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Abstract
In recent decades, various bioanalytical technologies have been investigated for appropriate medical treatment and effective 
therapy. Temperature-responsive chromatography is a promising bioanalytical technology owing to its functional proper-
ties. Temperature-responsive chromatography uses a poly(N-isopropylacrylamide)(PNIPAAm) modified stationary phase 
as the column packing material. The hydrophobic interactions between PNIPAAm and the analyte could be modulated by 
changing the column temperature because of the temperature-responsive hydrophobicity of PNIPAAm. Thus, the chroma-
tography system does not require organic solvents in the mobile phase, making it suitable for therapeutic drug monitoring in 
medical settings such as hospitals. This review summarizes recent developments in temperature-responsive chromatography 
systems for therapeutic drug monitoring applications. In addition, separation methods for antibody drugs using PNIPAAm 
are also summarized because these methods apply to the therapeutic drug monitoring of biopharmaceutics. The temperature-
responsive chromatography systems can also be utilized for clinical diagnosis, as they can assess multiple medicines simul-
taneously. This highlights the significant potential of temperature-responsive chromatography in medicine and healthcare.

Keywords  Temperature-responsive chromatography · Thermoresponsive polymers · Bioseparation · Biopharmaceuticals · 
Therapeutic drug monitoring

Introduction

In recent decades, biomedical analysis has increased in 
importance in the clinical field because analyzing drugs, 
biomarkers, and bioactive concentrations in the living body 
is important for appropriate medical treatment and effec-
tive therapy [1–5]. Therapeutic drug monitoring (TDM) is 
essential for biomedical analysis. TDM is the method for 
measuring drug concentration in serum and is an effective 
approach to monitor the therapeutic effect using specific 
types of drugs [6, 7]. The appropriate dosage of certain med-
ications must be modified by assessing the concentration of 
the drug in the blood serum, as an insufficient concentration 

of the drug will prove ineffective, whereas an excessively 
high concentration can lead to toxic side effects. Thus, TDM 
is required to monitor the drug concentration.

Liquid chromatography (LC) is a reliable method for 
measuring drug concentration in serum because of its 
adaptability and the absence of a specific antibody for each 
individual drug [8]. However, most of LC requires the pres-
ence of organic solvents in the mobile phase to regulate drug 
retention in the chromatography column. Furthermore, it is 
necessary to deproteinate the blood samples using organic 
solvents before determining the drug concentration in the 
serum using chromatography. Organic solvents are com-
monly prohibited in hospitals owing to their potential haz-
ards. Therefore, a technique that does not require organic 
solvents is desirable for TDM. Chromatography, which uti-
lizes poly(N-isopropylacrylamide) (PNIPAAm) to respond 
to temperature changes is a measurement technique, and it 
does not employ organic solvents in mobile phase [9–29] 
(Fig. 1).

PNIPAAm is a thermoresponsive polymer whose hydro-
phobicity changes in response to temperature changes 
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(Fig. 1A). The hydrophilic and hydrophobic properties of 
PNIPAAm, which are influenced by temperature, change 
as a result of hydration and dehydration at a lower criti-
cal solution temperature (LCST) of 32 °C [30–36]. Also, 
the PNIPAAm exhibits temperature-modulated extension 
and shrinking attributed to the hydration and dehydration. 
This thermoresponsive polymer has been widely utilized in 
biomedical applications because of its relatively low LCST, 
which is close to the human body temperature. Examples of 

these applications include temperature-controlled drug and 
gene delivery systems [37–44], biosensors and bioimaging 
systems [45–52], nanoactutors [53–59], bioseparation tools 
[60–74], cell separation materials [75–90], and cell culture 
substrates for tissue engineering [91–110].

The ability of PNIPAAm to change its properties in 
response to temperature has been harnessed for the develop-
ment of bioanalysis systems such as temperature-responsive 
chromatography (Fig. 1B). In this technique, the packing 

Fig. 1   Thermoresponsive 
polymer poly(N-isopropy-
lacrylamide) and its application 
in temperature-responsive chro-
matography. (A) Thermorespon-
sive polymer PNIPAAm proper-
ties, (B) Concept of temperature 
responsive chromatography, and 
(C) Chromatogram of the drugs 
at 10 and 50 °C



829Bioanalytical technologies using temperature‑responsive polymers﻿	

beads of the chromatography columns were modified with 
PNIPAAm, and the interactions between the material 
and target drugs were adjusted by altering the column 
temperature.

