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Abstract 

Current applications of Graph Neural Networks in citywide short-term crash risk prediction have been limited 
by a gridded representation of space, which restricts the network’s capability to effectively capture the spatial 
and temporal dependency of crash occurrences. In addition, a grided representation does not match most geo-
graphic units used for administrative purposes, limiting the use of crash risk predictions by practitioners. This paper 
applies a gated localised diffusion graph neural network (GLDNet) model to compare the use of two alternative 
geographic units, Mesh Block (MB) and grid, to forecast locations where crashes are likely to occur in a future time 
window. The GLDNet relies on a graph-based representation of geographic units and a weighted loss function 
to address the sparsity of crash occurrences. The tests are performed using crash data from the City of Melbourne, 
Australia, over a period of one year. The predictions are made at six-hour intervals, and the results show that the GLD-
Net consistently outperforms baseline methods, with differences in prediction accuracy from 10% to 21% in relation 
to historical average and benchmark deep learning models. In terms of geographic units, the MB-based GLDNet 
performed better than its grid counterpart, with differences in prediction accuracy of up to 12.3%. The better perfor-
mance stems from the underlying information attached to the MB units (i.e., land use) and the network properties (i.e., 
degree of centrality), which enhance the GLDNet capability to identify crash risk in both central and peripherical areas. 
Regarding its applicability, the MB-based GLDNet directly integrates with other data sources, which provides contex-
tual information about crash hotspots that helps decision-makers develop police patrolling and rescuing strategies.
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1  Introduction
The predictive hotspot mapping of short-term crash 
risk aims to forecast locations where crashes are 
likely to occur in a future time window based on his-
torical data of crash occurrences. Identifying loca-
tions with a higher probability of crash occurrence 

provides valuable insights for implementing preven-
tive strategies to improve road safety and can con-
tribute to a more effective allocation of city resources 
(Mukhopadhyay et  al., 2022). For instance, accurate 
crash forecasting can help transportation agencies 
to target undesired driver behaviours by supporting 
police patrolling tasks (Sieveneck & Sutter, 2021). 
Additionally, effective crash hotspot mapping can 
assist incident management systems in alleviating 
complications after crash occurrences by reducing 
rescue teams’ response time and minimising traffic 
disruptions (Ite & Pande, 2016). Further, navigation 
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applications can utilise dynamic crash risk maps to 
help drivers select safer routes (Li et al., 2016).

So far, most studies investigate short-term crash pre-
diction at the intersection level (Hu et  al., 2020) and 
corridor level (Basso et al., 2021; Li et  al., 2020; Shi & 
Abdel-Aty, 2015), with only a few studies focusing on 
macroscopic (spatially aggregated) models for short-
term crash risk prediction (Bao et al., 2019; Chen et al., 
2016). The lack of studies with the latter focus stems 
from (1) the difficulty in forecasting sparse events, (2) 
the non-linear, hierarchical, and complex relationships 
between the variables that explain crash occurrences, 
and (3) limitations in the resolution and coverage of 
urban traffic data.

With the rise of big data and the establishment of 
deep learning methods in the past few years, there was 
a significant increase in approaches to address complex 
problems, including the prediction of spatiotemporal 
events at a city scale (Wang et  al., 2020). For instance, 
deep learning algorithms have shown promising results 
compared with traditional statistical methods applied in 
near-term traffic prediction (Ma et  al., 2017), network 
travel time estimation (Hou & Edara, 2018), safety plan-
ning (Cai et al., 2019), and short-term crash risk predic-
tion (Arvin et al., 2021; Bao et al., 2019). However, despite 
the capability to model complex non-linear relationships 
through distributed and hierarchical feature representa-
tion, standard deep learning methods are constrained 
by the need to represent spatial data as grids (Bronstein 
et  al., 2017; Ma et  al., 2015). This need imposes several 
limitations to the analysis and the use of model outputs:

1.	 The shape limitations of grids (square or rectangu-
lar units of arbitrary sizes) reduce the possibilities 
of representing natural and built environments and 
account for specific geographical information of 
interest (e.g., lakes, airports, parks, and central busi-
ness districts). This misrepresentation can distort the 
spatial correlation within the data and can influence 
model results (Zhang, 2020).

2.	 The lack of malleability of grid shapes imposes 
that grid cells located at the boundary of a study 
area commonly diverge from their counterparts in 
shape or size. These differences may result in the 
loss of information and the deterioration of model 
performance.

3.	 The grid-based representation is not very practical in 
real-world applications, requiring further translation 
to become useful to decision-makers (Zhang, 2020). 
For instance, policymaking and police enforcement 
are commonly based on predefined statistical/admin-
istrative areas (e.g., suburbs, local government areas, 
census tracts, and postal areas).

4.	 Compared to other geographic units, a gridded-
data representation of the space may increase biases 
associated with the modifiable aerial unit problem in 
crash data analysis (Ziakopoulos & Yannis, 2020).

In contrast, Graph Neural Network (GNN) models, an 
extension of deep learning that operates on graphs, are 
not limited by a grid representation of the space, they rely 
on a network-based data representation (Wu et al., 2020; 
Wu et  al., 2022; Zhang, 2020). However, the few studies 
that developed predictions of citywide short-term crash 
risk using GNN models adopted a grid representation of 
the space (Huang et  al., 2022; Wang et  al., 2021a; Wang 
et al., 2021b; Zhou et al., 2020a; Zhou et al., 2020b), which 
is a sub-optimal use of the methodological capability and 
limits the practical applicability of the model, as discussed 
earlier. In addition, all these studies consider multiple data 
sources to predict citywide short-term crash risk. While 
auxiliary data sources improve the quality of risk predic-
tions, they also limit the current feasibility of the real-
world application of GNN models. This is because they 
increase computational power requirements and demand 
data that may not be available at the city/region level in 
fine temporal resolution. As a result, GNN crash models 
are not commonly used by transportation practitioners 
and governmental agencies, which usually rely on simpler 
modelling approaches, such as historical averages.

In this sense, a robust citywide short-term crash risk 
prediction GNN model based on governmental admin-
istrative geographic units and solely considering the his-
torical occurrence of crash events would create strong 
real-world application opportunities. Therefore, the 
current study has two objectives regarding crash hot-
spot location predictions. First, to evaluate the predic-
tion accuracy gains that a GNN crash model can provide 
compared to a benchmark GNN model, the Spatio-Tem-
poral Graph Convolutional Networks (STGCN), and tra-
ditional methods, such as Historical Average (HA) and 
AutoRegressive Integrated Moving Average (ARIMA), 
when the only data input is the historic crash occurrence 
information. Second, to evaluate whether a non-gridded 
space representation based on administrative geographic 
units improves prediction accuracy compared to a grid-
ded space representation.

