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Abstract

The Mn-Bi-Te class of compounds are recently discovered topological insulators with broken time-reversal-symmetry,
which host unique quantum anomalous Hall and axion insulator states. Their key characteristics are believed to be
sufficiently understood by models in a single-particle picture. Here, we apply scanning tunneling microscopy to
study the electronic properties of MnBi, Te4 and MnBisTe;. Unexpectedly, our quasiparticle interference (QPI) results
demonstrate that rotational symmetry of the crystal breaks, i.e. a nematic-like pattern arises, in certain energy range
but persists in others. Moreover, our data in the presence of an external magnetic field rule out the possibility of the
material magnetism as an origin of the C, symmetric QPI pattern. This study reveals that the interaction in the
Mn-Bi-Te class of topological materials may play an essential role in their electronic states, and thus opens a new
path for investigating the interplay between wavefunction topology and symmetry breaking phases.
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1 Introduction

In a certain crystal, electron state with two-fold rotational
(C;) symmetry emerges despite its lattice obeys C3 or C,
symmetries. The electron state holding independent ro-
tational symmetry, which differs from the symmetry of
crystal structure, is named as rotational symmetry break-
ing phase. It is one of the important novel phenomena
arising in many quantum materials, unconventional su-
perconductors and strong correlated systems. Scientists
have discovered many examples. Stripe order phase in
cuprates is reported, where hidden-order phase is sup-
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posed to be the reason [1, 2]. Anisotropic transition driven
by nematicity is found in iron arsenide [3—6], paving the
way to find the true nature of charge order in this class
of superconductors. Rotational symmetry breaking order
in twisted graphene systems [7, 8] and nematic supercon-
ductivity in Bi,Ses based topological superconductor can-
didates [9-11], make themselves good platforms for ex-
plaining strong correlation induced quantum phenomena.
Those observations guarantee an important role that rota-
tional symmetry breaking plays in quantum materials, for
every discovery of rotational symmetry breaking phase in
a condensed matter may open avenue toward new physics.

The Mn-Bi-Te class of materials are recently discovered
topological insulators with inherent magnetic orderings
that are predicted to host a variety of unusual phenom-
ena [12-32]. Among them, the quantum anomalous Hall
effect and axion insulator state probably have the high-
est significance and attract enormous research attentions.
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Furthermore, many physicists believe the Mn-Bi-Te class
of material is an ideal platform for magnetic topology re-
search because the theoretical description is simple and
sufficient. For example, theorists found that band theory
together with strong spin-orbit coupling and Zeeman ex-
change field, i.e. a model within single-particle picture, is
enough to capture the major physics of the material.

Scanning tunneling microscopy (STM) is a powerful
technique to investigate topological materials [33-36],
here we apply low temperature STM to examine the
electronic states on ultra-high vacuum (UHV) cleaved
MnBi; Te, and MnBi, Te; crystals. Surprisingly, our quasi-
particle interference (QPI) patterns show a clearly viola-
tion of rotational symmetry of the crystal lattice, as well
as a nematic-like electronic state at certain energies. We
believe that understanding the facts necessitates a theory
that goes beyond the single-particle picture.

2 Results and discussions

The simplest instance in the Mn-Bi-Te class of the mag-
netic topological insulators is MnBi, Tey. Its crystal is com-
posed of layers of MnBi,Te, that are stacked along the ¢
axis (Fig. 1(a)). The spins in Mn atoms are believed to form
ferromagnetic order in each MnBi,Te, layer, and out-of-
plane A-type antiferromagnetic (AFM) order between ad-
jacent layers [12, 13]. Notably, the MnBi, Te, crystal struc-
ture possess an out-of-plane Cs rotational symmetry. It is
also visible in our atomic resolution STM image (Fig. 1(b)).
In the Fast Fourier Transforms (FFTs) of our STM images,
we show that there are no distortion, reconstruction or
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specially shaped defects, which can break crystal’s sym-
metry (Fig. S2, see Additional file 1). They are consistent
with former findings [37-39]. Aside from the crystal lat-
tice symmetry, electronic standing wave on the surface
(Fig. 1(c)), which is resulted from the scattering of elec-
tronic state by local defects, establish QPI. QPI pattern col-
lects the scattering vectors and display a Cq rotational sym-
metry on our C3 MnBi,Te, crystal (Fig. 1(d)).