In an ordinary chromatography system using octadecyl-
silyl (ODS) group-modified bead-packed columns, hydro-
phobic interactions between analytes and ODS groups 
are modulated by the addition of an organic solvent to the 
mobile phase. By contrast, the PNIPAAm-modified station-
ary phases were used in temperature-responsive chromatog-
raphy (Fig. 1B). Because the hydrophobic properties of PNI-
PAAm can be influenced by external temperature changes 
owing to hydration and dehydration of the polymer, the sur-
face properties of the PNIPAAm-modified stationary phase 
can be easily adjusted by altering the column temperature. 
This allows for the modulation of the hydrophobic interac-
tions between the analytes and the stationary phase. There-
fore, retention modulation is quite simple compared to the 
adjustment of the mobile phase composition (Fig. 1C). The 
chromatographic system does not require the addition of an 
organic solvent to the mobile phase and allows for analysis 
using an all-aqueous mobile phase. Chromatography sys-
tems prevent exposure to organic solvents in hospitals, mak-
ing them suitable for TDM.

This review describes recent developments in TDM tech-
niques using PNIPAAm and their properties. In addition, 
separation methods for antibody drugs using PNIPAAm, 
which are applicable for TDM, are also summarized.

TDM using PNIPAAm modified beads packed 
chromatography column

HPLC columns using PNIPAAm-modified beads have been 
developed as innovative chromatography methods because 
the chromatography system does not require the addition of 
an organic solvent to the mobile phase, and analyte reten-
tion can be modulated by simply changing the column tem-
perature. Therefore, chromatography columns have been 
investigated for applications in TDM because an all-aqueous 
mobile phase (without organic solvents) is suitable for use 
in medical settings.

A temperature-responsive chromatography column with 
thin PNIPAAm hydrogel layer-modified silica beads was 
used for TDM (Fig. 2) [111]. PNIPAAm hydrogel modifi-
cation was performed using the radical initiator V-501, fol-
lowed by radical polymerization of NIPAAm and methylene 
bis-acrylamide (BIS) (Fig. 2A). The feasibility of the TDM 
column was investigated using phenytoin, lamotrigine, car-
bamazepine, disopyramide, quinidine, propafenone, digoxin, 
vancomycin, mycophenolic acid, and methotrexate as TDM 
drugs. The elution behavior of each type of drugs containing 
serum as a contaminant was observed. In the chromatogram, 

all serum proteins and drugs were separated and eluted as two 
peaks with short analysis times (Fig. 2C). Serum was imme-
diately eluted, and drug was slightly retained on the column 
because the serum proteins did not effectively interact with 
PNIPAAm and most of the drugs interacted with PNIPAAm 
through hydrophobic interactions. These results indicate that 
TDM can be performed using a PNIPAAm-modified bead-
packed column with all aqueous mobile phases.

Serum proteins in drug sample often adsorb the stationary 
phase of HPLC columns leading to the reduced function of the 
column and reproducibility of the drug concentration measure-
ment. To resolve the problem, temperature-responsive chro-
matography was applied to a two-dimensional HPLC system 
(Fig. 3) [112]. Primary column was used to separate the serum 
protein and drug, and serum protein was flowed out and drug 
was introduced to the second column. The secondary column 
was used to determine the drug concentration.

Dilute PNIPAAm brush-modified silica beads were pre-
pared using atom transfer radical polymerization (Fig. 3A). 
The density of PNIPAAm was reduced by introducing 3-gly-
cidyloxypropyltrimethoxysilane (GPTMS) during ATRP ini-
tiator modification of the silica beads. The diluted density of 
PNIPAAm on the silica beads shortens the retention time of 
the analyte compared to the dense PNIPAAm brush, which is 
attributed to reduced hydrophobic interactions between PNI-
PAAm and the analyte [26]. The prepared columns were used 
in a two-dimensional HPLC system (Fig. 3C). The primary 
column was used to separate the serum proteins and drugs. 
After elution of the serum protein, the drug was introduced 
into the second column, and the drug concentration was deter-
mined. The elution behaviors of 13 drugs (carbamazepine, 
lamotrigine, zonisamide, phenobarbital, nitrazepam, diaze-
pam, disopyramide, quinidine, propafenone, sotalol, voricona-
zole, lidocaine, and theophylline) were observed using two-
dimensional temperature-responsive chromatography. Using 
a two-dimensional temperature-responsive chromatography 
system, drug peaks without serum peaks were observed in the 
secondary column (Fig. 3D). The quantitative determination 
of drugs in serum proteins can be performed using the chro-
matogram of the secondary column. The results indicated that 
the two-dimensional temperature-responsive chromatography 
system could remove serum proteins from the drug through 
the primary column, and precise quantitative determination 
was performed using a secondary column.

