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Abstract 

Background:  In this paper, we consider the applicability of the customer journey framework from retailing as a driver 
for urban informatics at individual scales within urban science. The customer journey considers shopper experiences 
in the context of shopping paths, retail service spaces, and touch-points that draw them into contact. Around this 
framework, retailers have developed sophisticated data science for observation, identification, and measurement of 
customers in the context of their shopping behavior. This knowledge supports broad data-driven understanding of 
customer experiences in physical spaces, economic spaces of decision and choice, persuasive spaces of advertising 
and branding, and inter-personal spaces of customer-staff interaction.

Method:  We review the literature on pedestrian and high street retailing, and on urban informatics. We investigate 
whether the customer journey could be usefully repurposed for urban applications. Specifically, we explore the 
potential use of the customer journey framework for producing new insight into pedestrian behavior, where a sort of 
empirical hyperopia has long abounded because data are always in short supply.

Results:  Our review addresses how the customer journey might be used as a structure for examining how urban 
walkers come into contact with the built environment, how people actively and passively sense and perceive ambi-
ent city life as they move, how pedestrians make sense of urban context, and how they use this knowledge to build 
cognition of city streetscapes. Each of these topics has relevance to walking studies specifically, but also to urban 
science more generally. We consider how retailing might reciprocally benefit from urban science perspectives, espe-
cially in extending the reach of retailers’ insight beyond store walls, into the retail high streets from which they draw 
custom.

Conclusion:  We conclude that a broad set of theoretical frameworks, data collection schemes, and analytical 
methodologies that have advanced retail data science closer and closer to individual-level acumen might be usefully 
applied to accomplish the same in urban informatics. However, we caution that differences between retailers’ and 
urban scientists’ viewpoints on privacy presents potential controversy.

Keywords:  Customer journey, High street, Pedestrian, Spatial behavior, Machine learning, Geographic information 
science, Big data
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“As I stumble on past / I see us all in the glass.” (Lorenz 
et al., 2020)

1  Introduction
In this paper, we consider how the idea of the customer 
journey, originally developed for indoor and e-commerce 
retail settings, might be extended to also consider pedes-
trian retailing on the high street, and how it may inform 
urban informatics at individual scale within urban sci-
ence more generally.

How pedestrians move through built settings, how 
they reason about them, and how they engage with the 
environment and other people along the way are key con-
cepts in urban science (Batty, 2013b). Alas, despite their 
significance, pedestrian phenomena are often challeng-
ing to study for at least three main reasons. First, walking 
exposes people to many different facets of cities, often 
several at once. The result is that pedestrians’ connec-
tions to urban environments while walking take on both 
shifting and concurrent meaning across many dimen-
sions of urbanity. These include architecture (Turner 
et  al., 2001), urban design (Hess et  al., 1999), transpor-
tation (Polus et  al., 1983), sociality (Whyte, 1980), psy-
chology (Franěk, 2013), computing (Hazas et  al., 2004), 
marketing (Bhargava & Donthu, 1999), environmental 
science (Hong et  al., 2021), public safety (Fyfe, 1991), 
and public health (Buonanno et  al., 2011). Second, at 
source, pedestrians’ connections to urban life are often 
uniquely individual. The perception, action, and cogni-
tion that pedestrians invoke are formed initially from the 
independent viewpoint that they have on very local sur-
roundings, which is often dynamically updated in fleeting 
windows of space and time as they move (Wang & Cut-
ting, 1999). Third, pedestrian behavior scales, in the sense 
that walkers’ local views can transfer to others in dyads, 
groups, and crowds (Aral et  al., 2009; Barsade, 2002; 
Hatfield et al., 1993; Laird et al., 1994), and on to larger 
flows of foot traffic along streetscapes (Batty et al., 1998; 
Gorrini et al., 2014; Moussaïd et al., 2009). People’s inde-
pendent experiences on streets therefore form the atoms 
that make up our broader and holistic understanding of 
many urban phenomena. Across each of these three fac-
tors, empirically studying the microcosm of pedestrian 
behavior on streets can easily become difficult or even 
intractable (Allen & Torrens, 2005). Complicating mat-
ters, high-fidelity data for pedestrian activity is often in 
short supply. Most existing data-sets involve small case 
studies, which makes generalization to laws and norms of 
urban science challenging to accomplish (Torrens, 2022).

In some ways, Dear (1988) (and later, Soja (1995)) 
laid the philosophical backdrop for this conundrum 
more than 30 years ago, when he considered the myr-
iad of possible viewpoints on cities—with millions of 

inhabitants—as a form of postmodernism. Heavily-pop-
ulated urban spaces (such as Los Angeles, the focus of 
Dear and Soja’s exposition) eschew generalization, in the 
sense that they can only fully be appreciated when decon-
structed to reveal the personal vistas of their residents. 
Recent work in urban computing in many ways attempts 
to address the difficulty of looking through every lens on 
city life by actually collecting all of the data from all of 
the lenses in a city (Amaxilatis et al., 2018; McCullough, 
2004). This is happening through initiatives to engage in 
ubiquitous (Weiser, 1991, 1993) or pervasive comput-
ing (Saha & Mukherjee, 2003; Satyanarayanan, 2001), for 
example. In this mode of inquiry, the speedy and tireless 
abilities of computing to sift through gargantuan mounds 
of detail are brought to bear in building insight directly 
from big data (Liu et al., 2022). Those efforts are nascent, 
and in application to urban informatics much of the field 
is in the stage of adapting methods from computer sci-
ence and electrical engineering to handle often unstruc-
tured masses of city life.

Yet, many facets of computer science—among them, 
context-aware computing (Dourish, 2001a; Lin et  al., 
2014), affective computing (Picard, 2000), and wear-
able computing (Mann, 1997; Shull et al., 2014; Xia et al., 
2019)—directly treat individual context as a design factor. 
Dourish (2001a), for example has framed several com-
ponents of informatics design as a form of embodiment 
with one’s surroundings (Dourish, 2001b), i.e., how peo-
ple experience the physical and social worlds that they 
encounter through direct and abstract modes of contact 
that situate them (contextually) in that setting (p. 100). 
These ideas are not far-flung from Jane Jacobs’s inter-
pretation of walkable cities’ role in vibrant communities 
(Jacobs, 1961). These parallel developments—in comput-
ing, in philosophy of inquiry, and in our unfolding road-
map for urban science—hint that empirical insight could 
feasibly be polled, individually, from pedestrians as they 
naturally move and interact in and with urban settings. 
They also suggest that this sort of scholarship might be 
tractable at scales that are perhaps broad enough to cover 
entire downtowns. In this paper, we explore whether retail 
data science might provide the framework to advance 
those ideas.

Considered collectively, then, across even a small 
swath of the built environment, we might envisage a 
massive compilation of pedestrian viewpoints on cit-
ies, from which we could begin to weave together a 
broad tapestry of daily city life from real-time informa-
tion, perhaps naturally contextualized to the vernacular 
meaning of pedestrian context. Indeed, this is a grand 
challenge that would prove worthy for urban science to 
tackle. Alas, much of the information that pedestrians 
conjure as they walk is fleeting and bespoke to their 
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own thoughts and considerations. Nevertheless, parts 
of how pedestrian behavior manifests in the tapestry 
of city life as data are actually beginning to become 
accessible to inquiry, largely due to urban informat-
ics. Consider, for example, that in recent years, the 
computers and sensors that people carry with them as 
phones and tablet devices as they walk (Hazas et  al., 
2004; Sui, 2007), the artifacts of the built environment 
that they engage with (Batty, 2013a; Townsend, 2013), 
the increasing omnipresence of cameras mounted to 
built structures (Hu et  al., 2004; McCullough, 2004), 
and the early introduction of machines with sensori-
motor control (of which semi-autonomous vehicles and 
advanced driver awareness systems are the most prev-
alent) (Townsend, 2020) have created opportunities 
for the development of information systems that can 
sense, and make sense of, pedestrians as they walk. At 
the same time, the notion that pedestrians themselves 
might act as remote sensors as they walk is beginning 
to take shape (Torrens, 2016a; Swan, 2012).

As these developments unfold, we argue, urban sci-
ence would do well to consider robust and exten-
sible research frameworks that can make use of 
individual-level data from pedestrians in context. This 
is not always easy. First, there is an almost inherent 
big data problem in tackling this issue. Second, one is 
quickly reminded of the postmodernist gaze on individ-
uality and the terrific intricacy of deconstructing urban 
phenomena into a dizzying array of individual perspec-
tives, formed and ever-reforming in fleeting moments 
of human experience underneath urban rhythms and 
motifs. Our contention, in this paper, is that retail data 
science can suggest some new paths forward. Customer 
journeys provide a broad scaffold for analyzing shopper 
movement and behavior relative to retail settings, and 
the concept of the customer journey has some flexible 
parallels with ideas about how urban pedestrians move 
and behave within built environments.

In reviewing the literature, we initially sweep through 
a high-level overview of walking in urban science. Next, 
we examine how retailers use the customer journey 
to frame shopping. This review addresses customer 
paths, customer experience, retail touchpoints, and the 
retail servicescape. We then consider potential bridges 
between retail customer journeys and walking in cities. 
Next, we review how existing work in urban informatics 
could be nudged in ways that would allow it to benefit 
from retail perspectives. This covers pedestrian sur-
veys, movement tracking, tap-ins as touchpoints, data-
mining of activities and actions, and computer vision. 
Following this, we look to possible future paths of 
research inquiry to align retailing and urban science on 
the customer journey framework. These topics include 

the urban omnichannel, data granularity, fast and slow 
data, high street information systems, profiling and 
geodemographics, and controlled experimentation. We 
also examine the pitfalls of privacy and surveillance 
that circumscribe most discussions of translating retail 
science to urban applications.

2 � Pedestrian and crowd dynamics
The act of walking through built settings has long been 
usefully considered to be a framework for ideas in urban 
science. Examining how and why people walk through 
cities is crucial to urban science’s foci on understand-
ing the shifting cadence and patterns of urban move-
ment (Batty, 1997a), individual and group accessibility to 
resources and to services (Giuliano, 1989; Handy, 1992), 
the development of urban community (Talen, 1999), the 
functioning of cities as complex adaptive systems (Batty, 
1971), place-based dynamics of environmental expo-
sure and urban public health (Buonanno et  al., 2011; 
Lee & Laefer, 2021; Hong et  al., 2021), vulnerability to 
urban crime (Grubesic & Mack, 2008), the functioning 
of advanced and often mobile information and telecom-
munications technologies within cities (Torrens, 2008; 
Townsend, 2000), micro-economics of locational advan-
tage (Cervero & Kockelman, 1997), and the resiliency of 
cities as interconnected systems of transportation oppor-
tunity (Mishra et al., 2015).

The intertwined relationships between walking and city 
settings also present as core tenets of other disciplines, 
with the implication that walking relative to built con-
text could serve as a useful vehicle for cross-disciplinary 
scholarship. For example, the sometimes controversial 
(Lauster, 2007) framework of the flâneur has been used 
to examine urban walking in history and in social the-
ory (Tester, 1994). The meta-field of psychogeography 
(Arnold, 2019), purposefully relies on walking in the city 
as a template for building academic connections between 
geography and psychology. Urban social psychology is 
perhaps most popularly encapsulated by the work of 
Goffmann (1963, 1971) and his observational research 
to evaluate and codify the microcosm of people’s social 
actions and interactions as they moved or stayed at rest 
in different outdoor urban design settings. A key ele-
ment of Goffman’s work that is of relevance to our review 
here was his team’s use of individual people’s supposed 
or expected movement through built features as the basis 
for building sociological theory. Similar approaches were 
later used by Newman (1972) and Stark et  al. (1974) to 
build empirically-rooted theories of the sociology of 
anti-social behavior relative to the built environment, 
and by McPhail and Wohlstein to frame the sociology of 
collective behavior (McPhail & Miller, 1973; Wohlstein 
& McPhail, 1979). Similarly, how people move (or do 
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not move) within small pockets of urban context is at 
the core of sociological attention to neighborhoods and 
neighborhood effects (Sampson et  al., 2002; O’Brien & 
Wilson, 2011).

The relationship between walking and urban space is a 
central theme throughout human geography, particularly 
in urban geography and behavioral geography (as well as 
in retail geography). This relationship is well-expressed 
in Tuan’s (1979) work on how people perceive place as 
an ensemble of experiences, and Golledge’s (1978, 1987) 
research to uncover how people form mental/cogni-
tive maps as they walk. Rose et  al. (2010) introduced a 
theoretical basis for examining connections between 
people and urban geography by considering how build-
ings affect people’s feelings through notions of space and 
place. Walking, for example, might straightforwardly 
be considered to be one of the vehicles by which peo-
ple assemble their perceptions (as cognitive ensembles) 
through continual contact with (and reasoning about) 
urban settings. This is what Thrift (2004) referred to as 
“movement space”. The idea of walking as a concept for 
examining perception, action, and cognition is embed-
ded, for example, within Hägerstrand’s (1975) and Pred’s 
(1981) frameworks for time geography. The idea of rhyth-
manalysis that was originally introduced by Lefebvre 
(1992/2004) and was revisited (through data science) by 
DeLyser and Sui (2012) is, in essence, a mapping of time 
geography to the individual context of the pedestrian in 
urban space. Rhythmanalysis and time geography both 
have associations to non-representational theory as a 
mechanism for examining how people perform and enact 
human geography by walking (Thrift, 2008; Waight & 
Yin, 2021). We note that the theme of urban walking as 
human geography has enjoyed something of a resurgence 
in interest of late. This renewed attention to walking 
has been driven in considerable measure by the insights 
that are now readily available through walking data col-
lected from mobile devices that individual people carry 
as they go about their daily activities in cities (Ratti et al., 
2006; Eagle et  al., 2009; Sevtsuk & Ratti, 2010; Batty, 
2003). These include quantitative/computational data 
cast by devices that rely on geographic positioning sys-
tems (GPS) (Raper et  al., 2007) Wi-Fi localization (Tor-
rens, 2008; Soundararaj et al., 2020), and cellphone-based 
localization (Hong et al., 2017; He et al., 2015), but also 
qualitative data that are accessible via devices that people 
can use to narrate their own self-reflecting experiences 
via audio (Anderson, 2004) and pedestrians’ ability to use 
their devices to  take photographs (Arnold, 2021) of the 
things that they encounter. Among the new insights that 
these approaches have produced are developments in 
emotional geography to reveal socio-emotional processes 
of affect in proximity from analysis of walking diary data 

(Curti et  al., 2011; Dawney, 2011; Pile, 2010, 2011) and 
the relationships between bodies and urban spaces (Val-
entine, 1999; Longhurst, 2005; Hansen & Philo, 2007; 
Colls & Evans, 2014).

