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Abstract
Lateral flow assays have been widely used for detecting coronavirus disease 2019 (COVID-19). A lateral flow assay con-
sists of a Nitrocellulose (NC) membrane, which must have a specific lateral flow rate for the proteins to react. The wicking 
rate is conventionally used as a method to assess the lateral flow in membranes. We used multiple regression and artificial 
neural networks (ANN) to predict the wicking rate of NC membranes based on membrane recipe data. The developed ANN 
predicted the wicking rate with a mean square error of 0.059, whereas the multiple regression had a square error of 0.503. 
This research also highlighted the significant impact of the water content on the wicking rate through images obtained from 
scanning electron microscopy. The findings of this research can cut down the research and development costs of novel NC 
membranes with a specific wicking rate significantly, as the algorithm can predict the wicking rate based on the membrane 
recipe.
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Introduction

Coronavirus disease 2019 (COVID-19), caused by the 
SARS-CoV-2 virus, has spread across more than 200 coun-
tries, and infected more than 660 million people, taking 
the lives of more than 6.7 million people worldwide [1]. 
Despite these challenges, researchers worldwide have man-
aged to create more than 400 diagnostic tests and collection 
kits, including 63 home collection, 32 pooling, 55 point-of-
care, 19 multi-analyte, and 13 at-home products that have 
been approved for emergency use by the US Food and Drug 
Administration [2]. Ritchie et al. [3] reported that over 450 
million tests had been performed in the USA as of May 
2021. This emphasizes the importance of the research and 
development of reliable and speedy diagnostic kits to ensure 
preparedness for pandemics of large magnitude [4]. A lat-
eral flow assay (LFA), most known as a rapid test, has been 
widely utilized more over polymerase chain reaction (PCR) 
tests due to its ease of use, rapidness, and cost effectiveness 
[5, 6]. In fact, Biby et. al [4]. reported that 44 LFAs were 
authorized by the FDA in the USA for COVID-19 in vitro 
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diagnostics. Simply, an LFA can be described as a system 
consisting of an analytical membrane that act as an autarkic 
microfluidic pump system capable of transporting the pre-
treated (if necessary) sample from the sample pad to conju-
gate pad [7]. While diffusing through the conjugate pad, the 
sample is mixed with gold nanoparticles (AuNPs), biomole-
cule conjugates, and additives, which react with the antibod-
ies on the membrane [4, 7] (Fig. 1). The membrane made of 
Nitrocellulose (NC) plays a critical role as all the biological 
reactions leading to the signal generation taking place on the 
Nitrocellulose membrane (NCM). The performance of an 
NCM as an analytical membrane depends on the thickness of 
the NC membrane and the pore size. The layer thickness of 
the NC membrane affects the sample volume needed for the 
test. Mansfield, 2009 [8] reported that the ideal layer thick-
ness should be within the range of 100–150 µm. The pore 
size of the membrane governs the capillary flow rate, which 
determines the sensitivity and readout times. Although a 
high flow rate will provide a better readout time, it can also 
decrease the time available for AuNPs to react or bind with 
the targeted antibodies [9]. Despite much research and devel-
opment, optimizing and designing the NCMs to reach a par-
ticular capillary flow rate remains a challenge.

The wicking rate of a membrane refers to the surface-
driven imbibition process due to capillary suction. Gas-
perino et al., Fries & Quere, and Masoodi et al. [10–12] 
discussed the application of Darcy’s law and the Richards 
equation, whereby the wicking rate was determined by the 
volume averaging of certain properties: porosity, permeabil-
ity, fiber radius, and pore radius [13, 14]. Lucas and Wash-
burn derived a solution for porous mediums, considering the 
capillary pressure developed in a cylindrical capillary with 
the assumption that the porous medium is a collection of 
cylindrical capillaries [15]. Altschuh et al. [7] demonstrated 
that the estimated effective pore radius is approximately 
eight to ten times higher than the geometric means. They 

argued that use of solutions such as the Young–Laplace 
equation and Lucas and Washburn solutions are not appli-
cable in the context of membranes, as the structures are often 
non-axisymmetric and closed. Similarly, much research has 
been conducted to evaluate the flow within the microstruc-
tures; however, the authors were not able to find any research 
that investigated the effect of the membrane recipe on the 
wicking rate.

NCMs are manufactured by mixing chemicals such as 
nitrocellulose, their solvent, and nonsolvent additives. The 
quantities of each compound and the membrane manufac-
turing process influence the pore size, contact angle, and 
porosity of the membrane, which, in turn, affect the wick-
ing rate [16, 17]. In this paper, we have attempted to use an 
artificial neural network (ANN) to predict the membrane 
wicking rate from just the membrane recipe data and the 
machine control data.