TDM using temperature‑responsive ion 
exchange chromatography

As various types of drugs have ionic properties, ion-
exchange chromatography is suitable for their effective 
retention. Thus, temperature-responsive ion-exchange chro-
matography was investigated for TDM [113, 114].
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Fig. 2   Temperature-responsive chromatography for TDM. (A) Preparation scheme for PNIPAAm hydrogel-modified silica beads, (B) Concep-
tual diagram of TDM using temperature-responsive chromatography, and (C) Chromatograms of the drug samples with the serum
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Fig. 3   Two-dimensional 
temperature-responsive 
chromatography for TDM. (A) 
Preparation scheme for dilute 
PNIPAAm brush-modified 
silica beads, (B) Temperature-
modulated interaction between 
PNIPAAm and analytes, 
(C) Conceptual diagram of 
two-dimensional temperature-
responsive chromatography for 
TDM, and (D) Chromatograms 
of the drug-serum samples with 
column switching
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Temperature-responsive anion-exchange chromatog-
raphy was developed to effectively interact with anionic 
drugs (Fig. 4) [113].

The cationic monomer N,N-dimethylaminopropyl acryla-
mide (DMAPAAm), was introduced into PNIPAAm on 

silica beads via copolymerization (Fig. 4A). n-Butylmeth-
acrylate (BMA) was introduced to the polymer to modulate 
its hydrophobicity. The cationic properties of the polymers 
were modulated by varying the amount of DMAPAAm 
added. The 13 drugs, disopyramide, voriconazole, lidocaine, 

Fig. 4   Temperature-responsive 
ion-exchange chromatography 
for TDM. (A) Preparation 
scheme for cationic copol-
ymer-modified silica beads, 
(B) Temperature-modulated 
interactions between copolymer 
and analytes, (C) Conceptual 
diagram of cationic property 
of the polymer-modified silica 
beads, and (D) Chromatograms 
of drug sample on the prepared 
column
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zonisamide, mexiletine, carbamazepine, quinidine, pheny-
toin, lamotrigine, diazepam, phenobarbital, sotalol, and 
mycophenolic acid, were used as model analytes, and the 
elution behavior of the drugs from the copolymer modi-
fied beads packed column was observed. Phenobarbital and 
lamotrigine were effectively retained on the strongly cationic 
polymer-modified bead-packed column (DMAPAAm3%) 
(Fig.  4D). Sotalol, quinidine, and mycophenolic acid 
effectively retained the weakly cationic polymer-modified 
bead-packed column (DMAPAAm1%). Voriconazole, zon-
isamide, diazepam, phenytoin, carbamazepine, mexiletine, 
lidocaine, and disopyramide were effectively retained on a 
noncationic polymer bead-packed column (DMAPAAm0%). 
This is attributed to the suitable balance between the hydro-
phobic and cationic interactions between the polymer and 
drugs. With an increase in the amount of cationic monomers 
in the polymer, the cationic properties improved. By con-
trast, with an increase in the amount of cationic monomers 
in the polymer, the hydrophobicity of the polymer decreased 
because the cationic groups provided hydrophilicity to the 
polymer. Therefore, polymer-modified beads with appropri-
ate cationic and hydrophobic properties should be used to 
analyze each drug.

Temperature-responsive mixed-mode chromatog-
raphy using mixed beads effectively exploits elec-
trostatic interactions (Fig.  5) [114, 115]. Mixed-
mode columns using PNIPAAm-modified beads and 

poly(3-acrylamidopropyltrimethylammonium chloride) 
(PAPTAC) modified beads have been investigated for tem-
perature-modulated interactions with antiepileptic drugs, 
which often require TDM [114]. In the mixed mode col-
umn, PNIPAAm modified beads were used for temperature-
modulated hydrophobic interaction with analytes. In addi-
tion, PAPTAC modified beads were used for electrostatic 
interaction with analytes because PAPTAC has strong cati-
onic property [64, 77, 116]. Using a temperature-responsive 
mixed-mode column, the antiepileptic drugs phenytoin, 
clonazepam, nitrazepam, carbamazepine, lamotrigine, phe-
nobarbital, zonisamide, and ethosuximide are retained in the 
column through electrostatic and hydrophobic interactions. 
The retention time of these antiepileptic drugs increased 
with increasing temperature because of the increased hydro-
phobic interactions with the drugs at higher temperatures 
in addition to the electrostatic interactions. Additionally, 
mixtures of zonisamide, carbamazepine, nitrazepam, and 
clonazepam were separated using a mixed-mode column 
(Fig. 5C). The results indicate that the prepared temperature-
responsive mixed-mode column can be utilized for the TDM 
of multidrug doses of various antiepileptic drugs.

