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Abstract 

Timely and accurate population mapping plays an essential role in a wide range of critical applications. Benefiting 
from the emergence of multi-source geospatial datasets and the development of spatial statistics and machine 
learning, multi-scale population mapping with high temporal resolutions has been made possible. However, the 
over-complex models and the strict data requirement resulting from the constant quest for increased accuracy pose 
challenges to the repeatability of many population spatialization frameworks. Therefore, in this study, using lim-
ited publicly available datasets and an automatic ensemble learning model (AutoGluon), we presented an efficient 
framework to simplify the model training and prediction process. The proposed framework was applied to estimate 
county-level population density in China and received a good result with an  r2 of 0.974 and an RMSD of 427.61, which 
is better than the performances of current mainstream population mapping frameworks in terms of estimation 
accuracy. Furthermore, the derived monthly population maps and the revealed spatial pattern of population dynam-
ics in China are consistent with earlier studies, suggesting the robustness of the proposed framework in cross-time 
mapping. To our best knowledge, this study is the first work to apply AutoGluon in population mapping, and the 
framework’s efficient and automated modeling capabilities will contribute to larger-scale and finer spatial-temporal 
population spatialization studies.
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1 Introduction
Timely and accurate population distribution data play 
an essential role in a wide range of critical applica-
tions, including but not limited to epidemiological 
studies (Li et  al., 2020), natural disaster management 
(Chen, Wu, Jin et  al., 2022), climate change analysis 
(O’Neill et  al., 2020), ecological vulnerability assess-
ment (He et al., 2018), emergency response (Tian et al., 
2020), environmental monitoring (He et al., 2021), and 
sustainable urban planning (Long et al., 2022). In most 
scenarios, the population data used in these applica-
tions are derived from officially published census data. 
Although census data have a scientific collection pro-
cess and high accuracy, the insufficient information 

in the temporal dimension caused by low update fre-
quency (5–10 years) makes census data hard to meet 
the needs of many real-world applications, leading to 
the increase of analysis bias, imbalance of resource allo-
cation, and inefficiency of government management 
(Song, 2019; Xu et al., 2021).

To address this limitation, scientists seek observation 
data reflecting human activity to provide richer spa-
tial and temporal information for population mapping. 
Therefore, remote sensing data are extensively used due 
to their ability to record continuous observations across 
time and space (Chen et  al., 2020). The most popular 
remote sensing data include nighttime light (NTL) and 
optical satellite data (Wang et al., 2018). NTL data cap-
ture the footprint of light on the earth’s surface generated 
by human activities, and its brightness level directly indi-
cates the intensity of human activities, providing support 
for inferring population distribution (Song et  al., 2020). 
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NTL from the US Air Force Defense Meteorological Sat-
ellite Program Operational Linescan System (DMSP/
OLS), released in the early 1990s, is widely used for 
population mapping (Yu et al., 2018). However, its limita-
tions of low spatial and radiometric resolutions, bloom-
ing effect, and over-saturation problem would result in 
underestimation in high-density areas (e.g., urban cent-
ers), making it only applicable to large-scale estimations 
(e.g., city or larger scales) (Elvidge et al., 1999). Another 
frequently used NTL data are from the Visible Infrared 
Imaging Radiometer Suite (VIIRS) sensor carried by the 
weather satellite Suomi NPP. Given the advanced lumi-
nous technology equipped in VIIRS, NPP/VIIRS NTL 
images come with a higher spatial resolution and are 
demonstrated to have better performance in population 
spatialization compared with its predecessor, DMSP/OLS 
(Wang et al., 2018).

Optical remote sensing images record reflection infor-
mation of the earth’s surface in multiple wavebands. 
Based on the principle that different types of land cover 
have different population carrying capacity, optical 
remote sensing images with different resolutions are also 
widely employed for population spatialization (Wang 
et al., 2018). Some works also indicate that optical remote 
sensing images and derived land cover/use products 
could perform better than NTL data in population map-
ping (Zeng et  al., 2011), and a higher spatial resolution 
of optical data would also contribute to a higher accu-
racy (Linard et al., 2011). The development of geographic 
information and remote sensing technology has increased 
the accessibility of numerous datasets. Therefore, beyond 
using a single type of dataset, most of the well-known 
population count data products are obtained based on the 
fusion of multiple sources of data, for example, WorldPop 
from the University of Southampton, UK (Stevens et  al., 
2015; Tatem, 2017), LandScan from Oak Ridge National 
Laboratory, US (Bright et  al., 2016), Gridded Popula-
tion of the World (GPW) from Socioeconomic Data and 
Application Center, NASA, US (Doxsey-Whitfield et  al., 
2015), and Global Human Settlement Layer (GHSL) from 
Joint Research Centre, European (Freire et  al., 2016). 
Despite the satisfactory performance of these popula-
tion data in terms of spatial accuracy, information like 
short-term population distribution dynamics caused by 
intra- and inter-city human mobility is highly essential 
in various applications but still cannot be provided by 
these static datasets with an update frequency of 1 year or 
longer (Cheng et al., 2022).