Discussion of time geography also raises issues of 
the mode by which people engage in retailing on high 
streets. In this paper, we predominantly consider pedes-
trian retailing, i.e., the retail activity engaged in by walk-
ing customers. In many cases, particularly in the United 
States, high streets also support retail access by other 
modes, particularly “drive through” retailing (Seiders 
et  al., 2000) by which customers directly engage with 
retail kiosks from their car window, or indirectly shop 
through curbside pickup (Lapoule, 2014). During the 
COVID-19 pandemic (Hoekstra & Leeflang, 2020), for 
example, vehicle-based customer journeys through high 
streets became increasingly normal (Diebner et al., 2020), 
while high streets effectively became “contactless” envi-
ronments for retailing. In this paper, we focus on pedes-
trian customer journeys, although the extension of the 
idea to vehicle-based customer journeys is relatively 
underexplored in the literature.

Walking through urban spaces has also emerged as 
a significant mechanism in computer science, largely 
due to the infusion of computing into people’s everyday 
activities in general terms, as well as owing to the par-
ticular usefulness of computing along urban streetscapes. 
Initially, as Internet and communications technologies 
(ICTs) moved from the (static) Web to mobile platforms, 
computing followed suit (Cerf, 2016). In particular, there 
was fervent activity in computer science to develop 
mobile analogs of traditional computing schemes, includ-
ing mobile communications protocols (LaMarca et  al., 
2004), information systems for managing mobile net-
works (Ulema et  al., 2006) and sensor webs (Balazinska 
et al., 2007), database schemes for moving objects (Wolf-
son et  al., 1998), mobile software agents (Pham & Kar-
mouch, 1998; Lange & Oshima, 1998), and new forms 
of computer-human interaction for mobility (Feiner 
et  al., 1997), among others. Adjustments to traditional 
forms of computing, initially designed to handle mobil-
ity, soon gave way to entirely new forms of computing. 
The development of location-based services (LBS) (High-
tower & Borriello, 2001), designed atop location-based 
(and increasingly now location-aware) technologies is 
of particular relevance to this review paper, as is urban 
computing (Zheng et  al., 2014a). Many of these com-
puting ideas have returned, full-circle, to the issue of 
pedestrians and the locality of the built context for their 
journeys, for example, through the concept of the quanti-
fied self (Swan, 2012; Hudson-Smith et  al., 2020) in the 
smart city (Townsend, 2013). A next generation of com-
puting, designed de novo with mobility in mind, is now 
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beginning to take shape, including new forms of edge 
computing (Satyanarayanan, 2017) using sensor-on-chip 
technology designed to bring machine awareness and 
cloud computing closer to mobile users as they engage in 
urban activities (Potdar & Torrens, 2019); pervasive com-
puting (Weiser, 1991) to bridge the gap between central-
ized and decentralized computing; as well as eXtended 
Reality (XR) that is narrowing the gap between virtual 
reality and the tangible experiences of walking and per-
ceptual acts of sensing one’s surroundings in urban set-
tings (Çöltekin et  al., 2020; Torrens & Gu, 2021). These 
developments, initially in applied computing, are in turn 
leading to close-couplings between urban science and 
computer science in key areas, including context-aware 
computing (Dourish, 2001a), affective computing (Picard, 
2000), and wearable computing (Mann, 1997), with very 
close analogs to the qualitative frameworks developed in 
human geography. Work in critical geography is begin-
ning to take notice, with scholarship designed to uncover 
evolving forms of geosurveillance (Kitchin, 2015; Swan-
lund & Schuurman, 2016), in particular.

However, the advantages of a multitude and of a wide 
breadth of walking-based hypotheses and methodologies 
for urban science might also be considered a hindrance, 
because so many factors interplay in generating and 
influencing urban walking, and because much of what we 
do while walking is subjective in the insights it reveals. In 
the remainder of this paper, we will advance an argument 
that customer journeys—as a form of walking for the spe-
cific purpose of shopping and through the single lens of 
high street retail environments—might help to hone some 
of the multiplicity and much of the subjectivity surround-
ing walking in urban science, particularly for the pur-
poses of allying empirical data to walking journeys.

3 � The customer journey as a framework 
for knowledge production in retailing

The field of customer journey analytics emerged from 
prior scholarship about customer experience (Grewal 
& Roggeveen, 2020; Verhoef et al., 2009). Many retailers 
routinely engage in informal and formal study, analysis, 
and modeling of their service offerings relative to cus-
tomer experience. These analyses may be performed 
on the service-side of the customer experience (where 
retailers often have considerable information), e.g., as 
dynamic store product maps (Meschtscherjakov et  al., 
2008), service blueprints (Bitner et  al., 2008; Voorhees 
et al., 2017), or multi-level service design (Patrício et al., 
2011). Counterpart analyses on the demand-side of the 
customer experience include retail customer profiling 
(Sturari et al., 2016), customer value perception modeling 
(Rintamäki & Kirves, 2017), and related customer-centric 
performance indicators (see Underhill (2005, 2009) for 

an extensive overview), where much of the motivations 
and actions of the customer are accessible with relatively 
less information, but may be pieced together by consid-
ering “typical customer behavior” (Berendes et al., 2018:, 
p. 219). Customer journey mapping (Rosenbaum et  al., 
2017) attempts to reconcile the two: to locate and situate 
the customer experience as it progresses through service-
oriented touchpoints (interactions with displays, encoun-
ters with staff, retail transactions, etc.). Increasingly, 
much of the analysis to populate customer journey maps 
is being generated from digital data as a by-product of 
retailers’ own information systems (Santana et al., 2020), 
through customer use of mobile devices while engaged 
with service offerings (Kang et al., 2015; Tang, 2019), and 
through in-store sensing and related smart retail systems 
(Melià-Seguí et al., 2013) that are increasingly automated 
(Rai et al., 2011). Customer journey maps may manifest 
as actual cartographic maps: so-called “heat maps” for 
example (Rintamäki & Kirves, 2017) that localize cus-
tomer touchpoints in the servicescape (Underhill, 2005), 
or they may be considered analytically as part of retail 
operations, as for example in customer experience mod-
eling (Teixeira et al., 2012), where the customer is consid-
ered to be a thread in a holistic retail process.

The reader may notice that in the illustrative exam-
ples that we have used above, we refer largely to in-store 
examples of the retail servicescape. This is emblematic 
of the current state of practice with regard to customer 
journey mapping and other analytical treatments of paths 
within the customer experience. Retailers have relatively 
little control of the customer experience outdoors, e.g., 
on high streets, and they often have little in the way of 
empirical insight there to work with. This relative far-
sightedness is in spite of the fact that for many urban 
retailers, a majority of customer traffic comes from the 
street. In recent years, then, a number of scholars have 
begun to look at the customer journey outside the store. 
By far, the greatest volume of work examining the cus-
tomer journey outside store walls has come from exami-
nation of e-commerce. In particular, there is increasing 
interest in uncovering the aspects of e-commerce plat-
forms that drive customer traffic to stores (Iftikhar et al., 
2020). Work on the customer journey as a path with ten-
drils to mobile e-commerce (m-commerce) is particularly 
relevant here (Tang, 2019), because of the potential for 
mobility to support hybridized modes of physical and 
digital customer experiences. For example, when docked 
to tangible locations or service interactions, m-com-
merce can be used to build very rich databases of indi-
vidual customer encounters with retail service offerings. 
These possibilities emerge particularly if customers (or 
would-be customers) engage with stores’ information 
systems through mobile applications such as customer 
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loyalty schemes, scanning of goods with Quick Response 
(QR) codes, use of digital coupons at the point of sale, 
and so on.

3.1 � The customer journey
Customer journeys are usually considered to be paths 
through a retail service system or service space. What 
might constitute a “path” is quite flexible in defini-
tion. Generally, customer paths are framed as con-
joined progress through (1) choice- and selection-type 
maneuvers through decision spaces; (2) embodied loco-
motion through physical spaces; and (3) virtual move-
ment through cyberspaces. (Together, these three 
customer journeys form the retail “omnichannel” that 
can span from Online to tangible patronage, and back 
again.) The decision journey, for example, may take a 
customer through retail phases of pre-purchase, pur-
chase, and post-purchase services (i.e., the retail “fun-
nel”), in the same sorts of choice and decision hierarchies 
that determine pedestrian trips (Torrens, 2004) through 
trip generation, trip distribution, mode choice, and trip 
assignment (Louviere et  al., 2000). A physical customer 
journey might involve a customer traversing past a shop 
front, through the store entry, past product displays, and 
on to a checkout counter. These procedures are similar to 
Gibson’s (1950, 1966, 1979) framing of individuals’ envi-
ronmental perception. A virtual customer journey could 
begin with a location-based coupon sent to a customer 
through a store’s Online portal, leading them to a vir-
tual journey past product availability displays on an app-
based map of the high street, through a virtual purchase 
procedure, and on to a physical pick-up location in a tan-
gible store. These types of customer journeys have close 
allegories with many smart city applications, includ-
ing spatial pricing schemes for app-driven ride-sharing 
(Bimpikis et  al., 2019), for example. Customer journeys 
as locomotion through retail high streets are perhaps of 
particular relevance to urban science because they often 
take place within broader phenomena of high street 
pedestrian traffic and crowds, which may be composed 
of shoppers and would-be shoppers but almost inevitably 
contains pedestrians traveling for other activities.

3.2 � The customer experience
Within retailing, customer journeys are usually regarded 
as a component of customer experience. Generally, retail-
ers consider experiences in terms of patronage of retail 
facilities and consumption of retail goods. In some cases, 
retailers aim to provide a generalized customer experi-
ence to all customer journeys, e.g., minimizing check-
out times at kiosks, or maximizing customer dwell time 
at particular store fronts. In other situations, retailers 

may tailor their operations to deliver specific experiences 
for particular customers, e.g., allowing customers with 
online orders to pick up goods at dedicated service win-
dows, or enabling VIP customers to access parts of the 
retail site that are closed to others. In these instances, 
retailers may use the customer journey to individually 
infer who their customer is or what type of shopping 
activity they are engaged in. In supermarkets, for exam-
ple, convenience shoppers may be persuaded by design to 
visit “grab and go” type kiosks outside the store. Retail-
ers also may drive retail service decisions relative to an 
assumption that customers and stores co-create expe-
riences. Co-creation can take effect, for example, via 
advertising and branding, through layout and design 
considerations, with merchandising, or using interactions 
with store staff. Increasingly, customers’ use of (and their 
journeys through) e-commerce platforms is also coming 
into focus as part of the experiential co-creation of retail 
servicescapes.

3.3 � Retail touchpoints
One of the main features of the customer journey is that 
it brings customers into adjacency with the retail service-
scape at specific points and instances of contact: what 
retailers refer to as “touchpoints” (Ieva & Ziliani, 2018). 
Touchpoints may be tangible, as when, for example, a 
pedestrian walks past a sales display outside a store and 
inspects the goods, when a store associate hands them 
a flyer on the street, or when a pedestrian uses a vend-
ing machine on the sidewalk. In other cases, touchpoints 
on the customer journey are virtual, for example when a 
pedestrian makes use of a software agent on a device to 
find the best price for a product, or when they rate a retail 
experience after leaving a store or restaurant. Hybrids 
of tangible and virtual touchpoints are also increasingly 
common, as evidenced by tap-based payment systems 
that make use of near field communication (NFC) tech-
nologies (Want, 2011) to provide contactless payment to 
hurry customers through the end-phase of the journey 
when checking out, or pedestrians’ use of QR codes to 
bring-up product marketing and informational material 
on their handheld devices (Hudson-Smith et  al., 2012). 
In some instances, retail touchpoints and urban touch-
points are one and the same, as in the case of you-are-
here maps and information kiosks commonly found in 
city centers, which serve as waypoints for urban journeys 
and touchpoints for advertised retailers (Nothegger et al., 
2004). In some retail experiences, such as mobile gaming, 
the touchpoints that form from routine engagement in 
an  urban setting while walking are regarded  themselves 
directly as the customer experience (Niantic Labs, 2016).
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3.4 � The retail servicescape
In retailing, the idea of the servicescape is used to encap-
sulate the varied geographies of service delivery. Cus-
tomer journeys, then, are primarily considered to be 
potential paths that hypothetical or known customers 
could, should, or did take through a given servicescape. 
Elements of the servicescape act as levers for service 
operations that retail providers can use to drive change 
against the customer journey. Within retail stores, these 
levers may include the siting and situation of different 
retail activities such as storage facilities, the shop floor, 
and checkouts to maximize the effectiveness of customer 
flow relative to day-to-day store operations; as well as 
the composition of products and service displays; atmos-
pherics such as aroma, lighting, and color-coding; and 
layout of marketing material for branding. While indoor 
aspects of the servicescape are perhaps readily apparent 
to anybody that has visited a retail store, it is important 
to recognize that the servicescape also extends beyond 
the store, into the retail high street outside. Along high 
streets, several overlapping servicescapes for adjacent 
retailers may come into conflict. Additionally, we might 
consider that the retail servicescape must often coexist 
with other urban servicescapes. The ability for retailers 
to collect data outside store walls is markedly reduced 
relative to the insights available to them in-store where, 
by contrast, retailers have quite broad and far-reaching 
sensing and observational capabilities. The customer 
journey idea has seen limited application in outdoor 
contexts, largely because data are hard to come by. The 
reader might consider, then, that advances in apply-
ing customer journey concepts to urban environments 
could be useful in expanding the original retail concept 
outdoors, especially in high street contexts. As we will 
discuss, traditions of relatively stealthy data capture and 
profiling that are reasonably common within the private 
spaces of in-store retailing do not transfer well to the out-
doors, where they quickly fall afoul of valid assumptions 
of public good.

3.5 � Integrated approaches
A major benefit of the customer journey approach to 
framing retail analysis is its ability to unify diverse facets 
of customer experience, with broad applicability across 
a range of retail environments, retail sectors, and cus-
tomer types. Retailers are therefore capable of tracing 
the customer journey through a very complex pipeline 
of interactions with store operations, starting with the 
genesis of a purchase (which may be Online), through to 
direct engagement with product offerings, through pur-
chase, and on to after-purchase dynamics. As we will dis-
cuss later in the paper, recent developments in customer 
journey information systems (CJIS) (Torrens, 2022) have 

sought to automate the collation of these data-points on 
the customer journey for insight generation. The vast 
majority of progress in development of CJIS is consid-
ered for the retail omnichannel, drawing in part from 
e-commerce analytics platforms that may be extended 
to m-commerce (Chatzidimitris et  al., 2020). Work by 
Berendes and colleagues, however, has examined what 
it would take to build CJIS that cover whole retail high 
streets, potentially with insight down to individual pedes-
trians (Berendes, 2019; Berendes et al., 2018). This opens 
up the possibility that CJIS could be extended, in con-
cept, to encompass broader considerations of pedestrian 
behavior along high streets and streetscapes more gener-
ally (Torrens, 2016a).