Our model adapts the GNN architecture proposed by 
Zhang and Cheng (2020) to predict hotspot mapping 
of crime events, which, similarly to crashes, are sparse 
events. The prediction of short-term crash risk is con-
ducted for the city of Melbourne at the Mesh Block level 
(MB) and grid level over a period of one year, starting on 
January 1st, 2019. The MB unit is chosen because it is 
widely used by decision-makers to allocate a vast range of 
city resources as it is the smallest geographic area defined 



Page 3 of 17Jurado Martins de Oliveira et al. Urban Informatics             (2023) 2:7 	

by the Australian Bureau of Statistics (ABS) that serves 
as a building block for the larger regions of the Aus-
tralian Statistical Geography Standard (ASGS). In this 
sense, we discuss the applicability of the developed GNN 
model when integrated with other sources of spatial data, 
including land use and road network, and provide poten-
tial implications to decision-makers allocating patrolling 
and rescue services.

2 � Related studies
GNN models commonly combine graph convolution 
network (GCN) with recurrent neural network (RNN), 
long short-term memory (LSTM), gated recurrent 
units (GRU), or gated temporal convolution network 
(TCN) for spatial and temporal dependency modelling. 
While the GCN1 is analogous to the classical convolu-
tional neural network (CNN) used for spatial depend-
ency modelling in gridded data, all the other structures 
are well-known deep learning approaches for modelling 
sequential and time-series data. Several GNN models 
have been developed to predict spatiotemporal events. 
They were inspired by the early works of Yu et al. (2017) 
and Li et  al. (2017) that modelled spatial and temporal 
dependency of the traffic flow by combining GCN and 
time-series deep learning structures to predict traffic 
speed in a future time window.

Referring to GNN models and citywide short-term 
crash risk prediction at a spatially aggregated level, Zhou 
et al., (2020a) adopted a spectral-based GCN with a time-
varying affinity matrix to capture the dynamic of traffic 
conditions and obtain a gridded crash risk map. They 
proposed a data enhancement method based on the 
transformation of crash risk into a statistical crash indi-
cator to address the sparsity of crash occurrences. In the 
same direction, Zhou et al., (2020b) integrated an LSTM 
structure into Zhou et al., (2020a) network to jointly pre-
dict crash risk at multiple spatial scales and temporal 
time steps. In contrast, Wang et  al. (2021a) leveraged a 
multi-view approach and multi-data sources to capture 
the spatial and temporal dependency of crashes. The 
multi-view approach is defined by a module that com-
bines CNN with GRU and a module that integrates spec-
tral-based GCN with GRU. By combining both modules, 
the multi-view approach leveraged gridded and graph-
data representation to modulate crashes’ spatial and 

temporal dependency and predict crash risk. The sparsity 
of crashes was addressed via a weighted loss function in 
this case.

More recently, Wang et  al. (2021b) proposed another 
multi-view and multi-task approach to jointly forecast 
both fine- and coarse-grained crash risks based on multi-
data sources. In this study, the authors captured the spa-
tial and temporal dependency of crashes by leveraging 
gridded data at different scales and their previous multi-
view approach with a LSTM instead of GRU. To address 
the sparsity of crashes, the authors relied on a weighted 
loss function again. Finally, Huang et al. (2022) combined 
a spectral-based GCN with a gated TCN defined by a 
tanh-style gating mechanism2 to predict citywide short-
term crash risk based on a gridded representation of 
the space. For that, the author constructed the weighted 
adjacency matrix considering the cosine similarity of the 
urban road network. The data enhancement method pro-
posed by Zhou et al., (2020a) was adapted to dynamically 
consider the global risk of crash events and address the 
sparsity of crash occurrences.

Several spatial and temporal resolutions were utilised 
by the abovementioned studies for predicting citywide 
short-term crash risk. From the temporal side, the reso-
lutions varied between 10 min to 60 min and the predic-
tion horizons from 1 to 6-time steps ahead (10 min up to 
3 hours). From the spatial side, grid sizes were not always 
explicitly reported. For the cases in which they are explic-
itly reported, the sizes ranged between 2.25 km2 and 4 
km2. The focus on higher temporal resolutions in con-
trast to lower spatial resolutions stems from the auxiliary 
data sources’ spatial and temporal resolution constraints 
rather than practical applicability. This is because auxil-
iary data sources, such as traffic-related data, are usually 
not openly available at a fine-grained spatial resolution 
for large periods of time.

The review above makes evident the focus of previous 
studies on gridded space representations with large grid 
sizes and complex frameworks to accommodate large 
data volumes and multiple data sources. In this context, 
the current study proposes to take a step back and test 
how much predictive improvement we can gain simply 
by adopting a more meaningful space representation 
without the need for additional data sources. The model 
used in this study combines a localised spatial-based 

1  GCN can be divided into two main streams according to the notion of 
graph convolution: spectral- and spatial-based approaches. The spectral-
based approach defines the convolution in the spectral domain by a graph 
Fourier transform of the Laplacian matrix. In the spatial-based approach, 
the convolution is defined by aggregating features of neighbour nodes via an 
information propagation process. See Wu et al. (2022) and Wu et al. (2020) 
for a deeper discussion on GCN.

2  A gated temporal convolution network is a convolutional neural net-
work defined by a gating mechanism without recurrent structure that sig-
nificantly speeds up the network computation time at the training step in 
comparison to RNN and the LSTMs-based models. The gate mechanism 
modulates the nonlinear information projected by a activate function (i.e., 
hyperbolic tangent activation function (tanh)) to control the information 
flow between the network layers. See Dauphin et al., 2017 for a discussion of 
gated convolutional networks.
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GCN with a gated TCN for modelling the spatial and 
temporal dependency of crash occurrences. In con-
trast to the spectral-based GCN that relies on the eigen 
decomposition of the graph Laplacian to modulate the 
dependency between graph nodes, the diffusion process 
leverages a finite sequence of random walks to achieve 
the same goal. As a result, the spatial-based GCN is 
computationally faster and increases model transfer-
ability to other applications compared to spectral-based 
GCN, as any perturbation on a graph leads to a change 
of eigen basis (Wu et  al., 2020). On the temporal side, 
the gated TCN is defined by a Rectified Linear Unit 
function (ReLU)-style gating mechanism and includes 
a base probability of crash occurrences. The ReLU alle-
viates the vanishing gradient problem compared to 
other activation functions (i.e., tanh). At the same time, 
the added base probability of crash occurrences mim-
ics the background intensity of event occurrences in a 
self-exiting point process and helps the network to learn 
the temporal dependency of crashes. Like Wang et  al. 
(2021a); Wang et al. (2021b), we utilise a weighted loss 
function to accommodate the sparsity of crash occur-
rences. In summary, the model adopted in this study 
requires lower computational resources than the earlier 
methods as it relies only on the historical occurrence of 
crash events, is not constrained by a gridded data rep-
resentation of space and leverages a network structure 
that speeds up the modelling process. Table 1 summa-
rises all the abovementioned studies, including ours.