Since 2010, the gradual popularization of smartphones 
along with the rapid development of mobile Internet trig-
gered by 4G communication technology have completely 
changed the way of observing human behaviors. Spe-
cifically, smart devices users actively or passively upload 

their spatial-temporal information during their access 
to various mobile Internet services and applications, 
and the collection of such a vast amount of information 
makes it possible to continuously observe people’s real-
time spatial behavior at a large spatial scale (Song et al., 
2019), which is also named as “social sensing “ (Liu et al., 
2015). Social sensing big data have therefore attracted 
much attention of the scientific communities and are 
gradually adopted with satellite data in population map-
ping to improve accuracy and enrich information in the 
temporal dimension. Some widely used datasets include 
geotagged social media data (Patel et  al., 2017), mobile 
phone data (Deville et al., 2014), point of interests (POI) 
data (Bakillah et al., 2014), and smart card data (Ma et al., 
2017).

Besides fusing multiple data sources, estimation meth-
ods (regression models) for exploring the relationship 
between population and various features also play a 
critical role in population mapping. According to the 
algorithm, these models can be divided into three catego-
ries, including (1) statistical model, (2) spatial statistics 
model, and (3) machine learning. Statistical models are 
a powerful and widely used class, such as linear regres-
sion model (Bagan & Yamagata, 2015), and log-linear 
regression model (Liu et al., 2018). To address the com-
plex relationship between variables arising from spatial 
heterogeneity, many works employed local-model-based 
spatial statistics models, ranging from geographically 
weighted regression (GWR) (Wang et al., 2018; Xu et al., 
2021), geographically and temporally weighted regres-
sion (GTWR) (Liu et al., 2021), and Bayesian spatio-tem-
poral model (Wang et al., 2021). In the past few years, the 
boom of Artificial Intelligence (AI) has made machine 
learning models increasingly employed in population 
spatialization, which plays a vital role in improving esti-
mation accuracy. These machine learning models include 
not only single models like random forest regression 
models (Cheng et  al., 2022), but also ensemble models 
like XGBoost (Tu et al., 2022).

While many well-designed population spatialization 
frameworks have been proposed and reported satisfac-
tory accuracy, some new issues have emerged. (1) The 
fusion of an excessive number of data sources increases 
the difficulty of data acquisition, especially for studies 
that use non-public data, making these methods diffi-
cult to be replicated by others. (2) Although the spatial 
statistical models have ideal fit and prediction perfor-
mance, their transferability is limited due to their nature 
as local models, which means that such models may not 
be suitable for estimating non-modeled areas or increase 
uncertainties in results. (3) For the use of machine learn-
ing models, in addition to the cost of parameter tuning 
required, selecting a suitable machine learning model is 
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also a challenge that must be faced. To alleviate the above 
problems, this study proposes a population estimation 
framework based on publicly available spatial datasets 
and an automatic ensemble learning framework. The 
framework will be used to estimate the monthly county-
level population densities to reveal population distribu-
tion dynamic in China in 2015.

2  Materials and methods
Four main procedures are involved in mapping dynamic 
population density in this study: (1) data collection 
and feature extraction; (2) automatic ensemble learn-
ing model training and prediction; (3) accuracy assess-
ment and comparison; (4) monthly population density 
mapping.

2.1  Data collection and feature extraction
We incorporated multiple categories of geospatial data-
sets (Table  1) for dynamic population density map-
ping, including demographics data, social sensing data, 
medium-resolution (MR) multispectral images, NTL 
data, land use data, and topography data. All the datasets 

except topography data were obtained for 2015, and 
details of each dataset and extracted features for model 
training are provided as follows.

2.1.1  Demographics
County-level demographics data from the 1% population 
sample survey in 2015 and corresponding administra-
tive boundaries were collected, spatially combined, and 
adopted for both model training and validation. County-
level in China is equivalent to level-3 of the Global 
Administrative Unit Layer (GAUL) as defined by the 
Food and Agriculture Organization of the United Nations 
(Chen, Wu, Song et al., 2022). A total of 2851 counties in 
China were included in this study, without the records of 
Hong Kong, Macau, and Taiwan. We further calculated 
each county’s population density (/km2) based on total 
population and administrative area.