4 � Existing data correspondences between retail 
customer journeys and urban pedestrian 
journeys

Most research of customer journeys has been considered 
for indoor shopping (Voorhees et al., 2017). Nevertheless, 
interest in following customer journeys from the high 
street and into stores (and vice-versa) is increasing, and 
the counterfoil of customer behavior along streetscapes 
beyond store walls has recently drawn considerable 
attention (Berendes et  al., 2018). This perhaps suggests 
that the customer journey framework is apt for extension 
to urban science and to urban informatics. Two develop-
ments are worth mentioning here as context. First, sig-
nificant numbers of data points have become available 
from the retail omnichannel, via the personal devices that 
people carry with them as they shop. Many of these data 
points map relatively neatly between the cyberspaces of 
e-commerce and tangible spaces within retail services-
capes, for example when customers scan a barcode with 
their phone to check pricing, when they use cell phones 
to pay via digital wallets, or when customers activate a 
digital location-based coupon offer tied to localization of 
their Wi-Fi signal (Souiden et al., 2019). The omnichan-
nel is in essence accessible to customers wherever they 
go and provides tendrils between in-store journeys and 
components of the customer experience outside the 
store. Second, there is a growing appreciation among 
retailers—especially those with high street store fronts—
that customer journeys may be tight-coupled to ambient 
urban geographies of place (Johnstone, 2012; Clarke & 
Schmidt, 1995), especially in downtown areas (De Nisco 
& Warnaby, 2013; Hall, 2008; Hahm et  al., 2017, 2019). 
This also ties retailing success to issues of loss of attrac-
tiveness of the city center and suggests that customer 
journey metrics might be intertwined usefully and pro-
ductively by retailers with metrics of downtown vitality. 
There are therefore open opportunities for an exchange 
of knowledge from urban science into retail operations 
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if we can use the customer journey to meaningfully dock 
theories and ideas from retailing and urban science. 
Importantly, at least in concept, that knowledge is pos-
sibly accessible at the scale of individual people, with rich 
ties to their ambient urban context.

In what follows, we discuss five dimensions of the cus-
tomer journey framework that could, in the near term, 
provide mutual synergy between urban informatics 
and retail data science. These include pedestrian sur-
veys, pedestrian movement tracking, analysis of urban 
transactions through tap-ins, urban activity detection 
by data-mining, and computer vision on urban scenes. 
In Section 5, we will additionally discuss seven research 
themes that could provide significant new insight to 
urban science, but perhaps with lengthy horizons for 
research and development. We will highlight the urban 
omnichannel, issues of data granularity, fast and slow 
data, high street information systems, profiling and 
geodemographics, controlled experimentation, and 
issues of privacy and privacy protection.

4.1 � Pedestrian surveys
Individual pedestrians on high streets may be surveyed to 
assess aspects of their trip-making, activity, and personal 
factors in their decision-making (e.g., preferences, goals, 
and habits) (Golledge & Stimson, 1997). Surveys may 
also be used as a street census, to sample flows of cus-
tomers and determine the demographic makeup of the 
high street crowd (UK Ministry of Housing Communities 
& Local Government, 2018). In some instances, pedes-
trian diaries (what Millonig and Gartner (2011) refer to 
as the “time-space budgets technique” of data collection 
(p. 5)) are used to piece-together the time geography of 
pedestrian journeys with explanatory factors (Middleton, 
2009). Feng et al. (2020) discussed the usefulness of sur-
vey data as a supplement to other data sources for pedes-
trian study, particularly in their ability to lend factors of 
personal experience to other data-sets (p. 8). Hopefully 
the reader may also envisage that retail survey data can 
be used similarly to accentuate insight about custom-
ers and would-be customers on high streets. Of course, 
surveys are almost always limited by the fact that high 
street shoppers may not be able to parsimoniously state 
or reveal why they are engaging in one particular shop-
ping factor or another (Louviere et  al., 2000). Millonig 
and Gartner (2011) stated this well: “questionnaire sur-
vey techniques … provide detailed information concern-
ing route decisions and individual habits, motives and 
intentions … However, as human behaviour is never fully 
determined by verbalized structures and people tend to 
adapt their answers – consciously or subconsciously – 
to what they expect to be socially desired behaviour … 
accuracy of the results gathered from questionnaires may 

suffer.” (p. 5). A perhaps overarching limitation of pedes-
trian surveys is that they are time-consuming to admin-
ister over large samples, may receive low response rates 
when used in public spaces, and are also subject to errors 
of recall and other biases.

4.2 � Tracking pedestrian movement and flow
Retailers often maintain an interest in siting important 
operations in geographies that might effectively draw 
customers’ journeys out from the general flow of people 
along the sidewalks of a given retail high street and into 
their stores (or away from competitors’ stores): a concept 
that they usually term as “foot traffic”. Foot traffic is often 
a key performance indicator (KPI) in determining the 
onset of retail operations, including initial premises loca-
tion and opening hours. Foot traffic fluctuations can also 
serve as a KPI to drive day-to-day decisions about place-
ment of marketing and arrangement of merchandising, as 
well as momentary operations such as staffing geography.

There are several commonly accepted corollar-
ies between retail foot traffic and concepts of sidewalk 
pedestrian flow in urban science. These include connec-
tions between foot traffic on streets and vibrant com-
munities (O’Sullivan & Bliss, 2020), livable spaces (Talen, 
2002; Cervero, 1998; Cervero & Kockelman, 1997), 
downtown revitalization (Talen & Jeong, 2019), and 
even notions of defensible spaces (Newman, 1972, 1996). 
There is a generally held principle that public (and par-
ticularly municipal) sidewalks ought to provide a level of 
transport service for all pedestrians. This has tradition-
ally been examined through physical attributes of walker 
flow on high streets. The approach is exemplified by the 
work of Hess and Moudon (Hess et  al., 1999; Moudon 
et  al., 1997), who have examined pedestrian flow as a 
function of micro-scales of urban design and morphol-
ogy. Sulis et al. (2018) used smart card payment data, cell 
phone data, and social media data to build urban metrics 
(based around pedestrian behavior) to explore Jacobs’s 
(1961) concept of urban vitality. Sulis et  al. (2018) con-
nected measures of urban diversity, place vitality, and 
pedestrian flow. This analysis was carried out coarsely, 
looking at London as a whole. Feng et al., 2020 provided a 
recent and exhaustive review of available data collection 
options for acquiring pedestrian data (largely considered 
for outdoor street settings) and possible schemes for 
overcoming some of the inherent difficulties in building 
empirical records of public pedestrian behavior. These 
include methods for measuring the flow characteristics of 
continuums of pedestrians along streets, movement pat-
terns of pedestrian groups within those flows, and chore-
ography of individual pedestrians.

Retail customer journey analysis of foot traffic is often 
trained on specific types of paths within the background 
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flow of sidewalk pedestrian traffic. Retailers are keen 
to identify who, among a crowd of mobile pedestrians, 
might be a customer or potential customer, and there-
fore the paths that yield signs of customer traffic are of 
utmost concern within the broader tapestry of outdoor 
walkers. By extension, the same approaches could be 
used to identify different types of walkers for urban sci-
ence. Ideas from the customer journey, then, might be 
useful in building finer-scale granularity for traditional 
flow-type analyses of crowd patterns in urban science. 
Similarly, data collection schemes from retailing have 
developed considerable sophistication in their ability 
to situate customer movement relative to well-bounded 
areas of interest (AOIs) and points of interest (POIs) in 
retail servicescapes. Some retail AOIs and POIs over-
lap with urban AOIs and POIs (Hu et  al., 2015), e.g., 
pedestrianized malls and car parks, which often serve as 
anchor points for movement (and pedestrian cognition) 
in a wide range of urban environments (Couclelis et al., 
1987).

Retailers are often able to discern individual customer 
journeys in rich context, by matching customer move-
ment to well-specified typologies of customer behavior. 
For example, work by Millonig & Gartner, 2011 showed 
that retail high street customers can be segmented into 
comparison shoppers, convenience shoppers, and hedon-
istic shoppers, by examining their customer paths. These 
schemes could be incredibly useful in urban science 
beyond retail geography, for example, in isolating com-
muters within rush-hour surges from space-time paths 
of movement, or distinguishing among outdoor workers, 
visiting tourists, or local pedestrians. They could also be 
used for surveillance to pinpoint deviations from “nor-
mal” paths and this raises the issue of the very slippery 
slope between urban science for the public good and 
urban science that exacerbates existing problems of algo-
rithmic bias.

4.2.1 � Manual tracking by observation
In many indoor retail operations, there is a tradition of 
using manual shadowing of individual customers as 
a scheme for studying their behavior in stores. These 
schemes are well-covered by Underhill (2005, 2009). 
Invariably, shadowing involves trailing customers as they 
shop and then noting their behavior along the customer 
journey using coded observational analysis. This work 
is massively time consuming and does not extend easily 
over wide areas or to large numbers of customers.

Similar observational research is common in urban sci-
ence. Observation of pedestrians along retail high streets 
is one of the most reliable methods for building data-sets 
about dynamics on their streetscapes (and in many ways 
possibly represents the gold standard, although it has 

difficulties to effect in practice). For example, Millonig 
and Gartner (2011) demonstrated a tablet-based tool 
for examining pedestrian movement in urban outdoor 
environments by manual tracking, but with additional 
on-device analysis for determining speed and stopping 
behavior from those traced paths. A similar scheme was 
introduced by Griffin et al. (2007), Torrens et al. (2011), 
and Torrens and Griffin (2013) for indoor-to-outdoor 
tracking, incorporating social factors among tracked 
people. Two important caveats of these approaches to 
data-collection are that they are very time-consuming 
(Millonig and Gartner (2011) followed only 57 people in 
their study), and that the data are necessarily reliant on 
the events that unfold on the street while you are observ-
ing: one will likely have little to no experimental con-
trol over the scenario being observed (Feng et al. (2020) 
(p.5)).

One might surmise that observation data could also 
suffer from problems of specificity: few high streets are 
enough alike that you could make easy generalizations 
from even a handful of observational studies. Neverthe-
less, Brown, 1994 noted that findings drawn from pedes-
trian counts across different forms of (outdoor) retail 
settings are “remarkably consistent” (even across coun-
tries) (p. 550) in supporting four main pillars of customer 
journeys. These are (1) the influence of magnet or attrac-
tor stores (such as department stores) on drawing cus-
tomer traffic and swaying customer circulation patterns 
(p. 551); (2) the frequent exchange of customers between 
stores with compatible trade classes (p. 551) (see Nelson 
(1958)); (3) the gravitational pull of entry and exit loca-
tions to the high street (such as bus stops, car parking 
facilities, and train stations (p. 551)); and (4) the frictional 
influence of distance on the propensity to engage in cus-
tomer journeys of a given length (Brown (1994) com-
mented on a somewhat hard limit of 200 m between retail 
outlets) (p. 552) (also see Brown (1987)).

4.2.2 � Journeys revealed by geographic positioning systems
Many medium and large metropolitan planning organi-
zations have long surveyed citizens’ journey behav-
ior using travel diaries. Traditionally, these have been 
paper-based in questionnaire form. Wolf et  al. (2001) 
introduced a scheme to supplement this with GPS data 
loggers that can automatically track movement. In their 
work, paper records were replaced with GPS and tel-
ephone check-in interviews. Wolf et  al. (2001) found 
the resulting diary data to be as good in quality as tradi-
tional paper-based questionnaires. A number of studies 
have sought to examine properties of movement pat-
terns directly from GPS data (without associated diary 
information). For example, Zheng et  al. (2009) intro-
duced a scheme for directly building journey data from 
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GPS traces, with several elements that could be useful in 
building knowledge of journeys in urban settings. Zheng 
et al. (2009) studied GPS traces for the presence of “tra-
jectories”, which they regarded as sequential GPS loca-
tions that a user moves through beyond a specific time 
threshold. They also explored “stay points” in GPS data, 
as geographic regions with specific distance, wherein a 
user remained during a specific time interval with con-
secutive GPS point data. Finally, they looked at the “loca-
tion history” of GPS traces of an individual’s movement, 
as a sequence of stay points that were visited, also noting 
arrival and departure times. Zheng et  al. (2009) intro-
duced a scheme for combining these findings in GPS data 
into a hierarchical search tree that could link stay points 
as connected journeys. Ashbrook and Starner (2003) 
explored the topic of journey analysis using GPS points 
to perform “user modeling” (determining what a user will 
do, and where, when, and why they might do so). Their 
aim was to predict a user’s next activity. Ashbrook and 
Starner (2003) used clustering to compose groupings of 
location bundles in GPS databases and purposed these 
bundles to estimate user journeys and a prediction of 
likely next path. Krumm and Horvitz (2007) adopted a 
similar approach in their “predestination” model of truck 
movement from GPS traces. However, while the underly-
ing GPS data in each of these examples are often of high 
resolution, the resulting knowledge generated about jour-
neys is relatively coarse in space and time (often at intra-
urban resolution). Duives et  al. (2019) used a trained 
Recursive Neural Network (RvNN) to predict crowd 
movement patterns (in real time) between polygons pro-
duced by GPS trace clusters, but at coarse resolution (5 
to 10 minute displacements). These new machine-learn-
ing approaches with high-resolution are quite innova-
tive. Consider, for example, that work by González et al. 
(2008) to form “individual mobility patterns” from cell-
tower positioning (call detail records) produced journeys 
that actually had up to ~ 700 km displacements.

In other cases, data are also available from commercial 
aggregators of user localization data. GPS traces, in these 
cases, typically become usable by a provider of a soft-
ware service as part of their terms of agreement when a 
user accesses that service on a location-aware device. For 
example, Goldfarb and Tucker (2020) have recently pub-
lished an analysis of visitation frequency patterns for dif-
ferent retail categories using SafeGraph data.