3 � Materials and methods
The purpose of a citywide short-term crash risk predic-
tion is to generate probability distributions to indicate 
locations most likely to observe crash occurrences in 
the near future. City locations are defined by a spatial 

representation of space (i.e., geographic units), and the 
prediction of crash risk is defined as a predictive hotspot 
mapping problem, which is addressed using GNN mod-
els and traditional methods. The objective of the GNN 
model is to learn a mapping function F that indicates 
where crashes are more likely to occur in a future time 
step t (i.e., six-hour interval) based on a network repre-
sentation of geographic units. Let N be the number of 
graph nodes (i.e., locations), then the tally of crash occur-
rences on a specific time step t − 1 defines a graph signal 
xt − 1 that serves as the input data for the GNN model. 
The prediction of crash risk based on a set of historical 
graph signals xM is defined as:

where xt − M ∈ ℝN is a graph signal defined by a M time 
window (i.e., the number of time intervals), G is a struc-
tured graph (described below) and yt ∈ ℝN is the esti-
mated graph signal at the time step. Figure 1 shows our 
proposed analytic framework.

3.1 � Study area and data description
The GLDNet model is applied to the study area of the 
city of Melbourne, Australia, considering two types of 
spatial segmentation: MB and grid. The MB serves as 
the basic building block in the Australian Statistical 
Geography Standard (ASGC) for aggregating statistics 
into geographic areas. Therefore, the MB is the base-
line geographic unit for allocating a vast range of daily 
city resources. In total, there are 1340 MBs in the city of 
Melbourne, where the largest MB has approximately 1.7 
km2, and the smallest has 0.0005 km2. The MB average 
size, median size, and standard deviation are equal to 
0.028 km2, 0.009 km2, and 0.10 km2, respectively. Most 

(1)yt = F(xt−1 · · · xt−M | G)

Table 1  Review summary of GNN models used for citywide short-term crash risk prediction

Authors GNN framework Multiple scales Spatial 
representation

Prediction horizon Multiple 
data 
sources

Sparsity of crash 
occurrences

Zhou et al. (2020a) Time-varying spectral-
based GCN

No Grid units 10 min & 30 min Yes Statistical crash indicator

Zhou et al. (2020b) Time-varying spectral-
based GCN + LSTM

Yes Grid units 10 min Yes Statistical crash indicator

Wang et al. (2021a) CNN with GRU; 
spectral-based GCN 
with GRU​

Yes Grid units 1 hour Yes Weighted loss function

Wang et al. (2021b) CNN with GRU; 
spectral-based GCN 
with LSTM

Yes Grid units 2 hours Yes Weighted loss function

Huang et al. (2022) Spectral-based GCN 
with a gated TCN

No Grid units 3 hours Yes Statistical crash indicator

Ours Localised spatial-based 
GCN with a gated TCN

No Grid units and Mesh 
Blocks

6 hours No Weighted loss function
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Mesh Blocks contain between 30 to 60 dwellings and are 
broadly defined by population size and land use type, 
including residential, commercial, industrial and oth-
ers. The larger MB units are broadly assigned to parks, 
ports, and industrial areas, which reduces the street net-
work density and, thus, the number of locations where 
crashes may occur. In contrast, the smaller MB units are 
mostly assigned to residential and commercial areas. The 
grid units are developed to match the same number of 
MB geographic units; therefore, 1340 grid cells are cre-
ated with an average size and standard deviation equal 
to 0.028 km2 and 0.06 km2, respectively. Figures  2 (a) 
and (c) present the spatial units for the study area, while 
Figures (b) and (d) present their associated network data 
representations.

The historical crash data is obtained from the Victo-
ria Department of Transport and Planning and stems 
from police reports containing several crash attributes, 
including injury severity, crash type, the hour of the day, 
latitude and longitude location, mode of transport, and 

others. The major street network is also obtained from 
the Victoria Department of Transport and Planning 
and contains the main roads for the city of Melbourne 
according to road users’ hierarchy, including pedestrians, 
bicyclists, motorised vehicles and others.

After removing inconsistencies (missing crash location 
data), the historical crash dataset has a total of 714 crash 
occurrences (all types of crashes) observed from January 
1st, 2019, to December 31st, 2019. The hourly crash occur-
rences are sparse, with a mean and standard deviation in 
the entire city equal to 0.08 and 0.29 crashes, respectively 
(minimum of 0 and maximum of 2 crashes in an hour). 
In this paper, crash occurrences are aggregated in six-
hour intervals per geographic unit, and the predictions 
are performed one interval ahead. The six-hour intervals 
cover four periods of the day commonly associated with 
different human mobility patterns, including late night 
(i.e., 0h to 6h), morning (i.e., 6h to 12h), afternoon (i.e., 
12h to 18h) and evening (i.e., 18h to 0h). The aggrega-
tion in six-hour intervals not only reduces the sparsity 

Fig. 1  Analytic framework
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of crash occurrences, but also is in alignment with sev-
eral city services, including police patrolling, traffic man-
agement, and rescue system, as resource allocations are 
usually decided within hours in advance (i.e., based on 
periods of the day). The proportion of crash occurrences 
for the four intervals is 5.7%, 33.8%, 34.3% and 26.2%, 
respectively.

Because the occurrence of crashes per unit of area 
is sparse, we use a simple exponential smoothing (SES) 
technique to augment the data in the temporal domain 
for model training and validation (Zhang & Cheng, 
2020). The SES exponentially decreases the weight of past 
observations based on the equation st = asxt + (1 − as)st − 1, 
t > 0, where as is the smoothing factor and is defined 
between 0 and 1. Smaller as leads to smoother augmented 
data. In this paper, we set as equal to 0.5.

3.2 � Model
The model adapts the framework proposed by Zhang and 
Cheng (2020) to predict sparse events. In the following 
sub-sections, we describe the network representation of 

geographic units, the model architecture, and its com-
ponents, including the spatial and temporal structures. 
Lastly, we discuss the parameter learning process.

3.2.1 � Network Data Representation
Compared to standard deep learning methods, GNN 
models operate on a structured graph G = (V, E, W), 
where V, E, and W are the graph nodes, edges, and 
weight matrix, respectively. An undirect graph G is 
utilised to represent the data and predict the probabil-
ity distributions of crash occurrences in a future time 
step. The undirect graph represents the geographic 
units (e.g., mesh blocks or statistical areas) as a set of 
graph nodes, while the edge represents whether two 
geographic units i and j are neighbours. Two geo-
graphic units are considered neighbours if they share 
borders by one or more points. The weight matrix 
wij ∈ W represents the relationship between two neigh-
bour geographic units eij and is defined based on the 
idea that the similarity between objects decays with the 
increase of the spatial distance. Although several decay 

Fig. 2  The City of Melbourne and network data representation based on the two geographic units
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functions may be used to represent the spatial similar-
ity between objects, the Gaussian kernel function is 
commonly used in GNN frameworks. For this reason, 
an edge weight wij is defined to be inversely propor-
tional to the Euclidian distance between the centroids 
of two neighbour areas according to a Gaussian kernel 
function (Anselin & Rey, 2014):

where hi is the kernel bandwidth and distij is the distance 
between the centroids of two neighbour geographic units 
i and j.