In order to gain insight of the electronic structure on
the MnBi, Te, surface, we take the dI/dV spectra (Fig. 1(e)
and (f)). Based on the “V” shape of the dI/dV curve, we
are able to find the energy of the surface Dirac point at
—320 mV (according to the bottom of the “V”). Combining
with our previous results [27], we can estimate the valence
band maximum and conduction band minimum to be lo-
cated at —450 mV and —220 mV respectively. In addition,
we resolve a dip in dI/dV curve at the Fermi level. After we
perform a line cut on QPI patterns and plot the scattering
vector-energy diagram in Fig. 1(g), one can find that the
QPI signal diminishes at the 0 mV, indicating that a gap
opens at the Fermi level (since we can identify QPI signal
at other adjacent energy, other origins that prevent existed
states from scattering can be excluded). It represents an
overlooked feature of the MnBi, Te, crystal.

A more intriguing phenomenon occurs when we under-
take a comprehensive QPI examination (Fig. 2). We ob-
serve “normal” QPI patterns with six-folds rotational sym-
metry in the energy from 200 meV to —50 mV, which lays
in the bulk conduction band of MnBi, Tes. However, in the
energy range of the surface state and the high energy part

low

Figure 1 Surface electronic structure of MnBi; Tey. (@) Crystal structure of MnBi; Tey. (b) Typical topography of cleaved MnBi;Te, surface with atomic
resolution (10 nm x 10 nm). (c) LDOS maps on a flat MnBi, Tes terrace (225 mV, 100 nm x 100 nm) (d) FFT of (c) which showing the QPI pattern of
MnBi;Tey. (e) and (f) averaged dI/dV spectra measured on the same area, with energy range from 225 mV to =180 mV for e, and from —200 mV to
-500 mV for f. Black arrow points to the gap at the Fermi level. Blue arrow indicates the position of surface Dirac node (-320 mV). (g)
Energy-dependent QP! line-cut along I'-M direction (indicated by the dashed line in panel (d))
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be remarkably observed in (h) to (m)

Figure 2 Rotational symmetry breaking QPIs of MnBi, Te4 surface. (a)-(p) a set of various energy layers of a dl/dV grid. (grid set point: —0.6 V 500 pA)
clearly demonstrating the Cs and C, symmetric QP! at different energies. For example, Cs QP! patterns are shown in (a), (b) and (p), C; patterns can

of valence band, our data unambiguously show that the
QPI patterns take a nematic-like shape, obeying C; sym-
metry instead of C¢ (rotational symmetry of high energy
QPI obeys). Since QPI patterns originate from the scat-
terings between electron states, we can conclude that the
electron state breaks the C; rotational symmetry of the un-
derline crystal. Interestingly, the Cs symmetric QPI recov-
ers when we approach the electronic state deeply in the
valence band.

We also perform a systemic QPI study on its cousin ma-
terial MnBiyTe; as a control experiment. In contrast to
the fact that MnBi, Te, contains magnetic atoms in every
layer, MnBi,; Te; has both magnetic MnBi,Te, layers and
non-magnetic Bi, Tes layers in its bulk structure (Fig. 3(a)).
Our dI/dV spectra on surfaces of both layers of MnBi, Te;
(Fig. S1) agree with previous findings [37, 38]. But unlike
MnBi; Tey, we don’t find any gaps at the Fermi levels of
MnBis Te;, which indicate the feature is not universal in the

entire Mn-Bi-Te class. On the other hand, we do see a com-
mon unusual characteristic. Our QPI results show Cg sym-
metric patterns on the magnetic layer surface of MnBis Te;
in both higher positive and negative voltages, but a C, pat-
tern at —400 mV (Fig. 3(b)-(e)). Notably, the QPI data in
real space (Fig. 3(d)) display a distinct striped structure,
which leads to the C, pattern in reciprocal space. Surpris-
ingly, on the non-magnetic layer surface of MnBi,Te;, we
also find the rotational symmetry breaking QPI in a partic-
ular energy range (Fig. 3(f)-(i)). Once more, the C; patterns
are apparent in both real and reciprocal spaces (Fig. 3(h)).
We combine the preceding results [40, 41] and our dI/dV
spectra (Fig. S1) to determine the energies of bulk con-
duction and valence bands. We establish that the C, elec-
tronic structure in MnBi,Te; also appears in the energy
range where surface state and upper part of the bulk va-
lence band are situated, after carefully reviewing the sys-
tematic voltage-dependent QPI data in Figs. S3 and S4. We