There are now several examples of geographic informa-
tion systems that are built atop high-resolution individ-
ual GPS data traces that have been uploaded by citizen 
contributors (Elwood, 2008; Goodchild, 2007; Haklay & 
Weber, 2008; Zook et al., 2010). These sources of volun-
teered geographic information (VGI) can, in some cases, 
be accessed when users make their contributions open 

to public view. Novack et  al. (2018) described a system 
for mining OpenStreetMap (OSM) data and produc-
ing routes that are regarded as “pleasant” (green, social, 
less busy). They used spatial analysis (buffering) to map 
those indices to street segments. However, Flanagin 
and Metzger (2008) questioned the credibility of VGI, 
particularly relative to traditional forms of geographic 
information that are acquired and published by official 
agencies, and they pointed out potential gaps between 
the two in measurement quality. Quattrone et al. (2015) 
showed that VGI systems with crowdsourcing data (such 
as OSM) are dominated by a relatively small number of 
contributors, with results that are therefore vulnerable to 
a series of biases. Specifically, they argue, there is a high 
likelihood of geographic bias, because the journeys that 
are shown in the system are the journeys that this small 
number of super-contributors make. Haklay (2010) also 
discussed this geography problem, showing, for example, 
that OSM data for the United Kingdom had systematic 
gaps in some rural and lower-income areas. Hecht and 
Stephens (2014) arrived at similar conclusions for the 
United States. De Longueville et  al. (2010) additionally 
argued that VGI suffer from problems of vagueness.

4.2.3 � Journeys revealed by Wi‑Fi and cellular data
There are instances in which the devices that custom-
ers use may not support GPS (users may also disen-
gage their GPS so as not to be location-tracked). GPS 
also tend not to function well indoors and retailers (and 
urban scientists) may be interested in customer jour-
neys that start outside but move inside, and vice-versa. 
A dedicated line of research has therefore opened-up 
to examine how customer journeys might be identified 
by other location-aware Internet and Communications 
Technologies. Amaxilatis et  al. (2018), among many 
other authors, discussed the utility of smart devices in 
data collection, noting that people may often bring their 
devices to hyper-local parts of urban settings where other 
technical infrastructure may not have been installed (p. 
1–2). In particular, the in-built positioning functions of 
mobile phones have been used to study urban movement, 
most commonly through retrospective examination of 
call detail records from telecommunications providers 
(Frías-Martínez, Soguero, & Frías-Martínez, 2012; Frías-
Martínez, Soto, Virseda, & Frías-Martínez, 2012; Frías-
Martínez & Virseda, 2013; Vieira et  al., 2010). Millonig 
and Gartner (2011) discussed the potential for use of cell 
phone positioning to automate movement tracking of 
pedestrian journeys along streetscapes. They were rather 
dismissive of the idea for use at the scale of walking and 
instead recommended that it be used for other travel 
modes that take place over larger distances (p. 6). Lee 
et al. (2013) introduced a scheme to essentially automate 
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shadowing to discern customer journeys at individual 
level within a shopping mall. They used Wi-Fi finger-
printing (isolating the hardware address of a customer’s 
Wi-Fi chip and tracking its position through triangula-
tion with Wi-Fi access points that it communicates with) 
to build traces of customer journeys, which they then 
allied to activity classes based on mall zone geography. 
In urban science, similar themes were discussed by Tor-
rens (2008). Feng et al. (2020) commented that studying 
movement via wireless technologies opens up problems 
of signal strength and the inherent geography of broad-
casting devices.

4.2.4 � Journeys revealed by points of interest and areas 
of interest from retail review data

Due in large part to the blurring of boundaries between 
e-commerce, m-commerce, and tangible retailing, there 
has been considerable research effort invested into con-
nections between traces of people’s journeys through 
social media and the commensurate overlap with their 
real-world activity. Much of this work is sourced in analy-
sis of point-of-sale data (Antczak & Weron, 2019), tying 
transactions to people and locations. Early work in this 
area extended geodemographics to the point of sale, and 
was usually based on proprietary customer record data 
linked within retailers’ internal information systems, 
which included internal metrics for customer satisfac-
tion. Many retailers now present aspects of their cus-
tomer experience data in a public-facing manner, and this 
includes user rating data. Intermediary companies such 
as Google Reviews, Yelp, and Meituan-Dianping have 
emerged as brokers of customer review data, for exam-
ple, and there has been considerable work to tie these 
data to AOI and POI locations to yield place-attraction 
data and activity maps (McKenzie et al., 2013; Yang & Ai, 
2018). Some work has been done to build journey data 
using these AOI and POI anchors. Although the journeys 
are usually coarse in their space-time representation, trip 
paths can straightforwardly be extracted automatically 
from such data. McKenzie, Janowicz, Gao, Yang, and 
Hu (2015) referred to POI data as “geosocial”, combining 
aspects of social geography with the specificity of loca-
tions that may be straightforwardly derived from loca-
tion-aware technologies or location-based services. Gao, 
Ma, et al. (2013) have suggested that such systems might 
form the basis for place-based (“platial”) GIS.

POI and associated review data are generally quite 
available for restaurant establishments, in particular, 
because reviews of food and service are closely associated 
to the restaurant location. Wu et al. (2021), for example, 
was able to examine the rise and fall of restaurants in Bei-
jing at city-wide scale from POI data. Chen, Chen, and 
Chen (2017) examined connections between the location 

traces of volunteers and retail POI locations at regional 
scale. Using a variant of the Geographic Exposure Mod-
eling (GEM) methodology (Beyea, 1999), Kirchner et al. 
(2014) surveyed 550 people over 8 months, who agreed to 
share their mobility data, and connected it to a nation-
wide POI density map of retail outlets across the United 
States. Kirchner and colleagues have since extended 
the concept (Cantrell, Ganz, et  al., 2015; Cantrell et  al., 
2013; Cantrell, Anesetti-Rothermel, et  al., 2015), tying 
urban public health (tobacco use, in particular) to point 
of sale data, as well as to  exposure to marketing mate-
rial and signs as pedestrians move along retail high 
streets. Xu (2021) examined data from 8524 hotel POIs 
in Hangzhou, China and analyzed their coarse-scale 
geographic clustering. Zhang et  al. (2021) have recently 
mapped connections between culture and patronage at 
food establishments across five provinces of mid-Eastern 
China (covering 382 million people), using ~ 2.3 mil-
lion POI records (from AMap data archives) of restau-
rants. The results are coarse, but the investigative reach 
of the underlying data is impressive. (A larger study is 
reported in Jiang et al., (2021)). Lin et al. (2018) examined 
~ 72,000 POI records in Guangzhou, China for varying 
retail categories (building materials, clothing and tex-
tiles, convenience stores, grocery, malls, specialty shops, 
supermarkets) and assessed their street-level central-
ity (Sevtsuk & Mekonnen, 2012) using a variant of space 
syntax (Penn, 2003). Their results showed that malls and 
convenience outlets rely heavily on proximity to central 
streets (streets with a lot of connections to other streets), 
while building materials suppliers, clothing retailers, spe-
cialty shops, and supermarkets favor “betweenness” (i.e., 
connections to each other). Han et  al. (2019) also used 
POI data to examine connections between street and 
road structure and coarse patterns of retail geography (in 
Zhengzhou, China). Liao et al. (2021) combined POI data 
with smart card data from public transport to study con-
nections between geographic centrality and retail store 
location (in Beijing, China), using similar measures of 
betweenness and closeness, but additionally considering 
temporal dynamics. The temporal dynamics of POIs for 
broad retail categories are also well-explored in McKen-
zie, Janowicz, Gao, and Gong (2015).

For the most part, work derived from Online review-
based data is (1) regionally focused, and (2) targeted at 
revealing general patterns of urban geography, which 
may be associated with retailing. This is, however, begin-
ning to change, as new databases (e.g., the (commercial) 
SafeGraph Places dataset) are becoming available at high 
resolution, with reach to hyper-local locations within cit-
ies and with the granularity of individual establishments 
that fall within broad AOIs and POIs. In the data-mining 
and knowledge discovery literature, much of the focus in 
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investigating AOIs and POIs is tied to predicting move-
ment, particularly the likelihood that aggregate flow 
data might be reconstructed by building paths between 
POI centroids (Santos et al., 2019; Chen et al., 2013). It is 
therefore plausible that POI data (perhaps crawled from 
social media) could be used to automatically generate 
candidate customer journey paths.

4.2.5 � Journeys revealed by geo‑referenced social media data
Other work has sought to delve deeply into social media 
data directly. For example, a relatively large number of 
papers have been published on the issue of studying 
movement records in geo-referenced social media data 
(Frías-Martínez, Soto, Hohwald, & Frías-Martínez, 2012). 
For example, Jurdak et al. (2015) examined over 6 million 
geotagged Twitter records in Australia, from which they 
were able to build coarse-scale proxy movement patterns 
of individual users. Kurashima et al. (2010) introduced a 
scheme for determining possible travel connections by 
route generation from sets of geotagged Flickr images. 
Specifically, they used data-mining (cluster detection by 
mean-shift, followed by Markov and topic modeling) to 
estimate the probability of associating photographs with 
visits to particular landmarks. They tested the method 
on the data of ~ 72,000 Flickr users in the United States. 
Chen et  al. (2015) studied movement as represented in 
geo-tagged social media posts on Weibo. Their approach 
involved associating locations to geographically-coinci-
dent keywords POIs in Weibo data.

Social media analytics of this sort are popular, because 
sample data are easy to come by. However, there are 
known problems with analyses of these data. In particu-
lar, the journey distances that are extracted are usually 
relatively large (often inter-city or intra-urban at high-
est resolution). Realistically, the paths that are resolved 
from social media data represent displacements in space 
and time and not movement: indeed, relatively little is 
known about the actual travel that is undertaken within a 
displacement. Paths are commonly represented in as-the-
crow-flies straight lines, which in many examples (such 
as the New York City analysis of Twitter data by Wang 
and Taylor (2016)) are at odds with the actual street pat-
terns available for movement. Chen et  al. (2015) raise 
several other salient criticisms. They argue that tradi-
tional approaches to data-mining geo-referenced media 
suffer problems of sparseness and irregularity, as well as 
the presence of problematic volumes of unreasonable 
records in the data-sets. Naaman et al. (2012) found that 
social media data are too sparse to cover even diurnal 
activity in any but a few cities. The movement data that is 
extracted from social media may be tight-coupled to spe-
cificities of the social media type. For example, Flickr data 
are limited to things that people take photographs of and 

one could easily argue that this will necessarily bias pop-
ular places such as landmarks or tourist sites. Johnson 
et al. (2016) challenged the assumption that social media 
data have correspondence to local locations at all. For the 
Twitter, Flickr, and Swarm platforms, they showed that 
localness only held for 75% of the data. They also showed 
that localness of social media data varied depending 
on the sociodemographics of the users as well as their 
geography, with strong potential for the introduction of 
biases. They concluded that this can lead to inaccuracies 
in analysis on data-sets from those platforms. Feng et al. 
(2020) made the observation that pedestrian journey data 
is usually lacking in comprehensiveness and that the data 
often lack records for multiple dimensions of pedestrian 
behavior with simultaneity. There are also very thorny 
issues of quality and bias in these data. In his assessment 
of VGI approaches, Haklay (2010) made a very relevant 
comment, that questions about “logical accuracy, attrib-
ute accuracy, semantic accuracy, and temporal accuracy” 
are, essentially open problems (p. 700). More than a dec-
ade later, we would argue, all of these issues are still open.

Despite the criticisms of social media analyses that we 
discussed above, it is the case that useful components of 
journeys can be pulled from geo-referenced media data-
bases. Chen et  al. (2015), for example, raised an inter-
esting point: they discussed the potential of “movement 
semantic analysis” (p. 2) as a way to associate likely user 
activity to stays and moves (movement between consecu-
tive stops). For example, consider the work of Mor et al. 
(2020), which introduced a method for differentiating 
among locals and tourists in geotagged Flickr photograph 
data-sets. They were able to extract interesting proper-
ties of supposed journeys from the data, including travel 
time, travel distance, and travel speed. Zhang et al. (2017) 
also discovered several properties of journeys that can be 
built from social media data. In utilizing Twitter data to 
build longitudinal travel records, they were able to infer 
distributions of inter-tweet displacement, length of dis-
placement, duration of displacement, and travel start 
time. (However, the discovered displacement distances 
were relatively large and travel between tweets was sim-
ply specified as straight-line connections between geo-
referenced locations.) These components of social media 
displacement, we argue, could become useful points of 
further investigation for journey analysis, perhaps at local 
resolutions that could reach to the scale of high streets.

4.3 � Touchpoints and tap‑ins
For many of the studies of movement discussed above 
that are sourced in social media data, there is an implied 
premise that the act of uploading something to social 
media repositories (a comment, a photograph, a review) 
constitutes a touchpoint with the environment. However, 
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a user may have composed the social media data long 
after they have left the place that it indexes. Consider, 
for example, the work on bank note tracing presented 
by Brockman et  al. (2006), which tracked inter-city and 
inter-state displacement based on user tagging of bank 
note serial numbers. This work is described as revealing 
“human travel”, but relies on users accessing a Web site 
to fill out bank note details on forms. One has no idea if 
this took place at the actual touchpoint of a bank note 
transaction, or at home when a user has time to look 
through their currency. Similarly, we mention again that 
for photograph repositories, people will likely only take 
photographs of things that they regard as photogenic. 
They may have many other touchpoints with scenery or 
the built environment that are mundane and therefore 
not part of the record. Nov et  al. (2008) discussed, for 
example, how tagging activity on social media may have 
varied motivation. This implies that tagging can easily 
be disjointed from behavior and from touchpoint activ-
ity. For popular features of the built environment, such as 
landmarks, social media data may well provide very use-
ful touchpoint data. Kurashima et al. (2010), for example, 
were able to identify landmarks, camera interests and 
foci, and inferred routes between landmarks by study-
ing users’ histories on the Flickr repository. Zheng et al. 
(2009) were able to build AOIs from GPS traces. The 
AOIs and POIs that are routinely extracted in analysis 
of geo-referenced social media are touchpoints of a sort, 
albeit at very coarse scale. Nevertheless, these could be 
used as a starting point for fine-grained analysis, espe-
cially if we consider that many AOIs and POIs serve as 
anchor points for movement and possibly for spatial cog-
nition (Couclelis et al., 1987).