Fig. 5   Temperature-responsive 
mixed-mode chromatography 
for TDM. (A) Conceptual 
diagram of the temperature-
responsive mixed-mode 
column using thermoresponsive 
polymer-modified silica beads 
and cationic polymer-modified 
silica beads, (B) Temperature-
modulated interactions between 
polymers and analytes, and (C) 
Chromatograms of antiepileptic 
drugs on the temperature-
responsive mixed-mode column 
at various temperatures
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Sample preparation using 
temperature‑responsive spin column

In most cases of TDM using chromatography, sample prep-
aration is required to remove serum proteins [117]. Vari-
ous sample preparation methods, such as organic protein 
precipitation, solid extraction columns, and spin columns, 
require organic solvents that are not desirable for use in hos-
pitals. Therefore, a sample preparation method that does not 
require organic solvents is desired. To resolve this issue, 

a temperature-responsive spin column without an organic 
solvent was developed for sample preparation [118] (Fig. 6). 
Two types of beads were prepared as the packing materi-
als for the spin column (Fig. 6A). One was P(NIPAAm-co-
DMAPAAm-co-BMA)-modified silica beads for trapping 
serum proteins. The beads were prepared using relatively 
large diameter of silica beads (40–63 μm). The other com-
prised P(NIPAAm-co-BMA)-modified silica beads for drug 
adsorption. The beads were prepared using relatively small 
diameter of silica beads (5 μm). The prepared two types of 
beads were packed into the spin columns as two layers; the 

Fig. 6   Temperature-responsive 
spin column for the preparation 
of drug-serum samples. (A) 
Temperature-responsive spin 
columns composed of two types 
of thermoresponsive beads, 
(B) Conceptual diagram of the 
temperature-responsive spin 
column, (C) Elution of serum 
proteins and voriconazole, and 
(D) Chromatograms of voricon-
azole and serum proteins pre-
pared using protein precipitation 
and temperature-responsive spin 
column (adapted from [118] 
with permission from Elsevier)
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prepared P(NIPAAm-co-BMA) beads and P(NIPAAm-co-
DMAPAAm-co-BMA) beads were the bottom and upper 
layers of the spin column. Using the prepared spin column, 
the sample preparation of serum-voriconazole sample was 
performed (Fig. 6C). At 40 °C, the sample of voriconazole 
with serum protein was introduced to the spin column, and 
the spin column was centrifuged. The serum protein and 
voriconazole were adsorbed on the spin column at 40 °C. By 
reducing the temperature of the spin column and introduc-
ing cooling water into the column, the adsorbed drug was 
eluted from the column, whereas the protein adsorbed on 
the beads remained on the column. The efficacy of the spin 
column sample preparation was investigated by comparing 
protein precipitation using organic solvents (Fig. 6D). The 
voriconazole-serum protein samples were treated using a 
temperature-responsive spin column, followed by chromato-
graphic analysis using an ODS column. Only a voriconazole 
peak was observed in the chromatogram after sample prepa-
ration using the spin column. By contrast, a contaminant 
peak was observed in the chromatogram after sample prepa-
ration via protein precipitation. The results indicate that the 
developed temperature-responsive spin column would be 
useful for sample preparation in healthcare facilities with-
out organic solvents.

Antibody drug separation using 
thermoresponsive polymer

Biopharmaceuticals have become effective medical treat-
ments for intractable diseases [119]. Antibody drugs are 
promising biopharmaceutics because of their specificity for 
target molecules and relatively few side effects compared 
to low-molecular-weight chemical drugs [119–121]. The 
importance of separation and analysis techniques for anti-
body drugs has increased significantly. Numerous separa-
tion and analytical techniques have been developed for this 
purpose. Affinity chromatography, which employs a protein 
A ligand, is a powerful tool for this purpose because of the 
strong affinity between protein A and antibodies. Antibody 
elution from the columns is typically accomplished using 
low-pH aqueous solutions. The elution process in the anti-
body-drug separation column may result in the loss of activ-
ity of the antibody drugs and contamination owing to the 
elution of protein A. Therefore, there is a need for an anti-
body-drug separation column that employs distinct retention 
and elution mechanisms other than protein A.

Temperature-responsive chromatography using PNI-
PAAm is a potential technique for separating antibodies 
because of the ability to adjust analyte retention and elution 
by altering the temperature of the chromatographic system.