2.1.2  Tencent LBS data
Thanks to Tencent’s large number of active users, the LBS 
data from Tencent have good performance in describ-
ing the digital footprints of human activities (Chen, Song, 

Table 1 List of datasets and extracted features used in population density mapping

Category Dataset Format, Resolution, and 
Year

Feature(s) Variable(s)

Demographics Census (1% population 
sample survey)

Polygons, county-level, 2015 Density of population Pop_den

Social sensing Tencent location-based 
service (LBS) data

Grid, 30 arc-second, 2015 Mean of monthly LBS data LBS_meam

Sum of monthly LBS data LBS_sum

MR multispectral Landsat-8 Operational Land 
Imager (OLT)

Grid, 30-m, 2015 Mean of NDVI, NDWI, and 
NDBI

NDVI_meam, NDWI_mean, 
NDBI_mean

Sum of NDVI, NDWI, and 
NDBI

NDVI_sum, NDWI_sum, 
NDBI_sum

Nighttime light data NPP-VIIRS nighttime light 
(NTL) data

Grid, 15-arc-second, 2015 Mean of nighttime light NTL_mean

Sum of nighttime light NTL_sum

Land-use Land-use Status Remote 
Sensing Monitoring Data-
base of China

Grid, 30-m, 2015 Coverage of urban area, rural 
area, water, forest, grassland, 
and cropland

Urban_mean, Rural_mean, 
Water_mean, Forest_mean, 
Grassland_mean, Crop-
land_mean

Sum of urban area, rural 
area, water, forest, grassland, 
and cropland

Urban_sum, Rural_sum, 
Water_sum, Forest_sum, 
Grassland_sum, Crop-
land_sum

Topography SRTM V3 digital elevation 
data (DEM) and slope

Grid, 1 arc-second, 2000 Mean of DEM and slope DEM_mean, slope_mean

Sum of DEM and slope DEM_sum, slope_sum

Population data (for 
accuracy assessment and 
comparison)

WorldPop Grid, 100-m, 2015 Density of WorldPop popu-
lation

LandScan Grid, 30 arc-second, 2015 Density of LandScan popula-
tion

Gridded Population of the 
World (GPW)

Grid, 30 arc-second, 2015 Density of GPW population

Global Human Settlement 
Layer (GHSL)

Grid, 1-km, 2015 Density of GHSL population
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Kwan, et al., 2018), and have been successfully applied in 
many fields like population distribution mapping (Xu et al., 
2021), land use classification (Gong et al., 2020), environ-
mental exposure assessment (Chen, Song, Jiang, et  al., 
2018; Song et al., 2021), and human mobility mining (Zhu 
et al., 2018). We collected Tencent LBS data (https:// heat. 
qq. com) generated in 2015 using the method introduced 
in Song et al. (2018). The raw data is tabulated as the num-
ber of location service requests with a spatial resolution 
of 30 arc-second and a 5-minute update frequency. We 
then transformed tabular data into hourly aggregated ras-
ter data and generated the average hourly raster for each 
month in 2015. The monthly mean and sum of LBS data 
were finally derived over each county as features.

2.1.3  Landsat‑8 OLI imagery
Launched in February 2013 as part of a long-term Land-
sat program led by the U.S. Geological Survey and NASA, 
Landsat-8 is designed to collect medium-resolution mul-
tispectral image data and provide seasonal coverage of 
land surface (Roy et al., 2014). The sensor of Operational 
Land Imager (OLI) carried by Landsat-8 has nine reflec-
tive wavelength bands, six of which (i.e., blue, green, 
red, NIR, SWIR-1, SWIR-2) are designed for land appli-
cations with a spatial resolution of 30-m and a 16-day 
repeat cycle (Zhang et al., 2018). Here we collected Land-
sat-8 imagery from January 1 to December 31, 2015, for 
model training. A pixel-based quality check was first 
performed to eliminate observations contaminated with 
clouds and shadows from the entire Landsat-8 archive, 
using cloud masking and quality assessment informa-
tion from Landsat-8 metadata. We then calculated the 
normalized difference vegetation index (NDVI = (NIR - 
Red) / (NIR + Red)) for each retained pixel. The whole-
year maximum NDVI values were further selected and 
used as the quality index to generate the 2015 cloud-free 
greenest Landsat-8 composite. Based on this compos-
ite image, we calculated the normal difference built-up 
index (NDBI = (SWIS - NIR) / (SWIR + NIR)) and the 
normal difference water index (NDWI = (NIR - SWIR) / 
(NIR + SWIR)). The mean and sum of NDVI, NDBI, and 
NDWI were then derived for each county.