3.2.2 � Architecture
The model GLDNet is defined by integrating a localised 
graph diffusion network (LDNet) layer, a gated temporal 
convolution network (GNet) layer and a fully connected 
layer (Zhang & Cheng, 2020). The gated network pro-
cesses the input sequence through L GNet hidden layers 
to learn how the influence of historical crash occurrences 
spread through time. Then, the processed information 
is passed to the K LDNet hidden layers to learn how 
crashes propagated across the space. Next, the informa-
tion processed by both GNet and LDNet is fed into a fully 
connected layer, which transforms it into a predictive 
mapping. The mapping indicates the probability of crash 
occurrence in each region of the city in a future time step. 
The crash model is formulated as:

where GLDNet is the gated localised diffusion network, 
gK ∈ R

N×mk is the k-th hidden layer of the diffusion net-
work, Wfc ∈ R

mkand bfc ∈ ℝN are the fully connected layer 
learnable parameters. Figure  3 presents the proposed 
crash model framework.

(2)wij =
exp −

disti,j
hi

2

√
2π

, if

0 otherwise,

eij is an edge

(3)GLDNet (X) = gKWfc + bfc

3.2.3 � The GNet Component
This component is a gated Temporal Convolution Net-
work (TCN) for modelling the temporal propagation of 
crash occurrences. The network utilises a ReLU-style 
gating mechanism, has only one gate (defined by a sig-
moid activation function), and consists of L hidden lay-
ers, denoted h0, ⋯, hL. The ReLU allows the gradient to 
easily propagate in comparison to other activation func-
tions (i.e., tanh) (Dauphin et al., 2017; Jahan et al., 2022), 
while the single gate significantly speeds up the network 
computation time at the training step, particularly in the 
case of deeper networks (i.e., large number of hidden lay-
ers). Let Xl ∈ R

N×nl−1 be the input of the layer hL and 
Xl+1 ∈ R

N×nl be the output, where N and nl are respec-
tively the number of graph nodes and the dimension of 
the nodes features of the l-th hidden layer. Then, the l-th 
is formulated as:

where Wl ,V l ∈ R
nl−1×nl , bl , cl ∈ R

nl and dl ∈ ℝN are 
learnable parameters, ReLU = max(0, x), and σ(x) = 1/
(1 + exp(−x)) is the sigmoid function. The output Xl +1 of 
a layer hl is the non-linear projection ReLU(XlWl + bl) 
modulated by the gate σ(XlVl + cl) with an added base 
probability of future crash occurrences for each node dl. 
The base probability mimics the background intensity of 
event occurrences in a self-exiting point process (Zhang 
& Cheng, 2020). The gated network is defined by stacking 
multiples layers as:

3.2.4 � The LDNet Component
The propagation of crashes across space can be consid-
ered to follow a diffusion process that reaches a station-
ary distribution after a finite sequence of random walks 
in a graph G (Teng, 2016). The stationary distribution 
of the graph nodes is obtained by a k-th random walks 

(4)
X
l+1

= hl

(

X
l

)

= ReLU

(

X
l
W

l
+ b

l

)

⊙

σ

(

X
l
V

l
+ c

l

)

+ d
l

(5)GNet(X) = hL(hL−1(· · · h2(h1(X)) · · · ))

Fig. 3  GLDNet framework adapted from Zhang and Cheng (2020)
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defined by a transition matrix P = D−1W  , where, pij in 
P ∈ ℝN × Ncorrespond to the probability of crash occur-
rences at node i influence the occurrence of crashes at 
node j, W ∈ ℝN × N is the weight matrix of the graph G, 
and D ∈ ℝN × N is the diagonal of W. More precisely, the k-
th step random walks measure the extent a graph node i 
is affected by its k-order adjacent neighbours. The one-
step walk captures the spatial dependency between a 
node i-th and its immediate neighbours, while the k-step 
walk captures the spatial dependency between the node i 
and its k-th adjacent neighbours.

A localised graph diffusion network with K hidden 
diffusion convolutional layers, denoted g0, ⋯, gK, is uti-
lised for modelling the spatial dependency of crashes. 
Let Xk ∈ R

N×mk−1 be the input of the layer gK and 
Xk+1 ∈ R

N×mk the output, where N and mk are respec-
tively the number of graph nodes and the dimension of 
the nodes features of the k-th hidden layer. Then, the k-th 
hidden layer is formulated as:

where ReLU = max(0, x) is the activation func-
tion, Xk ∗ θk captures the dependency of each node 
itself and PXk represents the one-step random walk. 
θk and ηk ∈ R

N×mk−1×mk are learnable parameters in k-
th hidden layer. The localised graph diffusion network is 
constructed by stacking multiple hidden layers and uses 
a localised parameter-sharing scheme to capture the het-
erogeneity of crashes over space. Each added layer allows 
the network to capture the spatial dependency between a 
graph node i and its k-order adjacent neighbours. For an 
input X, the diffusion network is defined as:

3.2.5 � Parameter Learning
A weighted loss function is used to address the sparsity 
of crash occurrences and train the GLDNet model, as 
realised in Wang et  al. (2021a). Compared to tradition-
ally mean-square error (MSE) and mean absolute error 
(MAE), the weighted loss function addresses the unbal-
anced regression problem by assigning a higher mis-
prediction cost to graph nodes with crash occurrences, 
which enables the crash model to learn the locations with 
a higher probability of crash occurrences. The model can 
be trained via backpropagation and the weighted loss 
function is defined as:

(6)Xk+1 = gk

(

Xk
)

= ReLU
(

Xk ∗ θk + PXk ∗ ηk
)

(7)LDNet(X) = gK
(

gK−1

(

· · · g2
(

g(X)
)

· · ·
))

(8)loss = 1

N

N
∑

i=0

ωi

(

ŷi − yi
)2

where N is the number of nodes, the ŷi , yi, are, respec-
tively, the predicted and observed values at the i-th 
node, and ωi is the weight assigned to each square error 
(

ŷi − yi
)2 . Let ρ ∈ [0, 1) be a predefined coefficient, 

and then the weight ωi is defined as yi, if yi > 0 (crashes 
occurred at the i-th node) and ρ otherwise. Therefore, 
smaller ρ leads to lower misprediction costs at graph 
nodes without crash occurrence in comparison to nodes 
with crash occurrence.

3.3 � Performance Measurement
To meet our objectives, we first compare the GLDNet 
performance against baseline methods, then we investi-
gate the effect of the spatial unit choice on the prediction 
success.

