ial (see Fig. S6), since no overlap occurs between pz and
(px, py) states. On the other hand, if we shift pz band to
higher enegies, there will be a phase transition from QSH I
to QSH II due to the band inversion at Brillouin zone cen-
ter (Fig. S7). Further up-shift of pz above (px, py) bands will
result in a trivial phase, since there is no overlap between
pz and (px, py) states again. The detailed topological phase
diagram is plotted in Fig. 3d.

3.4 Realization of QSH states on semiconductor substrates
The above TB analyses suggest the possibility of obtaining
nontrivial topology in (px, py, pz)-orbital triangular lattice
by regulating the horizontal mirror symmetry, onsite en-
ergy of related orbitals and SOC. Here, we demonstrate
real material systems that can fully capture this multi-
orbital model and exhibit large-gap QSH states. Especially,
recent experiments demonstrated the successful growth of
In monolayer on SiC surface, which has a triangular lattice
and shows nontrivial topological properties, as observed
by STM/STS and ARPES [29]. We thus resort to the epi-

taxial growth of In monolayer on a series of semiconductor
substrates, including diamond, SiC, Si, Ge, and InAs.

We first calculate the band structure of a free-standing
In monolayer by DFT, and the results are shown in Fig. 4a.
Clearly, the pz intersects (px, py) bands, forming nodal
points. SOC splits these points, and the calculated Z2 is
0, suggesting a trivial phase (Fig. S8 and Fig. S9). This is in
perfect agreement with the TB results of (px, py, pz)-orbital
triangular lattice with D6h symmetry. Epitaxial growth of
In monolayer on a substrate will break the Mh symmetry
and leave the structure with C6v symmetry (Fig. 4b). We
consider the adsorption of In monolayer on the surfaces of
C(111), Si-face of 4H-SiC(0001), Si(111), Ge(111) and As-
face of InAs(111). As an example, the simulated STM im-
age of In monolayer on 4H-SiC(0001) is shown in Fig. 4c,
which shows a perfect triangular arrangement that agrees
well with experimental observations [29]. As the lattice
constant of semiconductor surface increases from 2.56 Å
for C(111), 3.07 Å for SiC(0001), 3.84 Å for Si(111), 4.00 Å
for Ge(111), to 4.28 Å for InAs(111), the hopping param-
eters in the TB Hamiltonian can thus be fully modeled.
Also, chemical bonding with charge transfer between In
and substrate can reflect the D6h symmetry breaking. We
compute the charge transfer by using Bader charge analy-
sis approach [48, 49], and find that In atoms lose electrons
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Figure 4 Realization of (px ,py ,pz )-orbital triangular lattice in semiconductor supported systems. (a) DFT calculated band structure of a freestanding
In monolayer in triangular lattice (with SOC). The lattice constant is fixed to 3.07 Å, i.e., that of SiC(0001). (b) Illustration of epitaxially growing In
monolayer on a semiconductor substrate. (c) Optimized atomic structure and simulated STM image of In@SiC(0001) in the constant height mode
(1.2 Å higher than In). (d) Lattice constant and charge transfer. (e) Real-space differential charge density plots for In grown on different substrates. The
differential charge density is defined as, �ρ = ρtot – (ρIn + ρsub), with ρtot , ρIn and ρsub charge densities of the total system, separated In monolayer
and substrate, respectively. Yellow (cyan) color denotes electron accumulation (depletion). Isovalue = 0.002 e/Bohr3

and substrates gain electrons for these structures. Inter-
estingly, the transferred electrons increase for the systems
from In@SiC(0001) to In@InAs(111), indicating stronger
Mh symmetry breaking for In@ InAs(111). We also calcu-
late the differential charge density in real space. As shown
in Fig. 4e, the density plots have a one-to-one correspon-
dence with the Bader charge analysis.