2.1.4  NPP‑VIIRS nighttime light data
NPP-VIIRS NTL data with a spatial resolution of 15 
arc-second are highly performing in characterizing vari-
ous human activities, such as determining urban expan-
sion patterns (Song et al., 2020), and monitoring human 
mobilities (Cai et  al., 2017). In this study, we collected 
the annual cloud-free composites of 2015 without inter-
ference from stray light and lunar illumination. Each 
county’s annual mean and sum radiance value was then 
derived as features.

2.1.5  Land‑use data
We collected land-use data in 2015 from the Land-use 
Status Remote Sensing Monitoring Database of China 
provided by the Chinese Academy of Sciences Resource 
and Environmental Science Data Center (www. resdc. cn). 
The data with a spatial resolution of 30-m were produced 
based on Landsat TM/ETM remote sensing images, hav-
ing six first-class and 25 second-class land-use types. 
The county-level coverage rate and total area of land-use 
types of “urban area”, “rural area”, “water”, “forest”, “crop-
land”, and “grassland” were derived as features.

2.1.6  DEM and slope
The Shuttle Radar Topography Mission (SRTM) V3 digi-
tal elevation data (DEM) (Farr et al., 2007) were collected 
for China, which was provided by NASA in 2000 with a 
spatial resolution of 1 arc-second. Since the earth’s sur-
face elevation change is a slow process, the temporal 
inconsistency of this data with other data (collected in 
2015) will have little effect on the estimation results. The 
mean and sum of DEM and slope were then derived for 
each county.

2.2  Mapping population density with automatic ensemble 
learning

We utilized the automatic ensemble learning framework 
embedded in AutoGluon (Version: 0.5.2) (https:// github. 
com/ awsla bs/ autog luon) to train the regression mod-
els for population density mapping. AutoGluon adopts a 
novel automated machine learning (AutoML) framework 
that employs a multi-layer stacking strategy (Erickson 
et al., 2020). As shown in Fig. 1, the multi-layer stacking 
framework of AutoGluon is constructed by one base layer 
and a minimum of one stacking layer. The base layer has 
several base models, and their prediction outputs are con-
catenated and fed into the stacker models in next layer, 
which then serve as base models for additional higher 
stacking layers. To avoid expensive costs of algorithm 
selection and hyperparameter optimization, AutoGluon 
simply reuses the same models as stackers in each layer 
with the same hyperparameter values (Erickson et  al., 
2020). This technique can be seen as another form of deep 
learning, using layer-wise training, where the units con-
nected between layers could be arbitrary machine learn-
ing models. AutoGluon also enables stacker models in any 
higher layer to take as input both the predictions from the 
previous layer and original input features during training. 
The final stacking layer combines the predictions of the 
stacker models in a weighted manner by applying ensem-
ble selection (Caruana et al., 2004).

AutoGluon has the capacity to automate the process of 
data pre-processing, base models search, hyper-parame-
ter tuning, and model ensembling during training. In this 

https://heat.qq.com
https://heat.qq.com
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https://github.com/awslabs/autogluon
https://github.com/awslabs/autogluon
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study, we employed automatic multi-layer stacking and 
5-fold cross-validation as the parameters of the Tabular 
Prediction of AutoGluon model training. The customized 
base models used in the Tabular Prediction (for regres-
sion) include neural network algorithms (e.g., NeuralNet-
FastAI, NeuralNetTorch), random forest algorithms (e.g., 
RandomForestMSE), extreme random tree algorithms 
(e.g., ExtraTreesMSE), K-nearest neighbor algorithm 
(e.g., KNeighborsDist, KNeighborsUnif ), and boosting 
tree algorithms (e.g., LightGBM, CatBoost, XGBoost, 
LightGBMXT, LightGBMLarge). In addition, ensemble 
learning algorithms is used for combining predictions in 
the final stacking layer.

All the 26 variables listed in Table  1 were used for 
model training which was performed using CPU. Note 
that since the national 1% sample survey population 
data we used represent the population with a standard 
time of November 1, 2015, at 00:00 (National Bureau 
of Statistics of China, 2016), we only used the Tencent 
LBS data collected from November for model train-
ing, and the data from other months were only used 
for dynamic population density mapping presented in 
Section 3.4.