Xu et al. Quantum Frontiers (2022) 1:5 Page 4 of 7

@B o, A ke £ high
JMn 8 % ]
@Te

200mV T 320mV -600mV  20nm low

Figure 3 C4s symmetry breaking QPIs on MnBisTe;. (@) three-dimensional crystal structure of MnBisTe;. Two different van de Waals layers can be
distinguished, i.e. the upper layer containing Mn elements indicates MnBi, Te4 layer, the lower one without Mn atoms indicates Bi,Tes layer. (b)-(e)
LODS maps at indicated energies on MnBi,Tes surface. Insets are the corresponding FFT. The C, QPI patterns are clearly revealed at —400 mV in both
real and reciprocal spaces. (f)-(i) same as (b)-(e) but measured on Bi,Tes surface, the Cg symmetry breaking is discerned at energy of =320 mV
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Figure 4 QPI patterns under applied magnetic field. (@) QPI on a MnBi,; Tes sample at —240 mV, displaying C, rather than Cg symmetry. (b) and (c)
same as a but under an 8T out of plane and 2T in plane magnetic field, respectively. (d)-(f) QPI patterns on the Bi,Tes termination of a MnBisTe;
sample (=0.3 V 500 pA). 1T in plane magnetic fields are applied along three I'-M directions. The directions of the C, patterns do not change with
magnetic fields

emphasis that our MnBi; Te, and MnBi,Te; samples were  to eradicate the possibility that the spin alignment may
measured by two different STM apparatuses (see method  take part in breaking C3 symmetry. However, our QPI data
section). It thus rules out the instrumental artificial effect 4|l takes a nematic-like shape in the presence of B, = 8T.
as an interpretation of the C; symmetry QPlIs.

Moreover, we carry out magnetic field dependent exper-

iments. During the QPI measurement on MnBi;Te,, we . . .
have applied either 8T out-of-plane field or 2T in-plane along three I'-M directions (Fig. 4(d)-(f)). The three cases

field to the sample but find no noticeable difference in the show almost same C; QPI images. If the QPI's C; relate to
C, symmetric patterns (Fig. 4(a)-(c)). Previous result sug- magnetic field (magnetic field can align all spin in plane,
gests that magnetic field of up to 7T is capable of aligning ~ which can also induce C; symmetry), the C; axis should
all spins out-of-plane [27], thus our field is strong enough  rotate along with magnetic field direction, since it doesn’t

Furthermore, we take the QPI measurements on the non-
magnetic layer of MnBi,Te; with applying in-plane fields
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rotate, we thus believe that C, symmetry is not caused by
magnetic structure.

Despite the fact that the Mn-Bi-Te class of materials has
been viewed as a simple and ideal magnetic topological
insulator, unexpected observations continue to emerge.
A notable example is the experimental detected gapless
Dirac cones on MnBi,Te, and MnBisTe; surfaces, which
should be gapped due to the time reversal symmetry
breaking in these compounds. This issue deserves inter-
ests of the researchers. Indeed, theorists start using band
theories together with various attempted magnetic con-
figurations to solve the problem [16, 25, 28—31]. Some re-
searchers speculate that whereas MnBi, Tes and MnBi, Te;
bulks exhibit out-of-plane A-type AFM, the magnetic or-
dering on their surfaces may differ from the ideal case,
i.e. the surface magnetization has an in-plane component
[16, 37]. Up to our knowledge, we are not aware of any re-
port that predicts or detects similar rotational symmetry
breaking electronic state in the Mn-Bi-Te class of magnetic
topological insulators. Following the logic of previous ar-
gument on the gap issue, it is natural to speculate that the
suggested complex magnetism is the plausible driver of
the C, symmetric QPIs. However, the magnetism-driven
electronic nematicity exhibits a reaction to an external ap-
plied field [42], which is contrast to our field dependent
experimental results. It is also possible that the magnetic
field fail to control nematic states, which is mainly because
that the state energy is far from Fermi level. Within the ex-
perimental evidence, it is difficult to relate our C, state to
the magnetism of MnBi,Te, and MnBi,Te; samples. The
physics of MnBi,Te, family is still far from being under-
stood even when we consider magnetic interaction. As a
result, a theory that takes into account various interactions
in these crystals is required.