Other touchpoints in urban activity match quite closely 
to retail touchpoints. Consider, for example, that the wid-
ening use of tap-in schemes for accessing transportation 
(buses, trains, bicycle shares, taxi services) has created 
anchoring schemes for urban journeys that are similar 
to those for retailing that can be indexed to the point of 
sale. City transit systems actually deliver customers to 
high streets in the same way that they ferry them to their 
jobs and activities (Mishra et al., 2012, 2015). Also, when 
people tap-in and out of a transit system, they are doing 
so to pay for their passage. In this way, tap-ins resem-
ble retail data: a customer journey is strongly-typed to a 
financial transaction and they are also usefully encoded 
with a cost and therefore a willingness to pay. Batty and 
colleagues have investigated tap-ins cataloged through 
transit riders’ use of the Oyster Card payment system. In 
Roth et  al. (2011), they leveraged transit tap-in/tap-out 
ticketing transaction records that note users’ location of 
entry and exit to the London transit system to examine 

the city-wide tapestry of transit journeys across Lon-
don. Their analysis of the Oyster Card database showed 
that trips yield a polycentric spatial pattern in aggregate 
(likely following the hub model of the transit network 
itself and the central place theory that it follows), but 
highly complex patterns in the disaggregate. In Sulis et al. 
(2018) they tied some of these patterns to measures of 
urban vitality, using adjacent social media data. In Reades 
et al. (2016), they examined how the journey data might 
be useful for managing service disruptions, in essence by 
examining what we could consider as the servicescape of 
London’s transit system through the lens of the journeys 
that it supports. Analyses of the Oyster Card database 
are illustrative of the availability challenges that urban 
scientists often face in working with data. For example, 
Reades et al. (2016), in studying the year 2012 records for 
the database, identified 17.9 million tap-ins and 19 mil-
lion tap-outs (consider that both events are touchpoints) 
across 296 stations (p. 372), with 1.65 million tap-ins just 
during the 8:00 a.m. to 9:00 a.m. morning surge (p. 373). 
This is a huge amount of data and (automatically) cap-
tures a significant facet of Londoners’ daily travel (where 
they begin and end their transit journey) with precision. 
But without a connective thread to other data points 
regarding the individuals that tapped-in or out, we are 
left with a significant amount of mystique about the jour-
neys that preceded and followed the touchpoint event. 
Who are the commuters, what were they doing before 
they entered the transit system, what do they usually do 
when they leave?

An important overarching issue is that one must of 
course recognize that subway and bus rides are not 
walking. The same is true of related analysis of taxi cab 
(Guo & Karimi, 2017; Castro et al., 2013) and bike share 
data-sets (Talavera-Garcia et  al., 2021). Transit mobil-
ity is an accommodation to the problem of mass and 
collective transport of huge numbers of people; transit 
trips are therefore very different than customer jour-
neys. In this sense then, perhaps the challenge of col-
lecting massive troves of journey data for pedestrians 
remains largely unresolved. Indeed, the existing state 
of the art still points to essentially bespoke case stud-
ies designed to collect data (Helbing et  al., 2005; Seer 
et al., 2014). In transit systems, there are also a very lim-
ited number of touchpoints (maybe even just one in the 
case of a bus) that users “check-in” with. If the number 
of touchpoints between urban mobility data traces and 
the city could be expanded, we would have a much richer 
database of actual individual interaction and transaction 
with the built environment. Journey-spanning informa-
tion is unlikely to be available within existing municipal 
databases, save small case study data regarding travel 
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diaries. However, it is conceivable that the data could be 
collated from multiple sources. Indeed, this is perhaps 
the lesson that we can learn from retail data on the cus-
tomer journey. For the outdoors, a variety of firms are 
in the business of collecting and synthesizing aggregate 
data, and this is particularly well-known for the science 
of geodemographics (Longley, 2012), for example. Sulis 
et  al. (2018) have attempted this sort of compounding 
approach with data that are accessible to the public, in 
their analysis of connections between tap-in data for the 
London transit system and geo-tags of social media posts 
from a sample of Twitter data streams. They refer to these 
sources as “mobility data”, but the sense of mobility comes 
from difficult analysis. Indeed, the raw data comes from 
static (in space and time) transactions (tap-ins or micro-
blog posts) and the mobility must be inferred from those 
data crumbs. This inference inevitably leads to a network 
analysis, where mobility is assigned to edge connections 
between vertices (Mishra et al., 2015). Nevertheless, the 
work is incredibly promising.

Some researchers have also begun to consider whether 
retail card transaction data (either sales transactions or 
customer loyalty transactions) could provide a source of 
information for customer journeys. Work by Kohsaka 
(1997), for example, showed that retail trade areas can 
be automatically derived from analysis of customers’ use 
of chip-enabled credit cards in the area around Chitose-
Karasuyama Station in Tokyo. These transactions, as 
with tap-ins to transport systems, represent significant 
touchpoints with retailers that can be isolated to specific 
locations (usually the point of sale, and the information 
systems that it connects to) and times as base ingredi-
ents for larger algorithmic recipes for journey analysis. 
Work by Longley and colleagues (Berry & Longley, 2005; 
Rains & Longley, 2021), for example, has uncovered the 
potential for deriving micro-geodemographics on loy-
alty transactions, in particular. This extends the coarse 
and regional scale idea of geodemographics as a way to 
segment populations by geography to new, hyper-local 
specificity. An overarching challenge in pursuing this sort 
of research, however, stems from the overwhelmingly 
proprietary nature of most transaction databases. Unlike 
tap-in data for transit, transactions and loyalty data are 
usually held by private commercial companies, rather 
than the municipal agencies that collect transit data.

4.4 � Data‑mining activities and actions atop social media 
data

Many retailers make rich use of social media data to 
assess customer experience activity (particularly post-
purchase) to market high streets to consumers (Grewal 
& Roggeveen, 2020). In essence, this serves to connect 

customer activity to “lifestyles” that can be associated 
to those activities. Developers of social media platforms 
themselves have rich sets of high street data that are pro-
duced by their systems, and these data form a core part 
of their omnichannel advertising (Nield, 2020; Chauhaun, 
2019), although much of these data may well be hidden 
to user view and inaccessible to retailers. Platforms such 
as Foursquare, for example, are quite overt about their 
reliance on high street data (Frith, 2013), and tying social 
media marketing to activity.

Researchers in urban science have also mined social 
media data-sets to try to infer urban activity, as well as 
actions of urban citizens. The determination of densi-
ties of pedestrian activity within intra-urban areas is now 
routinely explored through analysis of geo-located social 
media postings and data from social check-in services 
(Yang et al., 2019). Gabrielli et al. (2013) referred to geo-
referenced social media as “opportunistic” data (p.34). 
In their work, they classified activities from social media 
data-sets per location, which they were able to couple 
with people arriving at a location or leaving a location. 
These activities were coarse, borrowing largely from POI 
classes (arts and entertainment, food, recreation, night-
life, college, shop, etc.), but have broad relevance in con-
necting retailing and other urban activities. Hasan and 
Ukkusuri (2014) used topic modeling on geo-referenced 
Twitter data to classify activity patterns as part of their 
work to examine whether social media could inform 
activity generation in traditional four-step travel models. 
The range of activities that they considered were broad: 
home, work, entertainment, recreation, shopping, and 
education were among those revealed. Further, they 
included a wide range of locations and sites for activity, 
ranging from supermarkets to theaters, libraries, and 
event spaces (p. 366). A significant result of that work was 
their ability to isolate user-specific activity patterns. How-
ever, they cautioned that the activities lacked explanatory 
power and they pointed out that many activity sequences 
in the record were incomplete, as well as being over-
representative of younger people. Rashidi et  al. (2017) 
showed that social media data over-represent discre-
tionary and leisure activity. Lee et  al. (2016) examined 
~ 63,000 geo-tagged Twitter records across 116 users in 
Santa Barbara, CA and generated envelope hulls to map 
their activity space across a weekday/weekend typology. 
This implies that activity classification from social media 
could be associated to time geographies (the hulls of Lee 
et al. (2016) resemble potential path areas, for example), 
which perhaps hints that activities could be mapped to 
journey paths and embedded within space-time prisms, 
should data at sufficient granularity be available. Torrens 
(2016b), for example, has already shown this with syn-
thetic data produced by agent-based models.
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4.5 � Examining journeys with image processing 
and computer vision

Significant progress has been made in automatically 
extracting movement data from video using computer 
vision and machine learning schemes (particularly deep 
learning via multiple layers of artificial neural networks). 
In some instances, signatures of high street pedestrian 
flow can be extracted from video scenes, including rela-
tionships between characteristics of the streetscape, den-
sity of high street occupation, pedestrian traffic volume, 
and average speed of pedestrians (Krausz & Bauckhage, 
2012). Movement characteristics of individual pedestri-
ans or groups of pedestrians (Favaretto, Dihl, Barreto, 
& Musse, 2016) can also be garnered from video foot-
age (Hoogendoorn et al., 2003), including details on their 
locomotion (gait characteristics, step frequency, velocity 
changes) (Hediyeh et al., 2015); preservation of personal 
space (Moussaïd et al., 2010); and their movement (trails 
of movement paths and movement events, such as steer-
ing maneuvers or stopping behavior) (Moussaïd et  al., 
2009).

However, sources of video data for high streets can be 
difficult to come by. Some authors have relied on foot-
age from closed circuit television (CCTV), which often 
are limited to fixed views on streetscapes from over-
head. In other examples, researchers have collected 
their own data. Several recent video-based experiments 
have looked into the motion of individuals and crowds 
within outdoor events (Helbing & Mukerji, 2012; Johans-
son et al., 2008), and these would seem to resonate with 
adjacent characteristics of retail high streets during mass 
events such as celebrations and festivals (Batty et  al., 
2003a, b). Recent work by Sun et  al. (2021) has shown 
how commercially-available drone platforms can be used 
to analyze high street movement, in their case to examine 
the impact of building entrance geometry on the move-
ment patterns of people on the street outside. Methods 
for machine learning from video could be useful in sup-
porting knowledge-building of urban journeys in two 
key ways: (1) automated extraction of journey data from 
video footage of real streetscape scenes, and (2) the per-
formance of streetscape audits to classify and label urban 
environment scenes in video.

4.5.1 � Pedestrian tracking in video
Grant and Flynn (2017) presented an overview of the 
state of the art in pedestrian tracking in video, largely 
from an image processing perspective. They noted the 
now wide array of schemes available for scanning video 
on a per-pixel basis, or on the basis of texture, to extract 
features of pedestrians and their movement. They also 
reviewed object-level analysis, including training-free 
Bayesian clustering to identify independent movement, 

use of trained support vector machines (SVM) for head 
tracking, and optical flow for dominant motion extrac-
tion. Junior et al. (2010) adopted the same pixel, texture, 
and object typology in their review. Tripathi et al. (2019) 
reviewed the range of deep learning schemes (largely 
using convolutional neural networks (CNNs) that auto-
mate machine learning) available for analyzing crowd 
patterns in video, including crowd counting, estimating 
the density of crowds, segmentation of patches of activ-
ity within crowds, detection and tracking movement, and 
categorizing crowd behavior into normal and non-nor-
mal patterns.

Batty et  al. (2003a) introduced an early example of 
pedestrian analysis in urban science from video. In 
developing their cellular automata model of carni-
val crowds, they consulted overhead footage of crowd 
patterns from helicopters. Hoogendoorn et  al. (2003) 
described an experiment to extract movement traces 
of pedestrians in crowd motion from overhead video 
cameras. They examined video footage of 80 student 
volunteers in an auditorium, using pixel clustering and 
Kalman filtering on the video to track assigned colored 
hats that the participants wore as they were directed to 
walk with assigned behaviors. Johansson et  al. (2008) 
showed that rough characteristics of crowd flow (speed, 
density) can be extracted from video using straight-
forward edge and circle detection and tracking. Hus-
sein and Sayed (2019) briefly discussed their scheme 
for extracting pedestrian movement paths from video, 
as a step in calibrating pedestrian agent-based models. 
Using head tracking, Favaretto, Dihl, and Musse (2016) 
were able to extract very useful quantitative properties 
of pedestrian motion from overhead video sequences, 
including position, speed, and angular variation (p. 
203); using these features, they were able to build short-
lived tracks of individual movement in crowded scenes.

The video-based applications that we discussed above—
journey extraction and pedestrian tracking—could help 
to automate much of the situational awareness, and per-
haps also the semantic awareness, necessary to inform 
analysis of outdoor urban scenes using customer jour-
ney methodology. Tracing tracks through video provides 
direct journey data, at the scale of individuals, while 
scene segmentation allows for the urban streetscape to be 
blueprinted as if it were a servicescape. Further analysis 
between the two could support the investigation of urban 
touchpoints at the level of individual transactions and 
interactions. Feng et al. (2020) pointed out that most exist-
ing video-based studies of pedestrian movement relied 
upon unrelated third party video data, with the result that 
it is not possible to control the views and locations of the 
data (p. 4). For most video studies, only a relatively small 
window of time (and of space) is covered. In essence, the 
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sampling strategy is relatively arbitrary. Feng et al. (2020) 
also discussed how the accuracy of movement (and activ-
ity) data extracted from video is sensitive to the physical 
configuration of the camera (angle, resolution, etc.) (p.5). 
Millonig and Gartner (2011) cautioned that observation 
by video is often constrained to small areas within view 
of cameras and that it is reliable only for “loose groups of 
people” (p. 6). This critique is likely fading in relevance 
now that machine learning schemes are routinely avail-
able to discern individual and very fine-scale features of 
humans in video (Redmon et al., 2016). Nevertheless, the 
additional comment by Millonig and Gartner (2011) that 
blanketing entire sections of an urban area (such as a high 
street) would require many devices (p. 6) remains an open 
and thorny challenge.