2.3  Accuracy assessment and comparison
We split the 2851 samples into 80% for training and 
20% for validation. Root mean square error (RMSE, 
Eq.1) was used as the indicator for accuracy validation. 
To detect the contribution of different inclusive fea-
tures, we calculated feature importance scores for the 
final weighted ensemble model via permutation impor-
tance. To be specific, the importance score of a feature 
represents the decrease in the model’s prediction accu-
racy (namely RMSD in this study) when the values of 

the feature have been randomly shuffled across rows. 
The higher a feature score, the more important it is for 
the prediction accuracy of a model. A negative impor-
tance score means the features may be harmful to the 
model’s prediction, and a model without the feature 
having a negative score is likely to achieve better pre-
dictive performance (Erickson et al., 2020). We further 
included three more indicators for model comparison: 
relative root mean square error (%RMSE, Eq.2), mean 
absolute error (MAE, Eq.3), and coefficient of determi-
nation  r2.

where pi is the estimated population density of the ith 
county, p̂ i is the observed population density of the ith 
county, and n is the number of counties included in this 
study.

Four mainstream population distribution datasets 
(Table  1) were further collected and used to compare 
the estimation results, including WorldPop, LandS-
can, GPW, and GHSL. Using census population den-
sity as the benchmark, we compared the accuracy of 
our estimated population density by RMSE with these 
four grided population datasets at the county level and 
calculated the county-average %RMSE at the national 
scale.

(1)RMSE =

√

∑n
i=1

(

pi − p̂i
)2

n

(2)%RMSE =
RMSE

1

n
n
i=1

p̂i

(3)MAE =

∑n
i=1

∣

∣pi − p̂i
∣

∣

n

Fig. 1 A two-stacking layers example of the multi-layer stacking framework of AutoGluon
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3  Results and discussion
3.1  Comparison of different models
A two-layer stacking structure was finally generated by 
AutoGluon for county-level population density estima-
tion in China, which used 11 individual machine learn-
ing models and one weighted ensemble model. Table  2 
shows the comparison of performance between different 
models.

In the training phase, the NeuralNetFastAI model is 
the highest scoring among all the 11 individual models 
with an RMSD of 752.12, followed by ExtraTreesMSE 
(RMSD = 841.74), CatBoost (847.61), LightGBMXT 
(850.97), and LightGBMLarge (862.86). The weighted 
ensemble model that combines prediction from all the 
individual models achieved the best prediction perfor-
mance with an RMSD of 728.37. Also, the training time 
varied significantly from 0.01 to 32.52 seconds for differ-
ent models (Table  2), with a mean time of 8.19 seconds 
and a standard deviation of 11.06 seconds. Models of 
K-Neighbors take the least training time, while Neural 
Network models are the most difficult ones to train. The 
total time used for weighted ensemble model training is 
79.63 seconds.

Four criteria were further used to assess the test-
ing performances of models. Among all the individual 
models, the NeuralNetFastAI has the best performance 
in RMSD (497.58), %RMSD (55.86), and  r2 (0.967), and 
the ExtraTreesMSE received the lowest MAE (151.45). 
On the other hand, the weighted ensemble model has 
the best performance in all criteria, and the received 
RMSD, %RMSD, MAS, and  r2 are 443.01, 49.74, 158.65, 
and 0.974, respectively. At the same time, we found that 
the increase in the number of layers did not contribute 

significantly to the improvement in prediction accuracy 
in this study. For example, when we increased the layer 
number of stacking from 2 to 3, the model performance 
just increased 0.005 in  r2 (and 4.45 in RMSD).

3.2  Population density mapping for China
We estimated the population density for 2851 Chinese 
counties using the generated weighted ensemble model. 
The high goodness of fit  (r2 = 0.974) and low RMSD 
(427.61) for all counties indicate that the inclusive fea-
tures and the weighted ensemble model can well estimate 
county-level population density. As shown in Fig. 2a, the 
derived map could accurately characterize the numeri-
cal and spatial distribution patterns of county population 
density in China. According to the map, we can identify 
that, except for the counties within or around provincial 
capitals, counties with high population density are mainly 
concentrated in the eastern and southeastern coastal 
regions. In particular, counties located in provinces of 
Hebei, Henan, Shandong, Zhejiang, and Jiangsu form 
the main high-density population concentration areas in 
China. In addition, counties located in the Sichuan Basin 
(mainly Sichuan and Chongqing) have higher population 
densities in southwest China.