Next, we want to discuss the nature of nematic-like states
although they emerge in the energy range which includes
a part below bulk VBMs of MnBi,Te, and MnBi,Te;. Ac-
cording to the single-particle band simulation, we know
that the surface state does not immediately merge into the
valence band at the energy below the bulk VBM [13-16].
They stay away from each other in a large energy range. On
the other hand, QPI will be dominated by surface standing
wave even when surface state and bulk state coexist. It be-
comes possible that our uncovered C, state mainly comes
from the surface state. Therefore, it is reasonable to expect
that a thorough solution of C; electronic state can also pro-
vide a hitherto missed hint to the surface Dirac gap issue
in MnBi,Tes and MnBigTe;.

Asasummary, we discover a rotational symmetry break-
ing state in the magnetic topological insulators MnBi,Te,
and MnBi,Te;. C, symmetric QPI patterns are clearly re-
solved at the energy range where surface state and high
energy part of the bulk valence band are located. We find
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that these electronic states are resistant to external mag-
netic fields, proving that they are generated by a non-
magnetic mechanism. Our findings suggest that the inter-
action and interplay in spin, orbit, charge and lattice de-
grees of freedom may play a substantial role in the mag-
netic topological insulators MnBi, Te, and MnBi,Te;. Ex-
otic emergent phenomena and innovative quantum de-
vices are made conceivable by the coexistence of topolog-
ical band and symmetry breaking order in a same sample.

3 Methods

The single crystalline samples of MnBi, Te, and MnBi, Te;
are grown by flux-assisted method. The reactants MnTe
and Bi,Te; are mixed in the molar ratio MnTe: BiyTe; =
1:5.8 and 1:7.0 for MnBi,; Te, and MnBi,Te; respectively,
are placed into an alumina crucible and sealed by a quartz
tube. We then put the sealed quartz tube into a muffle fur-
nace and heat them up to 950°C in 24 hours. We keep
this temperature for 12 hours to ensure that the materi-
als melt homogenic. Finally, the sealed quartz tube was
slowly cooled down to 578°C and 575°C for MnBi; Te, and
MnBi,Te; respectively in 24 hours. We take the quartz
tubes out from the muffle furnace rapidly and decant them
with centrifuge to separate the shining plate-like crystals
from the excess Bi, Tes flux.

MnBi; Te, samples are measured by a commercial STM
(Unisoku 1300) in Suzhou Institute of Nano-Tech and
Nano-Bionics. Our samples are cleaved in UHV circum-
stance (better than 2 x 10710 Torr) at 80K. After cleav-
ing, the sample is transferred to measurement stage within
20 mins, and then cooled down to 4.5K. All measurements
are conducted at 4.5K, in UHV. Chemical etched Pt/Ir wire
is used as STM tip, which is prepared by electron beam
heating. Lock-in amplifier is applied to detect dI/dV sig-
nals, with modulation of 5 mV and 991 Hz. MnBi, Te; sam-
ples are measured by Unisoku 1600 STM in Shanghai Jiao
Tong university. The samples are cleaved in UHV (better
than 1 x 10~ Torr), but at room temperature. After being
transferred to STM head, the samples are cooled down to
4.5K in 25 mins for STM measurements. The STM tips are
etched tungsten wire followed by electron beam anneal-
ing. dI/dV data are acquired with lock-in amplifier with
5 mV and 991 Hz modulation.

Supplementary information

Supplementary information accompanies this paper at
https://doi.org/10.1007/544214-022-00005-x.
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