4.5.2 � Streetscape auditing in image collections
Static scenes from video footage can also be used to pro-
vide individual perspectives on urban context. Kelly et al. 
(2013) described a system for auditing the built environ-
ment by inviting human users to study 288 street seg-
ment images of St. Louis, MO and Indianapolis, IN on 
the web archive available via Google Street View. The data 
that form Street View are recorded as video by Google 
drivers, but are presented to users as static image mosa-
ics, georeferenced to street centerlines. Kelly et al. (2013) 
evaluated inter-rater reliability and concluded that Google 
Street View is a viable medium for performing audits. 
Mooney et al. (2016) used Google Street View images to 
manually associate streetscape features with pedestrian 
injury using statistical models in New York City. Doersch 
et al. (2012) examined the question of “what makes Paris 
look like Paris?” using image processing to extract salient 
features of Parisian urban form, which prompted a series 
of investigations into what features of built setting could 
be extracted from imagery using automation instead of 
human crowdsourcing. Liu et al. (2016) used image pro-
cessing to perform automated evaluation of urban envi-
ronments, focusing on street façade quality and street 
wall continuity. Their approach relied on scale invariant 
feature transform (SIFT) (Lowe, 2004), and the AlexNet 
(Krizhevsky et  al., 2012) and GoogLeNet (Szegedy et  al., 
2015) CNNs, trained against the Places labeled dataset 
(Zhou et al., 2016). Liu et al. (2011) compared their image 
processing scheme to ratings provided by 752 passers-
by in 56 urban locations. Naik et  al. (2014) proposed 
a system, “Streetscore”, for deep learning on images of 
streetscapes to assess their relative “safety”. They used 
training data gathered from 7000 Online participants 
(tasked with very simple A/B evaluation criteria) to then 
analyze 1 million images from Google Street View across 
cities in the United States. In later work, Naik et  al. 
(2017) used image processing to look at relative change 

in appearance of streetscapes through Google Street View 
imagery. They mostly focused on addition or loss of built 
development in the images. Li et  al. (2018) presented a 
deep learning scheme (image regression by support vec-
tor regression) for estimating building age from Google 
Street View images. Their approach extracted features 
from images, then built a regression model from those 
features using a CNN. They considered only single-fam-
ily residential houses and reported 25% error rates, with 
errors of up to 11 years in estimating building age. Hara 
et al. (2013) asked human labelers on Amazon Mechani-
cal Turk to assess sidewalk accessibility in Google Street 
View images. They found that human labelers were 
80% accurate (93% with control measures) in identify-
ing accessibility concerns in images (e.g., no curb ramp, 
objects blocking access, surface issues, early termination 
of sidewalks). Law et al. (2017) used machine learning to 
evaluate the relative quality of street frontage. They used 
a CNN on Google Street View imagery. They examined 
images for the presence of “active frontage”, e.g., first floor 
of buildings with windows and doors (as opposed to, say, 
walls and fences). They referred to their CNN technique 
as “StreetFrontageNet”, which used United Kingdom 
Ordnance Survey data to build a graph in which each ver-
tex is a junction and each edge is a street. They also built 
3D models of streetscapes using ESRI City Engine and 
programmed an agent to traverse the model via random 
paths to produce images. Law et al. (2017) concluded that 
Google Street View images are not entirely reliable: they 
suffer from problems of lighting and obfuscated views.

5 � Speculative connections between walking 
in retailing and walking in urban science

In the previous section, we reviewed the literature to 
draw comparisons between elements of customer jour-
neys from retail perspectives that may have support in 
existing urban science research that either extends to the 
individual or gets close. In this section, we look farther 
afield to explore whether new paths for research inquiry 
might be usefully opened-up for urban science at indi-
vidual scale, with the customer journey framework as a 
guide.

5.1 � The urban omnichannel
The retail omnichannel can provide retailers with signifi-
cant insight into who their customers are, and into the 
factors that shape their customer journey. This is par-
ticularly useful for retailers that have a presence in many 
different channels (physical stores, e-commerce portals, 
social media branding, etc.) because aspects of the cus-
tomer journey such as product comparison may begin 
in one channel, while the actual act of purchasing and 
exposure to other aspects of customer experience may 
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complete in another channel. Three conditions of this 
insight are relevant to our discussion of urban science 
at individual-scale. First, once developed on cloud, Web, 
and device platforms, acquisition of omnichannel insight 
is often automated (Bell et  al., 2014). Second, develop-
ing empirical connections between omnichannel data 
points is essentially baked into most omnichannel infor-
mation systems (Iftikhar et  al., 2020). The consequence 
is that any collected data usually functions as linked data 
(Wood et  al., 2014), with the links providing significant 
usable structure within and across the data. If a customer 
can be individually identified in any channel, they can be 
mapped to activity in the other channels. Third, the two 
pieces of understanding that we have highlighted (who 
customers are and how their journey forms) are highly 
actionable relative to many retail service problems, such 
that retailers may be able to (automatically) build strong 
explanatory and semantic  connections between cus-
tomer journeys and the servicescape from those data. 
Put together, the three factors imply that individuals can 
be bound to context through automated analysis. For 
example, Ghose et  al. (2019) showed that consideration 
of customer trajectories in a mall can increase the speed 
of uptake and redemption probability of mobile adver-
tising, as well driving higher transaction values. Struc-
tured analysis across retail channels is often critically 
important for retailers: as Piotrowicz and Cuthbertson 
(2014: p. 6) put it, “Because the channels are managed 
together, the perceived interaction is not with the chan-
nel, but with the brand.” For retailers that can effectively 
manage channel integration, significant efficiencies can 
be garnered. Chen, Li, and Sun (2017) have shown, for 
example, that mobile geo-targeting of customers (essen-
tially, sending customers coupons and advertising based 
on their location while on the move) produces more firm 
profit than standard forms of targeting. Berendes (2019) 
made the highly relevant statement that a wealth of digi-
tal information from the omnichannel “has created new 
opportunities to learn more about customer behavior 
in high streets … While customers in a high street are 
unknown for the retailers, online retailers are situated 
with detailed knowledge about their customers” (p. 313). 
In particular, the fact that many customer journeys now 
begin their decision journey in e-commerce (comparing 
goods, assessing stock, checking prices, viewing prod-
uct information) allows retailers to build large archives 
and anchors for individual customer journey data before 
a shopper even sets foot on the high street.

Urban walkers might also be usefully considered to 
be journeying through an “omnichannel”. Consider, 
for example, that many walkers now travel with mobile 
phones that natively track their position (Hightower & 
Borriello, 2001) and record location histories of many of 

their transactions either directly through GPS or as part 
of the telephony system (Hong et al., 2017; He et al., 2015) 
and the Internet (Torrens, 2008). A significant amount 
of work in critical geography is revealing how, from the 
perspectives of these systems, people can be consid-
ered to be co-existing across the tangible geographies 
of their movement through cities and the cybergeogra-
phies (Dodge & Kitchin, 2000) of their matching “data 
shadow” (Clarke, 1994) and “digital twin” (Batty, 2018) 
in Online realms (Dodge & Kitchin, 2005; Batty, 1997b). 
Walkers also routinely make use of mobile applications 
to plan and orchestrate their trips (Mishra et  al., 2015), 
to engage with waypoints along their journey (Ishikawa 
et al., 2008), and to directly navigate while mobile in cit-
ies (Laurier et al., 2016). In doing so, walkers may match 
and dock significant aspects of their spatial behavior to 
allied channels of information (and data collection) in the 
application interface, and increasingly through the larger 
application ecosystem that mobile software is connected 
to. In some instances, there is evidence that engagement 
with apps can be indicative of real-world spatial behav-
ior. Coutrot et  al. (2019) have shown, for example, that 
wayfinding in apps can serve as a reliable estimator of 
real-world wayfinding performance. In many instances, 
trip-making functionality of apps is directly connected 
to retail information systems and coded aspects of the 
customer journey: this is particularly evident in mobile 
recommender systems (Chatzidimitris et al., 2020) and in 
geo-targeted advertising (Friedrich et al., 2009).

A perhaps increasing number of transactions that 
walkers make with people and things while walking are 
now brokered Online. As a consequence, walkers engage 
with touchpoints that coexist in the tangible world of the 
transactions, as well as with additional Online channels 
such as software agents, identification and verification 
systems, payment systems, database access, content and 
information retrieval, and cloud storage. Many of these 
transactions are actively entered into by walkers (e.g., 
tapping identification to a reader to gain entry to a build-
ing, opting to scan a QR code on an advertising display, 
or geo-tagging and annotating a digital photograph and 
uploading it to cloud storage). Other transactions while 
walking are passively generated, as in smart city moni-
toring systems (Akhter et al., 2019; Kitchin, 2015). How-
ever, the significant data science functionality of the retail 
omnichannel that we just mentioned—automation, link-
age, and actionability—is not always easy to tease from 
traditional forms of urban data. In response to these 
challenges, many scholars of urban science have turned 
to multi-channel data acquisition strategies in ways that 
resemble retailers’ forays into the omnichannel. As we 
discussed in Section  4.2.5, social media are now a sig-
nificant component of the retail omnichannel, handling 
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many facets of the customer journey, but particularly 
advertising and customer service. Similarly, in urban sci-
ence, a large volume of research has been invested into 
exploring whether connections can be made between 
data from social media channels and aspects of urban 
walking. A key thread in this work connects the content 
that walkers generate and interact with on social media 
platforms to geographic references embedded into that 
content directly, or by association as metadata. The con-
nection between content and location can provide struc-
ture to establish geographic context and around the site 
of content creation, in ways that bridge the media chan-
nel space of blog posts (messaging, video-making, pho-
tography, annotations such as “likes” or “check-ins”, etc.) 
with tangible touchpoints along walks, such as entry to 
establishments, time spent in particular urban space and 
places, crowding effects of multiple users sharing space 
and time, and so on. As with data in the retail omnichan-
nel, much of the geography associated to social media 
content can be automatically generated, using GPS, pla-
cename attribution to text, or GeoIP services (Croitoru 
et  al., 2013; He et  al., 2015; Kelm et  al., 2013). While 
social media data may not personally identify users, they 
are generally able to be narrowed uniquely to a given user 
ID. However, geo-referenced social media produced by 
commercial services are generally difficult to come by 
at fine resolution for large numbers of users, or covering 
wide areas of urban space. Social media companies have 
these data, but they generally do not share them with 
the public beyond small sample sets. Additionally, while 
some aspects of social media content have been shown 
to be usefully allied to people with accuracy (age demo-
graphics in particular), other components of those media 
have been revealed to have flimsy associations to real 
people and real things, particularly when considered by 
geography (Flanagin & Metzger, 2008; Hecht & Stephens, 
2014). Of course, retailers expend considerable effort and 
resources to build coherent omnichannel data science for 
the customer journey. Their collection methods are usu-
ally proprietary and the resulting data products are gen-
erally walled within their own commercial ecosystem. 
Urban scientists cannot feasibly marshal the same level of 
resources. However, there are perhaps significant lessons 
to be learned by urban scientists from the omnichannel 
approach used by retailers to study the customer journey.

5.2 � Data granularity
In many aspects of urban science, a general sense has long 
persisted that data availability is lacking relative to the 
information that we need to drive the science forward. In 
areas of urban science that deal fundamentally with indi-
vidual people (as is the case with walking), data availabil-
ity is almost a perennial problem. The influx of big data 

to urban science has helped to alleviate availability chal-
lenges somewhat, but thus far these big data are domi-
nated by social media, which can be reasonably viewed 
as a relatively lackluster indicator of real-world behavior 
(Lazer et  al., 2014), or even wholly unreliable (Jagadish 
et al., 2014), and perhaps particularly so in urban science 
(Kitchin, 2014). There is perhaps a convincing argument 
to be made that big data have not actually helped urban 
science with meaningful insight. For example, Batty 
(2013a) has discussed how big data may shift the ideation 
of urban science toward short-term circumstance at the 
expense of long-run phenomena. (A related argument is 
well-made by Barnes (2013)). Scholars in arts and letters 
have pointed out the obvious: that big data is based on 
trends in data, which can be a poor substitute for formal 
scientific inquiry (Ebach et al., 2016: p.3) sourced in long-
standing traditions of discovery on carefully reasoned 
models and hypotheses (ibid. p.4). Realistically, urban sci-
ence is often better-informed by observational data that 
are derived from sources (as) close (as possible) to urban 
phenomena; these data are usually hard to gather and 
rarely accessible via automated means (Goffmann, 1963, 
1971). Atop all of this discussion, one must consider that 
pedestrian behavior is fundamentally and almost frus-
tratingly individual and complex, and the dynamics of 
that behavior on high streets produces so much interac-
tivity and knock-on complexity as to be opaque to empir-
ical inquiry (Batty & Torrens, 2001).

One of the impressive features of retail customer jour-
ney analysis is the high-detail reach of its data-gathering 
and analysis capabilities. Examples of the sorts of detail 
that can be obtained by studying the customer journey 
include work by Berendes (2019) (with recruited cus-
tomer participants) to isolate individual high street cus-
tomer journeys using mobile beacons. Berendes (2019) 
used allied participant-provided survey data to determine 
shopper goals, and trajectory locations to infer shopping 
stage. This approach is not unlike travel diary schemes 
with GPS data (Shen & Stopher, 2014). Another example 
is that of Chen et al. (2019), who used eye-tracking hard-
ware to examine shoppers’ view distance in an airport 
mall. In essence, they were (directly) able to gather data 
on shoppers’ perceptions of servicescapes.

What is perhaps distinctive about retail customer 
journey analysis is the ability to tie-in to touchpoints 
and to the underlying and ambient servicescape. In 
retailing, customer journeys are routinely traced to 
individual customer movement trajectories through 
retail spaces, and the customer journey through deci-
sion space often covers large periods of a custom-
er’s shopping history. Retailers are generally well 
aware of how individual customer journeys nest into 
larger groupings of customer and shopping typology. 
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Moreover, retailers often have well-devised schemes for 
mapping individual customer journeys to service blue-
prints. The collective result of these capabilities is that 
retailers can build elaborate (and empirically-based) 
explanatory context for individual retail behaviors that 
they observe. In many retail operations, this context is 
directly fed to KPIs that yield actionable levers for ser-
vice adjustment. Work by Berendes et  al. (2018) illus-
trates how context can be built directly from customer 
journey data. Berendes et al. (2018) presented a markup 
and modeling language scheme for classifying and 
contextualizing touchpoint event logs cast from retail 
high street customer journeys. Although the scheme 
relies on human input to code the logs, Berendes et al. 
(2018) demonstrate how the system could possibly be 
automated.

What lessons can be learned for urban science 
focused on walking? Walking is, at its core, an exercise 
in individual agency. Building understanding of that 
agency requires individual-level data. Without data on 
individual walkers, it is always going to be challeng-
ing to study their behavior in ways that adds to knowl-
edge of their individual agency. Paucity in suitable data 
can actually constrain the types of analysis that can be 
built, essentially shoehorning knowledge generation 
into methods that limit their applicability to the real-
world in a sort of self-defeating circle. This issue was 
discussed by Batty et al. (2003a): “Progress in develop-
ing science at this fine scale has been immensely slow 
for human systems” (p. 674), and much of the reasoning 
behind this is because, “Data requirements are enor-
mous, always less than optimal, quite unlike aggre-
gate modeling where parsimony is key.” (p. 675). Many 
analyses (including those under the umbrella of “big 
data”) attempt to work-around the paucity of individ-
ual data by inferring mobility from coarse data (Hong 
et  al., 2017; Brockman et  al., 2006; González et  al., 
2008; Sevtsuk & Ratti, 2010; Guo & Karimi, 2017; Yang 
et  al., 2019; Morris & Zisman, 1962). However, within 
urban science, the triple challenge of ecological fallacy 
(Wrigley et  al., 1996), modifiable areal unit problems 
(Openshaw, 1983), and the fallacy of inferring behav-
ior from observed activity (Louviere et al., 2000) make 
it incredibly difficult to build fine-granularity data from 
these aggregate data products, no matter how “big” 
they are in corpus size. Batty et  al. (2003a) discussed 
another challenge, originally raised by Ashby (1958): 
the “law of requisite variety” (Batty et  al., 2003a: 696), 
which holds that model detail should be matched with 
equivalent data detail. It would seem, by extension, that 
one’s information regarding people’s behavior should 
be as up-to-date as the dynamics of that behavior in the 
systems that you are modeling. These data are available 

in customer journey analytics. It may be interesting to 
explore the twin questions of how retailers get the data, 
and how might urban scientists be able to gather simi-
lar data? Work in retail geography at micro-sites, which 
was popular before the big data era, had actually made 
significant progress toward revealing geographies of 
mobility at hyper-local urban scales of streetscapes, but 
research and development in the field seems to have 
largely tapered off since the end of the 1980s (Brown, 
1987, 1988). Perhaps it is time to revisit that research, 
which was originally formed around case studies, 
but now  using some of the automatic data-gathering 
schemes that come from customer journey analytics.