The difference between census population density and 
estimation was then calculated via (census- estimation) / 
census * 100%. As shown in Fig. 2b, due to the good pre-
diction capability of the weighted ensemble model, the 
vast majority of the estimation errors are within 50%/
km2. Some underestimations appear in counties with 
higher population density, while counties with over-
estimation are mainly concentrated in lower densely 
populated regions in western China, such as regions (or 

Table 2 Performance of different machine learning models in terms of root mean squared error (RMSE), relative root mean square 
error (%RMSE), mean absolute (MAE), and R-squared  (r2)

No Models Training performance Testing performance

Time (s) RMSD RMSD %RMSD MAE r2

1 Weighted Ensemble Model 
(Level 2)

79.63 728.37 443.01 49.74 158.65 0.974

2 NeuralNetFastAI 5.7 752.12 497.58 55.86 176.08 0.967

3 ExtraTreesMSE 0.36 841.74 587.01 65.91 151.45 0.954

4 CatBoost 25.13 847.61 634.39 71.22 167.26 0.947

5 LightGBMXT 2.81 850.97 637.64 71.59 188.71 0.946

6 LightGBMLarge 32.52 862.86 704.28 79.07 190.33 0.934

7 RandomForestMSE 0.88 865.15 665.95 74.77 166.97 0.941

8 LightGBM 2.37 879.14 601.34 67.51 173.86 0.952

9 NeuralNetTorch 13.28 930.18 664.34 74.59 201.09 0.942

10 XGBoost 7.08 930.74 622.42 69.88 165.55 0.949

11 KNeighborsDist 0.01 2142.95 2124.85 238.56 549.34 0.403

12 KNeighborsUnif 0.01 2310.01 2150.67 241.46 554.72 0.388
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provinces) of Tibet, Xinjiang, and Qinghai. We also per-
formed the same estimation using the NeuralNetFastAI 
model which achieved the best performance second to 
weighted ensemble model in both training and testing 
processes. Compared with the NeuralNetFastAI-based 
result (Fig.  2c), the AutoGluon framework not only has 
better fitting accuracy, but also alleviates the severe over-
estimation in less populated areas in the western region. 
Statistically, 1483 counties showed underestimation, 
accounting for 51.91% of all the selected counties.

We further compared the estimated county-level pop-
ulation density with the other four population datasets, 
namely LandScan, WorldPop, GPW, and GHSL. The 
accuracies of these datasets were evaluated by RMSD 
based on census population data, and the relationship 
between any two of them were measured by  r2. As the 
scatterplot matrix shown in Fig. 3, the population density 
estimated by the proposed model in this study obtained 
the best performance in both  r2 and RMSD, followed by 
LandScan  (r2 = 0.949, RMSD = 535.12), GHSL  (r2 = 0.941, 
RMSD = 633.02), WroldPop  (r2 = 0.938, RMSD = 684.28), 
and GPW  (r2 = 0.926, RMSD = 836.07). The results also 
show that all tested population datasets show good reli-
ability in characterizing the spatial pattern of population 
density in China, with LandScan and GHSL data having 
better accuracy.

3.3  Importance of inclusive features
Table 3 lists inclusive features’ importance scores meas-
ured by RMSE. “Importance” and “Standard deviation” 
mean the estimated importance score and standard devi-
ation of a feature. “p-value” measures confidence level of 

importance score, and a p-value of 0.01 indicates a 1% 
probability that the feature negatively affects the predic-
tion of the model. “p99_high” and “p99_low” refer to the 
upper and lower end of 99% confidence interval for true 
feature importance score, respectively.

According to Table  3, features of the “mean” value 
in different categories play a more critical role in the 
county-level population density prediction. Nine of the 
top ten features with the highest importance score are 
mean values. Of all the inclusive features, mean Tencent 
LBS (LBS_mean), urban area coverage (Urban_mean), 
mean nighttime light brightness (NTL_mean), and 
mean normal difference built-up index (NDBI_mean) 
are the four most important features for prediction with 
both high importance score and low p_value. This result 
makes perfect sense because of the following reasons. (1) 
The Tencent LBS data generated by active mobile phone 
users and record their real-time locations, obviously hav-
ing an excellent ability to characterize the population 
distribution. (2) Similarly, the brightness of nighttime 
light represents the intensity of human socio-economic 
activity. Except for industrial facilities such as docks 
and power plants, areas with high lighting levels usually 
have high densities of human activity. (3) Urban areas 
are often accompanied by relatively high population den-
sity, making it easy to explain that higher urban cover-
age results in higher population densities. (4) The NDBI 
could be considered as a representation of the intensity 
of human modification of the land surface, and a higher 
NDBI will surely refer to higher population density. More 
importantly, the significant contribution of variables’ 
mean value to model performance is a valuable finding 

Fig. 2 Estimation and error of county-level population density in China in 2015: a AutoGluon-based population density mapping; 
b AutoGluon-based and c NeuralNetFastAI-based estimation error compared to census population density
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of this study. Specifically, the more important contribu-
tion of the “mean” value makes the proposed framework 
reasonable and interpretable, as the observation (ground 
true for training) and prediction target in the model were 
set as population density rather than total population of 
a county. Simply speaking, the “mean” of features well 
predict the “mean” of the population (i.e., population 
density). In addition, the less importance of “sum” val-
ues provides vital evidence that the proposed framework 
has potential for cross-scale prediction, for example, the 

applicability to town and fine-grid-level (e.g., 1-km) pop-
ulation density estimation.