Next, we investigate the band structures of In monolayer
on semiconductor substrates, and the results are presented
in Fig. 5. Obviously, the energy bands of (px, py, pz)-orbital
triangular lattice can still be identified around the bulk
gap of semiconductor substrates, though the In mono-
layer now has a reduced C6v symmetry. Here, some im-
portant features can be identified. First, the p-projected
energy bands become less dispersive from In@C(111) to
In@InAs(111), which can be attributed to the increased
lattice constant that leads to smaller In-In hopping. Also,
by examining the relative positions of pz band with re-
spect to that of (px, py), we find that they have a clear re-
lationship with the charge transfer between In and sub-
strate. For instance, from In@SiC(0001) to In@InAs(111),
the pz band gradually shifts down due to the increased
electrons transferred to the substrate (Figs. 5b-e). Remark-
ably, for In@C(111) and In@SiC(0001), the SOC split Dirac
point can be obviously observed within the bulk gap of the
substrate, leading to a nontrivial phase with the topologi-

cal invariant of occupied states [Z2(occ)] calculated to be
1 (Fig. 5a and 5b); For In@Si(111) and In@Ge(111), the
pz band is located below the Dirac point, and SOC also
opens a nontrivial gap with Z2(occ) = 1 (Fig. 5c and 5d); For
In@InAs(111), however, the pz band becomes lower than
(px, py), and the calculated Z2(occ) is 0, suggesting a trivial
phase (Fig. 5e). The calculated topological gaps are 232 and
37.3 meV for In@C(111) and In@SiC(0001) at K, while the
gaps for In@Si(111) and In@Ge(111), originated from the
tilted Dirac points along M - K, are calculated to be 156 and
164 meV, respectively. Therefore, electronic properties of
supported In monolayers can be effectively controlled by
the underlying substrates, which fully capture the charac-
teristics of (px, py, pz)-orbital triangular lattice, and agree
well with the TB calculations.

It is interesting to notice that free-standing In mono-
layer is topologically trivial, while the substrate supported
system can be nontrivial. This originates from the crucial
role of substrate in breaking the horizontal mirror symme-
try and shifting the relative position of pz orbital, so that
the topological phase can be realized, as predicted in the
Hamiltonian HC6v

xyz (Eq. (4)). This differs from bismuthene
grown on SiC(0001), where the pz orbital is fully filtered via
“substrate-orbital-filtering” effect that leaves (px, py) or-
bitals in a hexagonal lattice. In both cases, semiconductor
substrate converts the otherwise topologically trivial lat-



Hua et al. Quantum Frontiers             (2022) 1:7 Page 8 of 10

Figure 5 Electronic structures and nontrivial band topology. (a)–(e) Band structures of In monolayer grown on C(111), SiC(0001), Si(111), Ge(111)
and InAs(111) substrates, respectively. Relative contributions of In px , py and pz orbitals are shown. Z2 invariants of the occupied bands, Z2(occ), are
also indicated. Fermi level is set to zero. The shadow regions represent the energy bands of substrate. (f) Schematic diagram of Z2(occ) against the
relative position of pz orbital with reference to that of (px ,py )

tice to a nontrivial phase, particularly attractive to design
novel quantum materials and manipulate the topological
phase transition.

4 Outlooks and conclusions
In experiments, In monolayer can be epitaxially grown
on semiconductor substrates via molecular beam epitaxy
(MBE) approach, while the morphology and electronic
structures can be characterized by STM/STS. In particular,
bismuthene and indium monolayers have been success-
fully prepared on SiC(0001) surface [28, 29] that exhibit
QSH states. We have calculated the formation energies of
In monolayer on C(111), SiC(0001), Si(111), Ge(111) and
InAs(111), and found that the formation energies range
from –1.6 to –3.5 eV (Table S1), indicating that the systems
are energetically stable. The dynamical stability is also con-
sidered by phonon dispersion spectrum (Fig. S10). After
sample preparation, properties such as nodal points, nodal
loops and topological edge states, can be investigated by
ARPES and magnetotransport measurements [29, 50–53].
Importantly, we highlight the mature semiconductor tech-
nology that may enable large-scale growth, atomic char-
acterization and efficient manipulation of novel quantum
states by chemical doping, external strain, electrical and
magnetic fields.

In summary, we have systematically investigated the tri-
angular lattice with multi-(px, py, pz) orbitals. With D6h
symmetry, the lattice exhibits type-I/II Dirac point,
quadratic nodal point and nodal-loops in the band struc-

ture. Breaking the horizontal mirror symmetry reduces
D6h to C6v, and nontrivial band topology emerges with the
presence of SOC. We map out the topological phase dia-
gram by tuning the symmetry, SOC and relative position
of orbitals, and practical materials systems are proposed
to achieve QSH phase based on semiconductor substrates.
These findings not only shed light on the design of topo-
logical materials with orbital physics, but also pave an av-
enue to integrate novel quantum states with available tech-
nology for potential applications in dissipationless trans-
port, optoelectronic and spintronic devices.
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