5.3 � Fast and slow data via Wi‑Edge
The speed at which retailers can gather data about their 
operations is often important in considering how they 
can leverage the information that the data provides as 
insight to their business activities. Retail stores have 
access to a range of “fast” data that is continually replen-
ished as customers walk from high streets through their 
doors. In a straightforward manner, this includes the 
counts and demographics of shoppers as they enter, and 
the duration of their visit before they leave. These data 
can easily be tallied in real time without loss in fidelity. 
Over longer periods of time,  the fast data can be allied 
to “slow” in-store data regarding customer visits, e.g., by 
fusing it to sales  receipts to compose counts of return 
visitors and metrics of customer retention, average value 
of transaction per visit, purchase volume per customer, 
value platform of customer, and so on. With additional 
linkages to Online advertising and shopping systems 
(through credit card matches to other stores in their net-
work, use of customer loyalty programs, customer scan-
ning of QR codes, etc.), this information may even be 
extended to cross-channel information.

Big data are often characterized as data with variety, 
velocity, and volume (Thakuriah et  al., 2017), but the 
velocity of data are not well-considered in many discus-
sions of urban science, which for the most part consid-
ers that researchers will go out, collect data, and pore 
over it for some time thereafter to produce insight. Batty 
et al. (2003a) discussed this issue with reference to urban 
modeling and their comments are relevant here to our 
consideration of data-gathering for pedestrians: “Strictly 
speaking, with models composed of individuals, there 
should be data on the decision-making events associ-
ated with each individual throughout the time periods 
and across the space associated with each decision event. 
What is usually possible is good data on the density of 
crowds but not on paths taken by individuals.” (p. 676). 
Ashby (1958) also discussed a related point, regard-
ing informational currency, mentioning that for human 
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systems, the data that might describe the phenomena 
being considered are quickly out-of-date, which makes it 
difficult to derive hard-fast rules of behavior for human 
systems: “Thus the rule “collect truth for truth’s sake” 
may be justified when the truth is unchanging; but when 
the system is not completely isolated from its surround-
ings, and is undergoing secular changes, the collection of 
truth is futile, for it will not keep.” (p. 93).

Retailers can assemble fast and slow data on customer 
journeys because they have, essentially, access to long-
term observatories on those journeys, through in-store 
monitoring and information systems, as well as link-
ages to out-of-store journeys through the omnichannel. 
How might fast and slow data be built in urban science? 
Here, we might consider developments in urban comput-
ing (Zheng et  al., 2014b), which directly consider very 
fast-incoming streams of data, going as far as to specify 
new forms of computing such as edge computing and 
system-on-chip computing that can begin to build analy-
ses on these data as soon as they hit a sensor. We may 
also consider that pedestrians themselves generate very 
“fast” data on the devices that they carry when negoti-
ating city life. This is already well-known for location-
aware technologies such as GPS and Wi-Fi, which have 
rapid refresh cycles on the order of ~ 100 Hz. Recent 
work with inertial measurement units (IMUs), which 
now commonly feature on phones to support detection 
of device movement such as picking up calls, has shown 
that relatively fast data can be generated for assessment 
of pedestrian navigation. Xing et  al. (2017) used IMUs 
with an artificial neural network to perform pedes-
trian step detection and stride length at rates of 100 Hz. 
Chen et al. (2011) used electromyogram (EMG) sensors 
to detect leg movements of pedestrians and to interpret 
stride length at 1 kHz. Analysis of these data are usually 
performed off-line, however. If we consider their poten-
tial use for mass observation of pedestrians, currently 
thorny issues of how to stream the data to centralized 
information processing infrastructures would need to 
be addressed. Edge computing (Satyanarayanan, 2017; 
Taleb et  al., 2017), which supports communications of 
pedestrian sensor data to nearby small factor comput-
ing, or even direct sensing on-device (via smart city 
infrastructure), can support these types of hand-offs. For 
example, Intel and Nokia Solutions and Networks (2013) 
introduced the idea of mobile edge computing (MEC). 
MEC reconsiders communications base stations (such as 
Wi-Fi access hubs) more broadly as “Radio Applications 
Cloud Servers” (RACS). RACS may be tasked with per-
forming large computing tasks, with the advantage that 
the computing sits close to the mobile user and device. 
Recent work by Potdar and Torrens (2019), for example, 
has shown that pedestrian movement relative to lighted 

crossing infrastructure can be detected, in real-time, 
using computer vision on edge devices with a temporal 
resolution of ~ 5 times per second in crowded down-
town scenes. These types of applications perhaps form a 
new type of coupled telecommunications and comput-
ing infrastructure, through the combination of Wi-Fi 
and edge computing to form  what we could term to be 
"Wi-Edge", specifically designed to extend the reach of 
smart functionality to streetscapes. Wi-Edge could be 
instantiated in many forms. Beckman et al. (2016) intro-
duced the “Waggle” framework for uniting many varied 
sensor streams on one platform, as part of their vision 
for the “Array of Things” concept for smart city sensing 
and computing (Catlett et al., 2017). The Array of Things 
essentially extends the Internet of Things (Dourish, 2016) 
toward edge computing. It is also feasible that automo-
biles and other vehicles might also cast their increas-
ing vision of streetscape scenes to pedestrians, with the 
potential that large-scale observatories of individual 
pedestrians in urban context could manifest as a by-
product of advanced driver awareness systems (ADAS) 
and autonomous driving (Massaro et  al., 2017; Good-
child, 2018). For example, the Trellis system introduced 
by Qi et al. (2017) has successfully shown that it can esti-
mate ambient pedestrian flow, automatically, from vehi-
cles.  In this way, vehicles could serve as mobile carriers 
for Wi-Edge.

5.4 � High street information systems
As mentioned briefly in the beginning of this paper, a 
relatively recent thread of research and development 
has emerged around the concept of high street customer 
journeys and information systems that can dock them 
to retail operations, which we will refer to hereafter as 
“customer journey information systems” (CJIS) (Torrens, 
2022). Berendes et  al. (2018) introduced a conceptual 
model for featuring key elements of the customer jour-
ney on high streets and they described a markup-based 
modeling language that could be used to map those jour-
ney elements to retail operations. That work culminated 
in what they termed as a “High Street Journey Modeling 
Language (HSJML)” that can frame online and offline 
customer journeys with supporting “digital evidence” (p. 
221). While Berendes et  al. (2018), are apt to point out 
that the HSJML does not account for decision-making 
behavior of customers, this missing aspect could, con-
ceivably, be addressed by urban science.

CJIS and HSJML are conceptually parallel to develop-
ment in urban informatics that propose the idea of “com-
munity as a service” (CaaS). CaaS extends the notion of 
software as a service (SaaS) (Allen et al., 2012) to physi-
cal outdoor environments such as streetscapes. Bartel-
heimer et al. (2018), for example, introduced the idea of 
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community information-sharing platforms for high street 
retailing, as a potential mechanism for communities of 
local retailers to build integrated information systems. 
Schmidt et al. (1999) described how SaaS can be designed 
to interplay with mobile computing to fashion an “aware-
ness device” (p. 900). Their argument advances the idea 
that location-aware technologies (such as those used 
by customers on high streets) may be used to provide 
context that can be leveraged for computing. A similar 
argument could be raised, in which we consider that loca-
tion-aware technologies might relay contextual informa-
tion from the high street to CJIS. This information could 
come from the pedestrian (indeed, most smart devices 
routinely guess at users’ identities in various ways) and 
their use of the device for retail operations (browsing 
goods, checking prices, consulting reviews, etc.), but also 
from the sensing capabilities of the device (e.g., motion, 
movement, optical, sound, proximity, and even biomet-
rics). Much of the context that Schmidt et al. (1999) dis-
cussed could easily be used to automatically and tirelessly 
build understanding of pedestrian journeys, including 
journey habits, social interaction, tasks, and nearby infra-
structure (p. 895). Amaxilatis et  al. (2018), for example, 
introduced a broad platform for pervasive sensing exper-
iments at urban scale that could conceivably provide the 
information infrastructure to support this.

It is also feasible that CaaS platforms could be inte-
grated with edge computing to directly sense and build 
fast information streams for urban environments. Satoh 
(2021) recently introduced a smart digital sign that makes 
use of very localized context around retail displays to 
guide the touchpoint information that a customer will 
encounter in a store during their journey. This context is 
considered simply, via the presence of radio-frequency 
identification (RFID) tags within a small distance of a 
retail touchpoint, but a key innovation in the approach 
described by Satoh (2021) is that interaction with the 
RFID is tight-coupled to retail information systems using 
a series of mobile agents. The agents introduced by Satoh 
(2021) are simple in specification, designed to run on 
computationally-light systems merely as brokers to man-
age touchpoint activity at the retail object “front-end” 
and the commensurate response at the retail information 
system “back-end”. Nevertheless, the working online-
offline connection between retail operations and the cus-
tomer journey via physical touchpoints is an incredibly 
innovative development. A key point in the implementa-
tion details of the system provided by Satoh (2021) is that 
each agent has the capacity to advertise its presence and 
capabilities and to transfer its code (and state data) from 
one device to another through the information system (p. 
75). It is perhaps straightforward to consider, at least in 
concept, how similar contextual signs could be developed 

for outdoor advertising kiosks on high streets, with ben-
efits for high street retailing, but also urban service provi-
sions such as wayfinding, emergency routing, notification 
of detours, etc.

5.5 � Profiling and geodemographics
Geodemographics involves using a set of geographic data 
science methodologies to build profiles of areas (mar-
ket segmentations) based on the demographics of their 
inhabitants (Birkin & Clarke, 1998; Goss, 1995; Longley, 
2012). Geodemographics are most popularly used for 
marketing, to support advertising campaigns, but have 
traditionally been limited to coarse geographical units. 
Our review of customer journeys suggests that retailers 
have extended capabilities for exploration of individual 
customer profiles that might sit “underneath” coarse 
geodemographic units. By extension, there would seem 
to be broad potential for geodemographic profiling at 
individual level for urban science. Although, we note that 
the term “profiling” hints at some of the serious privacy 
concerns that data science of this kind raises.

Burns et al. (2018) introduced a methodology for build-
ing individual-level geodemographic profiles from UK 
Census Small Area Microdata (which are usually delib-
erately hobbled by geography to protect the privacy of 
households). Similar schemes for inferring micro-level 
data from coarse Census sample data were introduced by 
Blodgett (1998) in the United States, using data-mining. 
The approach developed by Burns et al. (2018) relies on 
micro-simulation to essentially synthesize likely individu-
als from coarse data, using what they term as a “Popula-
tion Reconstruction Model” (p. 427) based on methods 
for synthetic data population generation (Harland et al., 
2012; Beckman et  al., 1996; Smith et  al., 2009). Smith 
(2019) proposed the concept of second-order geodemo-
graphics as a by-product of algorithm-driven analysis 
of “consumer lift” within advertising, i.e., the success in 
uptake of marketing strategies by consumers. Smith’s 
(2019) work is relevant to our discussion here because of 
the connection between consumer lift and visiting pat-
terns of people in retailing spaces. Smith (2019) exam-
ined the work of retail data analytics firm, PlaceIQ, on 
data harvested by advertising servers as a component 
of mobile marketing delivery on smart devices. Smith 
(2019) showed that significant micro-scale patterns of 
individual pedestrian activity could be associated with 
broader geodemographic profiles. Zhang et  al. (2020) 
considered the potential for building micro-scale geode-
mographics from transit card data. They introduced a 
scheme for creating two-dimensional maps/images of 
the space-time geography of individual’s smart card data 
(via Oyster card databases), which they then subjected to 
CNN analysis to make predictions of those individual’s 
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demographics. These demographics could then be com-
bined with estimates of the individual’s location to essen-
tially build individual-level geodemographic profiles, 
directly from smart card data. This work is very relevant 
to the discussion in our paper, as it directly links touch-
point data (smart card tap-ins) to geodemographic profil-
ing in an automated scheme.

5.6 � Controlled experimentation
One of the benefits of the customer journey concept is its 
ability to support design of store and product layouts with 
empirical information about likely returns to service effi-
ciency. Retailers can, for example, design new customer 
experiences and test their impact on customer journeys, 
often using well-structured KPIs (Underhill, 2009). The 
same sorts of functionality could be incredibly useful for 
urban management, design, and planning. Researchers in 
physics, who have long maintained an interest in crowd 
dynamics as an example of complex adaptive systems, 
have established quite sophisticated controlled experi-
ments to collect data on moving pedestrians, particularly 
within the confines of fixed infrastructure and subject 
to varying scenarios of emergency movement behavior 
(Helbing et  al., 2007; Johansson et  al., 2008; Moussaïd 
et al., 2009). Feng et al. (2020) make a valid point in rais-
ing the issue that students are over-represented in many 
of these physical experiments because much of the work 
takes place on university campuses using participant 
populations at those institutions; similarly, they argue 
that the temporary approximations of built environment 
that are erected for these experiments are far from realis-
tic in inducing commensurate behavior (p. 7).