Besides, negative importance scores were also found 
in six features, namely NDVI_sum, Grassland_mean, 
Rural_sum, Forest_sum, DEM_sum, and Slop_sum, 
which means they are likely to play a harmful role in the 
prediction results. However, the p-values of all these fea-
tures’ importance scores are larger than 0.5, indicating 
that their harmful effect should be very weak. We then 
retained the model by removing these features and found 

Fig. 3 Comparison of different population datasets with census data in county-level population density (per  km2)
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that the prediction performance remained almost the 
same  (r2 = 0.973, RMSE = 448.13).

3.4  Intra‑annual population density dynamics in China
We used the weighted ensemble model to estimate 
county-level population density for months other than 

November 2015, and only changed the mean and sum 
of Tencent LBS data to the corresponding month and 
let the other variables be the same. Person correlation 
coefficients between monthly county-level population 
density (Fig. 4a) reveal intra-annual population distribu-
tion dynamics in China. Using November as a reference 
month, we can be found that September and October 
have the highest similarity with November, while January 
and February have the most significant differences from 
November. This result is consistent with earlier studies 
(Li et al., 2016; Pan & Lai, 2019) and reasonably respond 
to the population mobility characteristic in China. Specif-
ically, the largest population movement in China occurs 
during the Spring Festival, when large numbers of labor 
force population and students return to their hometowns 
before the Spring Festival and go back to the cities where 
they work within a short period after the Spring Festival. 
The spring festival of 2015 is February 19, which explains 
the relatively large differences between February and the 
other months, especially from September to November.

We further calculated the difference in population den-
sity between November and February  (population_den-
sityNov –  population_densityFeb) to uncover the spatial 
pattern of population distribution dynamics during the 
spring festival in 2015. As shown in Fig.  4b, in general, 
the most dramatic population density changes occur in 
areas that are more economically developed. These cities 
or towns are more attractive to the labor force because of 
more job opportunities and high salaries. Specifically, cit-
ies with significant declines in population density include 
three major economic zones of the Pearl River Delta city 
cluster (e.g., Guangdong, Shenzhen, Dongguan, Foshan, 
and Zhuhai), the Yangtze River Delta city cluster (e.g., 
Shanghai, Wuxi, Suzhou, Ningbo, Changzhou, Hang-
zhou, Taizhou, and Wenzhou), and the Beijing-Tianjin-
Hebei city cluster (e.g., Beijing, Tianjin, Zhangjiakou, 
Tangshan, and Baoding), provincial capital cities (e.g., 
Shenyang, Jilin, Harbin, Jinan, Fuzhou, Haikou, Nanning, 
Kunming, Guiyang, Chengdu, Wuhan, Changsha, Xian, 
Zhengzhou, Xining, Lanzhou, and Urumqi), eastern 
coastal cities (e.g., Dalian, Yantai, Qingdao, and Xiamen), 
and Chongqing. This result is generally consistent with 
the results of earlier studies using different study designs 
(Zhou et al., 2020; Zhu et al., 2021), illustrating the good 
performance of our estimated monthly population den-
sities in characterizing population spatial distribution 
dynamics in China.

3.5  Advantages and limitations
Using China as an example, this study presents a new 
framework for population spatialization using multi-
source geospatial data. The framework alleviates some 
of the problems arising in current population estimation 

Table 3 Importance score of inclusive features in terms of root 
mean squared error (RMSE)