3.3.1 � GLDNet comparison against baseline methods
The GLDNet model is compared with four baseline 
methods commonly used for predicting spatiotempo-
ral events, including short-term crash risk (Bao et  al., 
2019, Wang, S. et  al., 2021a, b). The baseline methods 
include the Spatio-Temporal Graph Convolutional Net-
works (STGCN), Historical Average (HA), AutoRegres-
sive Integrated Moving Average (ARIMA) and Gradient 
Boosting Regression Tree (GBRT). The STGCN is a 
benchmark GNN model widely used for predicting spa-
tiotemporal events (Yu et al., 2017). HA is an approach 
widely used by transportation practitioners and gov-
ernmental agencies in the absence of more robust mod-
els. ARIMA is a classical time series regression model 
that integrates the autoregressive, difference and mov-
ing average components of a time series (Box & Pierce, 
1970). GBRT is a tree-based ensemble method that 
combines the prediction of multiple sequential tree-
based models to obtain better prediction performance 
(Zhang & Haghani, 2015). The STGCN parameters 
are defined following the authors’ recommendations. 
We consider a time window of sixteen observations 
(i.e., four days), as the model computational costs sig-
nificantly increase for large time windows. The ARIMA 
and GBRT models’ parameters are defined using a grid 
search strategy and fine-tuned with the same input 
data to conduct a fair comparison. The HA, ARIMA 
and GBRT models are applied individually to each geo-
graphic unit.

Although a comparison between the GLDNet and 
other GNN crash models (such as the ones described 
in Section  2) would be of great value, the replication, 
implementation and calibration of these models is not 
a trivial task. This is because the codes and required 
data sets are often not available, and the replication of 
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the models would be extremely time-consuming. Fur-
thermore, such models were developed for specific net-
work structures and removing or adapting fundamental 
components of their architectures would likely jeopard-
ise their usability and predictive capability. Finally, the 
models described in our review rely on multiple data 
sources and thus would not lead to a fair comparison 
with the model used in this paper, which relies only on 
historic crash occurrence data.

The mean hit rate is used to compare models directly, 
and the Wilcoxson Signed-Rank (WSR) test is per-
formed to evaluate whether the prediction results 
of distinct models are statistically different at a 90% 
confidence level. While standard metrics, such as 
mean squared error (MSE) and mean absolute error 
(MAE), are commonly applied to measure the predic-
tion of dense spatiotemporal events (e.g., traffic speed 
and flow), these metrics are poorly suited for predic-
tive hotspot mapping of sparse events (Adepeju et  al., 
2016). The standard metrics are strongly influenced 
by the large number of zero crash counts (i.e., they are 
not designed for zero-inflated problems) as they are 
designed to evaluate the mean performance over all 
space and time, which may lead to an underrepresenta-
tion of crash risk in the more relevant hotspot locations.

The hit rate is defined as the number of events accu-
rately captured by the hotspot locations divided by the 
total number of events and thus is not influenced by a 
large number of zeros. Therefore, the hit rate is a straight-
forward interpretable metric used to evaluate the perfor-
mance of predictive hotspot mapping of sparse events 
(Bowers, 2004, Zhang & Cheng, 2020). The hit rate is cal-
culated by sorting all regions in descending order by their 
predicted values and by tailing the proportion of events 
that fall on the sorted regions. In this paper, a maximum 
of 30% coverage level (i.e., 30% of the geographic units) is 
considered for computing the hit rate. This is because, at 
higher coverage levels, any model tends to have high per-
formance as most locations of the study area are likely to 
observe a crash occurrence, and therefore, the prediction 
becomes non-informative for decision-making (i.e., at a 
100% coverage level, any model has 100% of accuracy). 
The mean and standard deviation of the hit rate aggre-
gated over all consecutive testing periods are considered 
to evaluate the performance of the prediction. The hit 
rate is formulated as:

where HR is the hit rate, nsi and Ni are, respectively, the 
number of crashes that fall within a coverage area s and 
the total number of crash occurrences within the entire 
study area during a time window i.

(9)HR = nsi

Ni

Although the mean hit rate can be used to directly 
compare the results of different prediction methods, 
the statistical significance of the results is unknown 
(Adepeju et  al., 2016). Therefore, to assess the sig-
nificance of the results, the Wilcox Signed-Rank 
(WSR) test is used to evaluate whether the predic-
tions obtained with different methods are statistically 
different. For that, it is assumed that the underlying 
distributions of crash occurrences do not change over 
time and the hit rates of two methods at a given cover-
age level are treated as paired samples. Although the 
temporal instability of crash-related factors should 
be considered in crash data analysis (Mannering, 
2018), short periods (such as the testing sample) are 
less likely to be affected. Therefore, it is reasonable 
to assume that the underlying distribution of crash 
occurrences does not change. The WSR is a distribu-
tion-free test that assesses whether the mean popula-
tion rank of two related samples differs. The WSR test 
statistic is given by:

where N is the sample size, sgn is the sign function used 
to extract the sign of a real number, y1, i and y2, i are the 
hit rate on test time interval i from models 1 and 2, 
respectively. Ri is the rank of the difference y1, i − y2, i. The 
statistical significance of WWSR is obtained using a single-
tailed lookup table.

3.3.2 � The impacts of spatial representation on GLDNet 
performance

The impacts of spatial unit choice on the GLDNet per-
formance are discussed based on considering the effects 
of variability in crash occurrence across space and time 
on the model’s predictive capability. Across space, the 
GLDNet prediction performance based on each spa-
tial unit is evaluated for central and peripherical areas 
and explained in terms of spatial information (i.e., land 
use, population) and network properties (i.e., network 
density and degree of centrality). On the other hand, 
to investigate the effects of variability in crash occur-
rences across time, the GLDNet performance is evalu-
ated according to the number of crash occurrences per 
time interval.

3.4 � Implementation
The GLDNet model is implemented using a GPU-ver-
sion PyTorch Geometric Temporal 0.51.0 (Rozember-
czki et  al., 2021). A grid search strategy is executed for 
tuning four model hyper-parameters, the parameter ρ 

(10)WWSR =
N
∑

i=1

(

sgn
(

y1,i − y2,i

)

· Ri

)
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in the loss function and the time window M. For train-
ing the model, we set the batch size equal to 50, learn-
ing rate equal to 0.001 and ran 30 epochs with the Adam 
optimiser (Kingma & Ba, 2015). Table  2 shows the grid 
search space and, in bold, the optimal parameters for the 
MB model and in italics for the grid counterpart (in most 
cases, they are the same). The optimal parameters are 
defined based on the historical data and are discussed in 
detail in Section 5.3.

The weight matrix representing the similarity between 
two neighbours’ geographic units is constructed by set-
ting the Gaussian kernel function with a fixed bandwidth 
h equal to the maximum distance among all the geo-
graphic unit’s nearest neighbours, 0.80 km, and 0.17 km 
for MB and grid, respectively. The training, validation, 
and testing samples are set to 60% (876 intervals), 15% 
(219 intervals) and 25% (365 intervals), respectively.