A temperature-responsive chromatography col-
umn for antibody-drug separation was developed using 

PNIPAAm containing a sulfonic acid group [66] (Fig. 7). 
Poly(NIPAAm-co-2-acrylamido-2-methylpropanesulfonic 
acid (AMPS)-co-BMA)-modified silica beads were prepared 
by atom transfer radical polymerization (ATRP) (Fig. 7A). 
Using the rituximab elution profiles, the prepared bead-
packed column was investigated as an antibody purification 
column. Rituximab is adsorbed onto the copolymer brush 
at high temperatures through hydrophobic and electrostatic 
interactions because the copolymer dehydrates and becomes 
hydrophobic, and the anionic properties of the AMPS 
are maintained. By contrast, rituximab was not adsorbed 
onto the copolymer brush at low temperatures because it 
was extended and hydrated. The purification of rituximab 
from contaminants, albumin or hybridoma culture media, 
was achieved by simply changing the temperature of the 
column from 40 to 10 °C (Fig. 7B). Furthermore, three 
types of antibody-drug mixtures, rituximab, cetuximab, 
and bevacizumab, were separated using a column through 
temperature-modulated hydrophobic and electrostatic inter-
actions (Fig. 7C). These findings indicate that a temperature-
responsive column can be employed to separate and ana-
lyze biopharmaceuticals by simply controlling the column 
temperature.

Another type of antibody–drug purification column were 
developed by using a mixed polymer brush composed of 
PNIPAAm and poly(4-vinyl pyridine)(P4VP) [68] (Fig. 8). 
P4VP has been utilized as a ligand for protein purification 
columns [122, 123]. Thus, mixed PNIPAAm and P4VP 
brush-modified silica beads were prepared as packing 
materials for effective antibody–drug purification (Fig. 8). 
A thermoresponsive mixed polymer brush was prepared by 
reversible addition-fragmentation chain transfer (RAFT) 
polymerization of 4VP and subsequent ATRP of NIPAAm 
(Fig. 8A). The elution behavior of rituximab was observed 
at various temperatures using a bead-packed column. At 
high temperatures, rituximab was adsorbed on the mixed 
polymer brush because PNIPAAm shrunk and P4VP was 
exposed, leading to an increased interaction between rituxi-
mab and P4VP (Fig. 8B). By contrast, at low temperatures, 
rituximab did not adsorb onto the column because PNI-
PAAm was extended, and P4VP was concealed, prevent-
ing the interaction between rituximab and P4VP. Rituximab 
was purified from the contaminant using a mixed polymer 
brush (Fig. 8B). A mixture of rituximab and albumin was 
introduced to the bead-packed column at 40 °C; rituximab 
was adsorbed on the mixed polymer brush, whereas albumin 
was not adsorbed and eluted from the column. The adsorbed 
rituximab was eluted from the column by reducing the tem-
perature from 40 to 10 °C (Fig. 8B).
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Conclusions

This review summarizes recently developed temperature-
responsive chromatography systems for clinical applica-
tions and their properties. The PNIPAAm-modified silica 
bead-packed column effectively separated drugs and serum 
proteins, allowing the determination of the quantity of 
drugs in the serum sample. In addition, quantitative analy-
sis of drugs in serum samples was performed using a ther-
moresponsive cationic copolymer-modified bead-packed 

column. The antiepileptic drugs were separated using a 
temperature-responsive mixed-mode chromatography 
column. Serum sample preparation without organic sol-
vent was performed using the developed temperature-
responsive spin column. Antibody drugs were purified 
from contaminants using the developed temperature-
responsive chromatography column by simply changing 
the temperature. Therefore, the developed PNIPAAm-
based temperature-responsive chromatography system 
has the potential to function as an effective separation and 

Fig. 7   Temperature-respon-
sive chromatography using 
thermoresponsive anionic 
polymer-grafted silica beads 
for antibody drug purifica-
tion. (A) Preparation scheme 
for thermoresponsive anionic 
polymer-grafted silica beads, 
(B) Temperature-modulated 
purification of rituximab from 
albumin contaminants, and (C) 
Separation of the three antibody 
drugs according to temperature 
using the prepared column
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analytical method for various types of medicines, includ-
ing small-molecule drugs and biopharmaceuticals. These 
temperature-responsive chromatography systems can also 
be utilized for clinical diagnosis, as they can assess multi-
ple medicines simultaneously. This highlights the signifi-
cant potential of temperature-responsive chromatography 
in medicine and healthcare.
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