To our knowledge, no controlled physical experiments 
pertaining to high streets have been established. How-
ever, virtual reality environments (VREs) and virtual 
geographic environments (VGEs) (VREs with mappings 
to real-world geographies) are increasingly being used 
to reach wide areas of streetscape for experimental stud-
ies. In particular, researchers have employed VR to ease 
some of the difficulties in establishing controlled physi-
cal experiments with pedestrians on pseudo-streetscapes 
(Mól et  al., 2008; Pelechano et  al., 2008). We are aware 
of one example in customer journey analysis for retail-
ing: Mathieu et  al. (2011) developed the “Format-Store” 
first-person gaming-type environment to help train shop 
staff. The environment contains virtual stores, virtual 
products, and virtual customers. This suggests that VREs 
and VGEs could perhaps be usefully employed to evalu-
ate customer journeys on retail high streets, and that the 
customer journey framework could be used alongside 
urban VGEs to explore pedestrian behavior in simulated 
city settings. Torrens and Gu (2021), for example, intro-
duced a Unity-based immersive VGE for examining how 

human participants interacted on simulated representa-
tions of streetscapes in Brooklyn, NY. However, there is 
an ongoing debate, particularly in the field of psychology, 
as to whether virtual reality experiments are a meaningful 
approximation of real-world scenarios (Blascovich et al., 
2002; Loomis et  al., 1999; Thompson et  al., 2004). Feng 
et al. (2020) also raise the issue that the technology can 
cause dizziness (and nausea) in a significant proportion 
of potential participants, particularly in key populations 
for retail high streets such as the elderly (p. 7). To our 
knowledge, there is no work published that demonstrates 
the use of VR models of retail high streets, although 
commercial interest in the use of augmented reality and 
mixed reality is incredibly high (Katwala, 2018).

5.7 � Privacy and privacy protection
One must ultimately consider that retail-driven frame-
works designed to plan for and to manage (and perhaps 
to manipulate) moving customers could be quite prob-
lematic in transfer to urban science applications, and this 
starts to get unacceptably invasive if we consider map-
pings to individuals. This is particularly relevant when 
we consider that, unlike indoor shoppers who under-
stand that they are entering private spaces, pedestrians 
cannot (and ought not feel like they should) avoid visit-
ing public urban spaces and that city-dwellers cannot 
feasibly “opt out” of city life. Retailers’ impressive detail 
in insight, of course, comes from considerable investiga-
tive encroachment into customer’s day-to-day activity 
in retail environments and with retail information sys-
tems. The schemes by which customers might decide to 
opt-in to those data-gathering systems are controversial, 
largely because the intent behind the data acquisition 
is not always readily transparent. For example, custom-
ers may be aware that closed circuit television (CCTV) 
cameras are deployed in stores to prevent theft, but they 
may be unaware that the same video feeds can be used 
to track and classify their shopping behavior (so-termed 
“function creep” (Koops, 2021) from one use scenario to 
another).

The question of whether and how technologies that 
drive customer journey analysis might carry over into 
urban science is potentially quite critical when we con-
sider that urban streets are not stores: pedestrians in 
public may be quite resistant to the intrusive use of tech-
nology that scans, tracks, analyses, and builds inference 
on their behavior in public settings. The issue of privacy 
and surveillance of pedestrians is complicated. Legally, 
pedestrians, moving as they usually do along public 
streetscapes, generally have no expectation of privacy 
in those settings. At the same time, pedestrians may not 
have not opted-in to surveillance and into the (many) 
uses that information about their activities might be put, 
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which we have now pointed out may be individualized 
across a bewildering array of means. That observation of 
pedestrian activity produces individual data, then, raises 
questions of pedestrians’ rights of access to and protec-
tion of data procured from their time on high streets. 
This balance of expectations of behavioral privacy and 
rights to be informed of behavioral data is part of an 
ongoing debate in urban science about digitization of the 
public realm (Curry, 1997). That debate takes on many 
forms of concern, notably about the emergence of digi-
tal places (Curry, 2008; Zook et al., 2004) and their soci-
etal ramifications (Poom et al., 2020). There is an obvious 
unease that one might feel when thinking that technolo-
gies designed for retail intelligence in indoor private retail 
establishments might creep into public spaces. Anybody 
that does not want to be subject to in-store retail sur-
veillance can simply choose not to shop in a given store. 
However, avoiding what Pal and Crowcroft (2019) called 
“surveillance capitalism” when that intelligence is trained 
on public space is much more difficult. We need to be 
mindful, then, that any (commercial) developments in 
retail intelligence potentially feed into an evolving “auto-
mated geography” (Dobson, 1983; Graham, 2005; Thrift 
& French, 2002) with the potential to improve urban life 
through efficiency and transparency (Townsend, 2013), 
but also with a pervasive reach into the erosion of iden-
tity (Dobson, 2009), governance (Kitchin, 2020), and civil 
liberty, and the potential to exacerbate existing forms 
of data-based and algorithmic bias (Coletta & Kitchin, 
2017) in the treatment of people in the spaces that they 
call home (Gabrys, 2014).

Retailers have varied (but mostly financial) motivations 
for collecting high-detail data about pedestrians as they 
engage in the customer journey, and there are justified 
concerns about the forms of retail surveillance that might 
spring from their activities (Cantrell, Ganz, et  al., 2015; 
Clarke, 1994; Elnahla & Neilson, 2021). How retailers’ 
motivations sit with the public is somewhat murky ter-
ritory. As Farshidi (2016) and Nguyen (2018) discussed, 
relative to legal standards, these activities may well vio-
late privacy norms, but are often legal. However, retailers 
are also motivated to protect the privacy of the data that 
they collect, because they have legal obligations to do so 
in some jurisdictions, and because data breaches are bad 
for business (Martin et al., 2020). Pizzi and Scarpi (2020) 
showed that customers’ sentiment about their data pri-
vacy can influence retail patronage directly. Inman and 
Nikolova (2017), for example, have shown that customers 
often evaluate the privacy implications of new retailing 
technologies when considering whether to adopt them. 
Marriott et al. (2017) came to the same conclusions with 
respect to m-commerce in particular.

Many of the data sources from social media and other 
Web 2.0 platforms that we discussed have long been rec-
ognized as wide open to individual, collective, and social 
privacy concerns (Elwood & Leszczynski, 2011). Indeed, 
one of the central principles of geodemographics—as 
pioneered for retailing (Goss, 1995)—has been to asso-
ciate individuals with algorithmic classifications polled 
from the context of their location, or so-called “neighbor-
hood targeting” (Harris et  al., 2005). As we mentioned 
in Section  5.5, geodemographic targeting is now being 
“miniaturized”, i.e., applied to finer-resolutions of insight 
and specificity (Burns et al., 2018), at the same time that 
it is becoming more dynamic. New geodemographic 
schemes, for example, have been developed specifically 
for tap-in data (Zhang et  al., 2020). This creates some-
thing of a privacy dilemma, if one considers that activities 
by retailers to protect customers’ privacy can sometimes 
become moot when the customer then goes on to adver-
tise their location, identity, activity, and preferences on 
social media.

We must also perhaps recognize that high street retail-
ing is now firmly embedded within the smart city more 
generally (Hollands, 2008; Pantano & Timmermans, 
2014; Pretz, 2019). Kitchin (2015), for example, has long 
advocated for realization that smart cities, perhaps by 
design, are replete with geosurveillance. Work in GIS, in 
particular, suggests some potential paths of solution to 
the privacy challenge. The traditional approach, devel-
oped initially in GIS for privacy masking (Kwan et  al., 
2004), has been to obfuscate location data that is deliv-
ered to LBS. The PROBE scheme developed by Damiani 
et  al. (2009), for example, combines obfuscation with 
privacy measures that may be defined in policies by the 
user. Research by Nergiz et al. (2008) has shown that this 
can also work for trajectory anonymization. Early work in 
obfuscation analyses in GIS essentially reached the same 
conclusions, e.g., see Kwan et al. (2004). Authors such as 
Duckham and Kulik (2005) have argued that obfuscation 
to essentially “muddy” location-specific data is probably 
integral to LBS, and that attention could usefully turn 
instead to negotiating how much privacy users are com-
fortable in ceding.

However, from the perspective of retailers, there is per-
haps little motivation to obfuscate incoming data, as it 
also obfuscates their insight. For customer journey analy-
sis, in particular, it is usually desirable that retail insight 
stretch down to the individual. Indeed, much of what we 
have reviewed in this paper has shown the tremendous 
sophistication with which individual-level detail can be 
built from retail data science. Recent approaches in spa-
tial analysis have shown that some level of data detail can 
be retained when spatial statistics and geostatistics are 
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applied to geographic information specifically to mask 
identifying information and locations. Wang and McAr-
thur (2018) and Gao, Janowicz, et al. (2013), for example, 
have shown this for trajectory data. Oksanen et al. (2015) 
introduced a modification to kernel density estima-
tion that preserves privacy in geostatistical surfaces by, 
essentially, masking the underlying count statistics. They 
applied the technique to coarse mobility data from fitness 
tracking archives. Andrienko et al. (2009) discussed how 
spatio-temporal privacy might be achieved for movement 
data using spatial analysis.

There have been various angles of approach to the 
privacy problem of smart cities (Curzon et  al., 2019) 
from computer science, some of which have bearing on 
the privacy concerns raised in this paper and may sug-
gest further paths for addressing privacy on the cus-
tomer journey. Work in edge computing, in particular, 
has attempted to address privacy concerns. The edge 
approach, and particularly the new forms of sensor-
adjacent artificial intelligence (“edge AI”) that it sup-
ports (Woods, 2018), is rapidly being considered by 
retailers as a way to efficiently collect data on the cus-
tomer journey. Considerations for edge-based privacy-
by-design address the idea that privacy-preserving or 
privacy-conscious computing could be performed by 
first principles at the edge, before data are streamed 
to centralized computing resources where they may 
be archived and linked to other identifying data. This 
is perhaps something of a perennial challenge, as sen-
sors and algorithms for processing street-side data are 
continually advancing, currently much faster than pri-
vacy measures to tackle them can keep up with, just as 
laws and regulations struggle to match pace (Farshidi, 
2016). In concept, however, one idea might be to per-
mit detailed data analysis locally, perhaps at the indi-
vidual store, while masking those data before they pass 
on to centralized systems, where they would otherwise 
be vulnerable to function creep. The idea for “micro-
aggregation” of location data such that it is cloistered 
to hyper-local settings suggests some pathways for 
accomplishing this in GIS by essentially generating 
synthetic data with properties similar to the origi-
nal data (Domingo-Ferrer et  al., 2010). In computing, 
this aligns with schemes for “k-anonymity” (Sweeney, 
2002), i.e., churning identifiable data into still-usa-
ble aggregates such that individuality is masked; and, 
in geographic terms (Shokri et  al., 2011), the spatial 
attributes of the data remain. From computer science 
perspectives, there are emerging ideas that privacy 
issues may be resolvable directly in machine-learning. 
Fitwi et  al. (2021) have proposed that CNNs, embed-
ded within SaaS, could be deployed to edge comput-
ing systems to both detect privacy-eroding data and 

to mask those data before they move from the edge to 
back-end computing infrastructure (so-called end-to-
end systems).

Other approaches are designed to address privacy in 
the network infrastructure of smart cities, i.e., to catch 
privacy-eroding data as it is communicated. This is an 
interesting approach, as it opens up the possibility that 
privacy-preserving network protocols could be devel-
oped, with the further implication that these could 
possibly work in tandem with general communica-
tions protocols that underpin most ICTs for LBS. For 
example, Lu et al. (2014) introduced a querying privacy 
framework specifically for LBS-based mobile social 
networks that bypasses the need for privacy measures 
(such as tokens) on a centralized server (unlike, for 
example, the centralized CacheCloak scheme for LBS 
developed by Meyerowitz and Choudhury (2009)). 
Jiang et al. (2019) recently introduced dedicated “loca-
tion protocols” that act in a privacy-preserving fashion. 
They focused on localization in wireless systems, apply-
ing privacy schemes directly to the location-estimating 
algorithms that operate on trilateration and multi-later-
ation. This is significant, as it masks the actual location 
of the user, as their position is actively being calculated 
within the wireless system, at an algorithmic/heuristic 
level.

6 � Conclusions
In this review paper, we have explored an idea from 
retailing—the customer journey—as a framework for the 
study of walking in urban science, as well as a concept 
for advancing retailers’ ability to analyze the customer 
journey outdoors, on ambient streetscapes around their 
stores, and the activity of pedestrian shoppers that they 
support. Our main argument is that the customer jour-
ney framework could serve as a useful individual-scale 
scheme for building urban science around individual 
pedestrian experiences on streets. Our consideration of 
this idea comes primarily from the perspective of urban 
informatics: the information that can be gathered in 
service of understanding cities by examining individual 
pedestrians as embodied in moment-to-moment settings 
of urban life. Our use of an information lens is motivated 
by the increasing range of high-resolution insight avail-
able to retailers about customer behavior in indoor and 
outdoor shopping environments, due in large part to 
emerging novelty in data science and sensing. In many 
ways, the ubiquity of information that retailers maintain 
about customers stands in some contrast to the relative 
paucity of empirical ground truth available to urban sci-
entists to theorize with. Our review has focused on how 
data that are produced by customer journeys along retail 
high streets and through urban streetscapes might inform 
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pedestrian studies. These data, we argue, are of particular 
relevance to urban science because they are “human cast”, 
cast by pedestrians as they experience urban settings, but 
they are also interpreted by their evolving context relative 
to sites and facilities. In this way, then, customer journeys 
present opportunities for urban scientists to look at the 
experience of walking through the two-way lens of the 
walker and that of the ambient built and social environ-
ments of the streetscapes that they move through.

The opportunity for considering customer journey 
frameworks for urban data science stems in large part 
from the extensibility and resilience of the customer jour-
ney concept against a backdrop of continual advancement 
in sensing, computing, and inference technologies that 
have swept through retailing operations. In particular, 
the steady increase in the volume, pace, resolution, and 
reach of retail data collection mirrors that of urban data 
science in some critical areas of overlap. In this review, 
we examined existing (but perhaps mostly unintended) 
synergies between retail ideas of the customer journey 
and urban informatics for pedestrian surveys, movement 
tracking, tap-ins to transit systems, data-mining of activi-
ties and actions, and computer vision. We also outlined a 
set of avenues for future possible dedicated research for 
urban science around the customer journey frame. These 
include investigation of potential urban omnichannels, 
data science approaches to granularity, new computa-
tional schemes to reconcile fast and slow data, potential 
extensions of customer journey information systems into 
broader high street information systems, shifts in the 
resolution of profiling and geodemographics to individ-
ual scale, and the broad potential for experimentation 
through controlled tinkering in simulations, virtual real-
ity, and virtual geographic environments.

The issue of privacy permeates almost every aspect 
of this discussion. Many of the same technologies that 
underpin retail data science and computing are now 
being used (or considered for use) in city-oriented data 
science. It therefore seems reasonable that we should 
consider that the surveillance architectures from retail-
ing might straightforwardly find their way into urban 
informatics. We must acknowledge that there is a huge 
risk inherent in the function creep of transferring data-
driven commercial value propositions of retail analytics, 
unfiltered, into urban science that is usually focused on 
society-facing value propositions. Design of any of the 
possible research that we have suggested here must surely 
also consider how privacy (and security) can be baked-
into the systems, by designs that counter their ability to 
intrude on individuals.
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