4 � Results and discussion
The results are presented as follows. First, the GLD-
Net model is compared against baseline methods. Sec-
ond, the impacts of spatial unit choice on the GLDNet 

performance are discussed in detail, including the effects 
of variability in crash occurrence across space and time 
on the model’s predictive capability. Lastly, a sensitivity 
analysis of the GLDNet parameters is presented.

4.1 � Comparison of the GLDNet model against baseline 
methods

Table 3 presents the mean hit rate for the baseline meth-
ods and the GLDNet model for the two geographic units. 
In regard to traditional methods, the results show that 
the GLDNet performs better than the HA, ARIMA and 
GBRT for most cases, except at a 10% coverage level for 
the grid units. Interestingly, even for lower coverage lev-
els (5% and 10%), where a small number of spatial units 
consistently have crashes, the MB-based GLDNet model 
outperforms all traditional methods. At higher coverage 
levels, the differences between simpler and more robust 
methods increase as more locations with a relatively 
lower frequency of crash occurrences or greater crash 
risk variability are included in the analysis. In this sce-
nario, the models must be able to capture variability to 
obtain an improved performance, which is the case of the 
GLDNet. The best relative performance of the GLDNet is 
observed for coverage levels of 20% and 25%.

Concerning more robust methods, the results show 
that the GLDNet performs better than the STGCN in all 
coverage levels for the MB units, with the best relative 
performance observed at a 15% coverage level. The dif-
ference between the GLDNet and STGCN performance 
for grid units is lower, with the GLDNet outperforming 
its STGC counterpart at coverage levels higher than 15%. 
In this case, the best relative performance is observed at a 
30% coverage level.

Table 2  Details of the grid search for GLDNet

Model Searching range of hyperparameters

GLDNet number of L Gnet layers: [1,2,3,4,5]

number of K Dnet layers: [1,2,3,4,5]

dimension of the node features nl: [2, 4, 8, 16, 32]

dimension of the node features mk: [2, 4, 8, 16, 32]

ρ: [0.001, 0.05, 0.01, 0.02, 0.025]

time window M: [30, 60, 90, 120, 150]

Table 3  Mean hit rate for the GLDNet and baseline methods for the two geographic units

a Positive values indicate that MB has a higher mean hit rate, while negative values indicate the opposite

Coverage
level

Spatial unit GLDNet STGCN HA ARIMA GBRT GLDNet vs. STGCN

Differencea p-value

5% MB 36.6% 32.0% 31.2% 28.6% 28.3% 4.5% 0.0421

10% 52.8% 43.4% 44.7% 39.5% 39.8% 9.4% 0.0004

15% 59.6% 49.1% 47.9% 49.3% 49.3% 10.5% 0.0003

20% 66.8% 62.9% 49.7% 51.7% 51.7% 4.0% 0.0142

25% 69.8% 64.9% 53.4% 54.3% 54.3% 4.9% 0.0196

30% 71.3% 67.8% 57.4% 56.8% 56.8% 3.5% 0.0826

5% Grid 26.1% 27.4% 20.2% 24.0% 25.1% -1.2% 0.6815

10% 40.5% 38.4% 38.5% 39.5% 39.1% 2.1% 0.2314

15% 53.3% 51.1% 43.2% 52.0% 52.0% 2.1% 0.2228

20% 62.0% 57.1% 43.2% 53.5% 53.5% 4.9% 0.0569

25% 66.6% 61.0% 45.7% 55.4% 55.4% 5.6% 0.0264

30% 67.4% 61.6% 52.2% 57.4% 57.4% 5.8% 0.023
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Overall, the GLDNet better performance is explained 
by its capability to simultaneously capture the spatial 
and temporal dependency of crash occurrences, which 
shows that leveraging a graph-neural network framework 
designed to account for the sparsity of crash events pro-
vides significant accuracy gains compared to traditional 
baseline methods for predicting citywide short-term 
crash risk based only on historical crash occurrences, 
including standard graph neural network models.

4.2 � Impacts of spatial unit choice on the GLDNet 
performance

Table  4 presents the comparison between the mean hit 
rate for the GLDNet model using the two geographic. 
The results show that the MB-based model performs 
better than its grid counterpart, with a higher mean hit 
rate for all coverage levels. The differences are statisti-
cally significant at a 90% confidence level for up to a 20% 
coverage level. It is expected that the differences between 
both models decrease when the coverage levels increase 
as prediction improvements become more marginal 
because more areas are considered. This explains the 
statistically insignificant difference in the model’s perfor-
mance at the 25% and 30% coverage levels. These results 

point to the potential benefits of adopting administrative 
geographic units compared to gridded space representa-
tions for predicting citywide short-term crash risk, as we 
further discuss in Sections 4.2.1 and 4.2.2.

4.2.1 � Effects of variability in crash frequency across space
As the spatial sparsity of crashes may influence the pre-
diction performance of GLDNet, we examine the model 
performance according to the city region. To illustrate 
the effects of spatial sparsity on the model performance, 
we use the 12h-18h interval of a random day in the test 
sample. Figure 4 presents the predictive mapping of crash 
risk at a 10% coverage level (the green and blue dots rep-
resent crash occurrences captured and not captured, 
respectively), as this is the level with the greatest differ-
ence in predictive accuracy, as shown in Table  4. Com-
paring both subfigures, the MB-based spatial distribution 
of the crash risk is spread all over the city of Melbourne, 
while the grid-based model leads to a spatial distribution 
of crash risk that is concentrated around the city busi-
ness district (CBD). The CBD has an area of 2.4 km2 (only 
6.3% of the city of Melbourne’s total area) and concen-
trates a large portion of the crash occurrences over the 
study period (30%). In this sense, this example illustrates 
how the grid-based network may reduce the GLDNet 
capability to capture crash risk in areas with lower crash 
density (outside the CBD). On the other hand, the MB-
based model identifies the crash risk in both central and 
peripherical areas.

Table 5 compares the GLDNet prediction performance 
based on each spatial unit for CBD and outside CBD 
areas. Concerning the CBD area, we observe that the 
grid-based model has a higher mean hit rate and statisti-
cally different results from its MB counterpart for all cov-
erage levels. On the other hand, for outside CBD areas, 

Table 4  Comparison of the mean hit rate for the GLDNet model 
based on the two geographic units

Coverage level MB Grid Difference p-value

5% 36.6% 26.1% 10.5% 0.0118

10% 52.8% 40.5% 12.3% 0.0046

15% 59.6% 53.3% 6.3% 0.0710

20% 66.8% 62.0% 4.9% 0.0803

25% 69.8% 66.6% 3.2% 0.1612

30% 71.3% 67.4% 3.9% 0.1139

Fig. 4  GLDNet predictive hotspot mapping of crash risk for a random day at a 10% coverage level based on the two geographic units
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we observe the exact opposite. However, the mean hit 
rate differences between MB- and grid-based models for 
the CBD and non-CBD areas vary greatly. For instance, 
for CBD areas, the differences between the MB- and 
grid-based models are up to 6.3%, while for the non-CBD 
areas, the differences are up to 18.3%. As a result, for the 
entire study area, the MB-based model outperforms its 
grid counterpart with a higher mean hit rate for all cover-
age levels, as shown in Table 4.