Variables Importance Standard 
deviation

p‑value p99_high p99_low

LBS_mean 914.42 149.19 0.000082 1221.61 607.23

Urban_
mean

710.37 69.47 0.000011 853.42 567.32

NTL_mean 555.92 49.14 0.000007 657.12 454.73

NDBI_
mean

73.61 47.72 0.013035 171.86 −24.64

Cropland_
mean

67.32 12.62 0.000141 93.29 41.35

Rural_
mean

64.87 38.37 0.009717 143.88 −14.14

NDVI_
mean

62.79 30.94 0.005256 126.49 −0.91

NDWI_
mean

59.93 23.35 0.002285 108.02 11.84

Grass-
land_sum

49.84 33.82 0.015036 119.48 −19.80

Water_
mean

35.18 16.96 0.004876 70.12 0.25

NTL_sum 32.70 35.30 0.053542 105.38 −39.98

Urban_
sum

23.29 36.11 0.111303 97.64 −51.05

NDWI_
sum

21.01 18.80 0.033410 59.71 −17.69

Forest_
mean

11.08 26.63 0.202458 65.91 −43.75

Slope_
mean

9.70 4.30 0.003615 18.55 0.86

NDBI_sum 7.85 12.01 0.108925 32.58 −16.88

DEM_
mean

6.33 5.36 0.028717 17.36 −4.70

MP_sum 3.57 11.82 0.268335 27.90 −20.76

Cropland_
sum

2.50 2.21 0.032038 7.04 −2.04

Water_
sum

1.01 4.23 0.311156 9.73 −7.71

NDVI_sum −0.05 10.25 0.504266 21.05 −21.16

Grassland_
mean

−1.58 6.39 0.694978 11.58 −14.74

Rural_sum −6.72 4.41 0.986466 2.36 −15.79

Forest_
sum

−11.23 11.73 0.950494 12.92 −35.37

DEM_sum −11.30 12.12 0.947263 13.66 −36.26

Slope_
sum

−16.87 10.71 0.987811 5.17 −38.91
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methods and offers the potential to extend to estima-
tions with larger spatial scales for the following reasons. 
First, using publicly available, easily accessible, and lim-
ited data sources. Only five categories of data are used 
in this framework, including Landsat-8, nighttime light 
data, land-use map, DEM map, and Tencent LBS data, 
which are all globally available. The collection and pre-
processing of some data can also be performed quickly 
and efficiently on cloud computing platforms, such as 
Google Earth Engine, NASA Earth Exchange, Amazon 
AWS, and PIE-Engine. While the Tencent data values 
only apply to the China study, other digital footprint data 
alternatives can be used to map countries and regions 
outside China, such as geo-tagged Twitter data. Second, 
employing cost-effective automatic ensemble learning 
models. AutoGluon not only achieves plausible accura-
cies in population mapping but also dramatically reduces 
the cost of model selection and parameter tuning, mak-
ing the estimation framework proposed in this study eas-
ily reproducible and refinable by other scholars. Third, 
transferability of prediction across time and regions. The 
satisfactory results of monthly mapping and the revealed 
characteristics of the intra-annual population dynamics 
in China suggest that the proposed model has the abil-
ity to conduct across-time with only the change of social 

sensing data (population digital footprints of popula-
tion) and without the influence of changes in the qual-
ity of remote sensing data (e.g., cloudiness, phenology), 
which could directly contribute to high-temporal-resolu-
tion population mapping (e.g., seasonal, monthly, daily). 
Moreover, the proposed framework’s stable performance 
and overall high accuracy affirm its transferability across 
regions. Therefore, for regions where it is challenging to 
train models due to the lack of observation data, well-
trained models from other regions would have the poten-
tial to result in good accuracy levels.

Nevertheless, some limitations in this framework 
study should be pointed out. (1) Since we do not have 
quality-assured observations at smaller scales, such as 
the community scale, the performance of the proposed 
framework at small scales is unknown. (2) The esti-
mated bias in China shows a spatial pattern with over-
estimation in the west (low population density areas) 
and underestimation in the east (high population den-
sity areas), which is an issue could be addressed. We 
will attempt to solve this problem in our future work by 
adding variables or introducing spatial information as 
appropriate.

Fig. 4 Intra-year population density dynamics in China: a Person correlation coefficients between monthly county-level population density in 2015; 
b Difference between November and February 2015 in population density. M1 to M12 means January to December
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4  Conclusions
Using AutoGluon and multi-source geospatial data, this 
study proposed an efficient framework for population 
spatialization. Based on this framework, we estimated the 
county-level population density in China, using a limited 
number of publicly available datasets ranging from Ten-
cent LBS data, Landsat-8 OLI imagery, nighttime light 
data, land-use maps, and DEM map. The result showed 
that the proposed framework could well estimate the 
population density for a total of 2851 counties in China 
with a high goodness of fit  (r2) of 0.974 and a low RMSD 
of 427.61. The comparisons with WorldPop, LandScan, 
GPW, and GHSL data also illustrate that the framework 
outperforms the current mainstream population map-
ping frameworks in terms of estimation accuracy. Of 
all the features involved in the modeling, mean Tencent 
LBS, urban area coverage, mean nighttime light bright-
ness, and mean normal difference built-up index are the 
four features that contribute most to the improvement of 
estimation capacity. Furthermore, the derived monthly 
county-level population density and the revealed spatial 
pattern of population dynamics in China are consist-
ent with earlier studies, corroborating the robustness of 
the proposed framework. This study is the first to apply 
AutoGluon to population estimation and mapping, and 
its efficient and automated modeling capabilities will 
undoubtedly contribute to larger scale and finer spatial-
temporal population spatialization studies.
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