The MB-based GLDNet capability to capture crash risk 
outside central areas is explained by two main factors: (1) 
the underlying information associated with the definition 
of the boundaries of MB units and (2) network proper-
ties. First, spatial information, such as land use, number of 
dwellings, and road networks, are utilised for developing 
MB units. Such variables are also associated (correlated) 
with the likelihood of crash occurrences, and thus, affect 
the prediction of short-term crash risk. Second, regarding 
network properties (Newman, 2018), the MB has a higher 
average degree of centrality, closeness centrality, K-core 
number and clustering coefficient compared to the grid 
representation. In addition, the distribution of these MB 
and grid network indicators are significantly different at 
a 99% confidence level based on the non-parametric sta-
tistical Kolmogorov-Smirnov (KS) test. Further, the MB 
representation also has a higher network density. These 
properties are global network metrics commonly used for 
classifying how information propagates in social networks 
(i.e., Twitter). Higher values are associated with networks 
where the information is more likely to be widely spread 
through its nodes, while lower values tend to reflect a 
network structure that hinders the spread of information 
(Conover et al., 2012; Pierri et al., 2020). In this sense, the 
MB-based network facilitates the spread of information 
(crash occurrences) among its nodes in comparison to the 
grid-based network, thus enhancing the GDNet capability 
to capture crash risk outside central areas.

While underlying factors associated with the definition 
of MB boundaries improve the model performance in 

low density areas, they are also probably associated with 
the lower performance of this spatial unit in high den-
sity areas. The CBD is homogeneous in terms of land use 
and road networks but is subdivided into multiple units 
because each MB unit is designed to host a similar num-
ber of dwellings. In other words, there is high granularity 
in space representation but low variance in crash occur-
rence, which increases prediction error. For instance, 
the total number of grid units that cover at least a por-
tion of the CBD is 115, while for the MB units, this num-
ber more than doubles (283). In this sense, strategies to 
merge some of the geographic units in high density areas 
or alternative geographic units that are not highly influ-
enced by the number of dwellings are likely to improve 
the performance of GNN models in crash hotspot map-
ping applications.

4.2.2 � Effects of variability in crash frequency across days
As the temporal sparsity of crashes may also influence 
the prediction performance of the GLDNet, we exam-
ine the model performance according to the number of 
crash occurrences by time interval. For that, we split the 
test sample into two groups. The first group (324 inter-
vals) comprises intervals with less than two crash occur-
rences in the entire study area, while the second group 
(41 intervals) is defined by intervals with two or more 
crash occurrences.

Table 6 shows the GLDNet mean hit rate by level of 
crash occurrences by time interval. For intervals with 
fewer than two crash occurrences, the MB-based model 
outperforms its grid counterpart, with higher mean 
hit rates and statistically significant differences for all 
coverage levels. On the contrary, the grid-based model 
presents higher mean hit rates for intervals with two 
or more crash occurrences at higher coverage levels, 
but the results are not statistically different. For lower 
coverage levels (5% and 10%), the MB representation 
presents the best performance, with higher mean hit 
rates and statistically significantly different results at a 

Table 5  GLDNet mean hit rate based on city regions for the two geographic units

a Positive values indicate that MB has a higher mean hit rate, while negative values indicate the opposite

Coverage
level

CBD Outside CBD

MB Grid Difference* p-value MB Grid Differencea p-value

5% 11.6% 14.9% -3.3% 0.0924 24.9% 11.2% 13.7% 0.0006

10% 13.5% 19.5% -6.0% 0.0030 39.3% 21.0% 18.3% 0.0000

15% 15.8% 21.9% -6.1% 0.0051 43.8% 31.3% 12.4% 0.0013

20% 18.4% 24.7% -6.3% 0.0081 48.4% 37.2% 11.2% 0.0008

25% 19.4% 25.5% -6.1% 0.0051 50.4% 41.1% 9.3% 0.0089

30% 19.8% 25.5% -5.7% 0.0091 51.5% 41.9% 9.6% 0.0053
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5% coverage level. These results corroborate the discus-
sion in the previous section that points to the particular 
advantage of using the MB and potentially other non-
gridded space representations to predict sparser events 
(both in space and time).

4.3 � Sensitivity analysis
As described in Table  2, a sensitivity analysis of the 
GLDNet was conducted to investigate the effects of 
parameter settings on the model’s performance and 
define the optimal model configuration. In this section, 
we discuss the effects of parameter settings at a 5% and 
15% coverage level. Additionally, we evaluate the mod-
els’ computational time. Figure 5 presents the changes 
in the mean rate at 5% and 15% coverage levels based 

on the two geographic units and for four parameters of 
interest, including the number of L GNet (i.e., tempo-
ral) and K DNet (i.e., spatial) hidden layers, the param-
eter ρ in the loss function and the time window M. 
Regarding the time window M, Figure  5(a) shows that 
the highest mean hit rate is observed for a time window 
of 120 six-hour intervals for both MB and grid units. 
Concerning the number of L GNet layers, Figure  5(b) 
shows the highest mean hit rate can be achieved with 
two hidden layers for both geographic units and the 
two coverage levels. Referring to the number of K DNet 
hidden layers, two layers also provide the best mean 
hit rate for both geographic units. Concerning the 
parameter ρ in the loss function, the MB-based model 
has the best performance with ρ values equal to 0.02, 

Table 6  Mean hit for the GLDNet model by daily crash count level for two geographic units

a  Positive values indicate that MB has a higher mean hit rate, while negative values indicate the opposite

Coverage
level

0 ≤ crash count < 2 2 ≤ crash count < 6

MB Grid Differencea p-value MB Grid Differencea p-value

5% 38.9% 27.4% 11.6% 0.0315 31.1% 23.3% 7.8% 0.0797

10% 57.9% 42.1% 15.8% 0.0068 41.1% 36.8% 4.2% 0.2557

15% 65.3% 54.7% 10.5% 0.0385 46.5% 49.8% -3.3% 0.5883

20% 71.6% 60.0% 11.6% 0.0205 55.9% 66.5% -10.7% 0.8772

25% 74.7% 66.3% 8.4% 0.0721 58.4% 67.3% -8.9% 0.8774

30% 75.8% 67.4% 8.4% 0.0653 60.8% 67.3% -6.5% 0.8028

Fig. 5  Sensitivity analysis of the GLDNet based on MB and grid units
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while for the grid-based model, the same occurs for ρ 
values equal to 0.005. It is interesting to find that the 
optimal value of ρ is lower for the grid case. This dif-
ference is potentially due to the variation of the spa-
tial pattern that stems from aggregating data with two 
distinct geographic units. Concerning computational 
time, the GLDNet (763.5 minutes for MB-based and 
391.8 minutes for grid-based) is at least 15% faster 
than the STGCN, 20% slower than the ARIMA and 100 
times slower than the GBRT, while the HA is the fastest 
method due to its simplicity.

5 � Implications to model applicability
In this section, we demonstrate that the advantages of 
using statistical/administrative geographic units, such as 
MB, go beyond the model’s improved predictive perfor-
mance. Hotspot maps based on these units can be easily 
integrated with other sources of spatial data, such as land 
use and road network, to help inform decision-makers on 
the allocation of city resources, including the develop-
ment of police patrolling and rescuing strategies.

To illustrate the relevance of matching predicted hot-
spots with contextual information for decision-making, 
we show an example of how our model results could be 
used together with land use (Fig. 6 (a) and road network 
(6 (b)) data to create patrolling and rescue strategies. To 
do that, we analyse the locations with the highest crash 
risk probability for the 12h-18h interval of a random day 
in the test sample.

Figure  6(c) presents the predictive mapping of crash 
risk at a 10% coverage level. The predicted crash risk 
is subdivided into six localised hotspots according to 
their location and are described based on their land 
use, population and street network. Hotspot num-
ber one is located in the city centre and comprises the 

CBD as well as some of its first-degree neighbours. This 
region is largely defined by commercial areas that form 
the main entertainment and business centre of Victoria 
that attracts thousands of trips throughout the day con-
ducted by a range of modes of transport. The large num-
ber of hotels, services, cafes, pubs, and public and private 
offices, together with a dense network of motorised and 
non-motorised modes of transport, creates a unique 
environment of human mobility and crash patterns that 
should be accounted for when developing police patrol-
ling and rescue strategies. For instance, the large number 
of active road users, trip purposes, entertainment venues 
and visitors should be considered when planning and 
monitoring pedestrian crossing behaviour and manag-
ing crowd behaviour. In contrast, hotspot number two 
is mostly defined by large parks located between two 
southeastern suburbs. The parks contain main corridors 
connecting the south and southeast regions to the city 
centre. Although this hotspot encompasses large areas, 
its low network density (Fig.  6b) indicates that most 
crash occurrences are concentred around specific links. 
Moreover, the presence of main corridors and a low-
density network indicates that crash occurrences in this 
region are likely to involve motorised vehicles. In fact, 
over the study period, 53.7% of the crash occurrences 
involved only motorised vehicles in these areas, in con-
trast to 39.5% for the hotspot one. Hotspot number three 
is mostly defined by parks with main corridors connect-
ing the northern regions to the city centre in a similar 
fashion to hotspot number two. In this sense, strategies 
would likely be similar for both of these regions, despite 
their physical distance.

Hotspots four and five are mostly commercial or 
industrial areas defined by large MB with main corri-
dors connecting the west and north-western regions to 

Fig. 6  GLDNet predictive hotspot mapping of crash risk for a random day at a 10% coverage level for MB and contextual information, 
including land use and major street network
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the city centre, including the principal routes from the 
city centre to Victoria’s main airports. Although similar, 
hotspot number four is mainly defined by a few arterial 
roads, while hotspot five consists of a main freeway and 
several arterial roads. Furthermore, hotspot four has a 
higher population density and a higher number of leisure 
activity centres, including cafes and pubs. As a result, 
different patrolling strategies would be necessary for 
mitigating risky driver behaviours. Lastly, hotspot num-
ber six includes access to local beaches and the port of 
Melbourne and is defined by large and small MB with 
mixed land used. In terms of network, a major freeway 
is also present in this region, however, with a smaller 
length compared to hotspot number four. Therefore, this 
region would likely benefit from a mixed patrolling strat-
egy targeting the main roads and the interaction between 
motorised and non-motorised users in local and arterial 
streets, particularly on the access to the local beaches and 
ship terminals.

Overall, the described hotspots vary in different 
dimensions. Including this information with the prob-
ability of crash risk throughout an integrated framework 
can greatly benefit the decision-making of government 
agencies on the allocation of city resources. As discussed 
earlier, this is not a straightforward process when consid-
ering a gridded representation of space, as it requires fur-
ther translation of data.

6 � Conclusions
This study implemented a GNN model, the GLDNet, 
to predict citywide short-term crash risk. In contrast 
to previous GNN applications for crash risk prediction, 
the implemented model considers the historical occur-
rence of crash events as the only data input and is not 
constrained by a gridded representation of space, which 
greatly increases its applicability by practitioners in traf-
fic management and police enforcement agencies. Over-
all, the results of this study have important implications 
and recommendations to researchers and practitioners 
seeking to extend the application of GNN frameworks to 
predict crash risk in short time horizons and at a macro-
scopic level:

1.	 Even if the only data source available to practitioners 
is historic crash occurrences, adopting a GNN mod-
elling framework that considers the sparsity of crash 
events, such as the one used in this study, can bring 
forecasting accuracy benefits compared to traditional 
methods. Furthermore, the use of administrative spa-
tial units is likely to improve such benefits, but cau-
tion should be given when using units defined based 
on population and dwelling counts in dense areas. In 

this case, the modeller may want to create a criterion 
for aggregation that caps the minimum size of a unit.

2.	 Researchers should consider that, in parallel to the 
development of more complex and robust GNN 
crash models, moving from arbitrary grids towards 
a more meaningful representation of space will likely 
leverage the predictive performance of macroscopic 
short-term crash risk models (as well as GNN appli-
cations to similar problems in other fields of study).

3.	 If new geographic units are developed with the spe-
cific purpose of crash risk prediction (or prediction 
of analogous sparse events) using GNN models, not 
only spatial information of the study area (i.e., land 
use) should be considered, but also the properties of 
the network itself (i.e., network density and degree of 
centrality).

4.	 In addition to prediction performance, the use of a 
non-gridded representation of space increases the 
GDNet applicability by decision-makers for facilitat-
ing its integration with other sources of spatial data 
needed for developing targeted strategies to mitigate 
crash occurrences and their resulting injuries.

This study also presents some limitations that can be 
addressed in future research. Our analysis does not dif-
ferentiate weekdays from weekends, which may influence 
the prediction since both day types have distinct traffic 
conditions. In addition, other geographic units and tem-
poral resolutions should be investigated to understand 
which spatial and temporal segmentation can provide 
more meaningful predictions. In terms of methodologi-
cal advances, adopting a pruning process is a straightfor-
ward path to reduce the GLDNet computational costs 
and increase its applicability to larger networks. Finally, 
including other data sources in the GLDNet frame-
work by adding dedicated structures (GCN and a fusion 
network layer) or by modelling the spatial interaction 
between neighbours is a direct approach to improve the 
GLDNet performance, although at the cost of reduc-
ing its applicability due to data availability and increased 
computational costs.
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