Materials and methods

Materials

The raw data for this analysis were obtained from UMTR 
Co., Ltd (UMTR) located at 8, Suseong-ro, Gwonseon-gu, 
Suwon-si, Gyeonggi-do, 16426, Republic of Korea, . The 
company manufactures NCMs for Influenza-A LFAs. The 
chemicals used for NCM manufacture are Nitrocellulose 
([C6H9(NO2)O5]n, purchased from KCNC 51, Wanjusan-
dan 4-ro, Bondgong-eup, Wanju-gun, Jeollabuk-do, Korea), 
CA (cellulose acetate, [C6H7O2(OH)3]n, purchased from 
Samchun Chemical Co., Ltd. 117, Sandan-ro 16 beon-gil, 
Pyeongtaek-si, Gyeonggi-do, Republic of Korea), DI water 
(Samchun Chemical Co., Ltd. 117, Sandan-ro 16beon-
gil, Pyeongtaek-si, Gyeonggi-do, Republic of Korea), 
SDS (sodium dodecyl sulfate, NaC12H25SO4, Samchun 

Fig. 1   Breakdown of the com-
ponents of a lateral flow assay 
(LFA). The image was repro-
duced with permission from the 
UMTR Co., Ltd, 2023

Absorbent Pad

Nitrocellulose Membrane

Conjugate release pad
Sample pad
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Chemical Co., Ltd. 117, Sandan-ro 16 beon-gil, Pyeong-
taek-si, Gyeonggi-do, Republic of Korea), caster oil (caster 
oil, Samchun Chemical Co., Ltd. 117, Sandan-ro 16beon-
gil, Pyeongtaek-si, Gyeonggi-do, Republic of Korea), IPA 
(2-propanol, C3H8O, Samchun Chemical Co., Ltd. 117, San-
dan-ro 16beon-gil, Pyeongtaek-si, Gyeonggi-do, Republic 
of Korea), EtOH (ethyl alcohol, C2H6O, Samchun Chemical 
Co., Ltd. 117, Sandan-ro 16beon-gil, Pyeongtaek-si, Gyeo-
nggi-do, Republic of Korea), MA (methyl acetate, C3H6O2, 
Samchun Chemical Co., Ltd. 117, Sandan-ro 16beon-gil, 
Pyeongtaek-si, Gyeonggi-do, Republic of Korea), PEG6000 
(polyethylene glycol 6000, (2H6O2)n; H(OCH2CH2)nOH, 
purchased from Samchun Chemical Co., Ltd. 117, Sandan-
ro 16beon-gil, Pyeongtaek-si, Gyeonggi-do, Republic of 
Korea), and TWEEN 20 (polyoxyethylene sorbitan monolau-
rate, C58H114O26, purchased from Samchun Chemical Co., 
Ltd. 117, Sandan-ro 16beon-gil, Pyeongtaek-si, Gyeonggi-
do, Republic of Korea).

Membrane manufacturing process

The Nitrocellulose (NC) was quantified based on the solid 
content followed by the addition of ethyl alcohol, 2-Pro-
panol, DI water, sodium dodecyl sulfate, and polyethylene 
glycol. A complete solution was prepared by stirring with 
the NC for three hours using a three-horsepower stirrer. The 
residual materials were removed using a polyester filter. 
After filling the reaction tank, it was used after removing 
air bubbles. The membranes were fabricated using vapor-
induced phase separation (VIPS) and nonsolvent-induced 
phase separation (NIPS) processes, sequentially (Fig. 2).

The VIPS used water vapor to facilitate the required 
humidity conditions. The relative humidity was maintained 
at 80%, and the temperature was maintained at 25 °C. The 
VIPS tanks maintained 80% relative humidity, by continu-
ously introducing water vapor via the exhaust holes installed 

at both ends of each chamber at a speed of 50 cc/min. This 
facilitated the removal of the accumulated solvent during 
the development of the web pass. This process facilitated 
the phase separation. During the NIPS process, the water 
temperature was maintained at 25 °C. An optical polyeth-
ylene terephthalate (PET) film purchased from SKC (Block 
B, The K Twin Towers, 50 Jongro-1-gil, Jongro-gu, Seoul, 
South Korea) was used during the process. For coating, a 
mono pump capable of quantitatively injecting the solution 
was used, and the coater used a slot die to control the coat-
ing gap. The web pass was designed to accurately match the 
progress speed by using a servo motor. The production line 
maintained a constant speed (0.1–1.0 m/min) throughout the 
VIPS and NIPS processes, drying furnaces, and final wind-
ing in the rewinder. The drying furnace was programed to 
increase the temperature from medium to high temperatures 
(a step increment control program was used to set the tem-
perature to 70 °C, 90 °C, and 110 °C) to ensure that the 100 
um nitrocellulose membrane was sufficiently dry. Scanning 
electron microscopy (SEM) (HITACHI FE SEM, SU8600, 
Tokyo, Japan) images of the manufactured membranes were 
taken to assess the pore diameters and pore structures. The 
wicking rate plots of the manufactured membranes were 
assessed digitally through a machine vision system (Fig. 3). 
Membranes of size 25 × 75 mm were clamped into a support-
ing device as shown in the Fig. 3, and one edge was inserted 
into a thin layer of distilled water. The time taken for the 
wetted distance to reach 40 mm was defined as the wicking 
time. In the experiment, it was assumed that the effects of 
swelling and evaporation are negligible.

Method of analysis

All the data (5 years of research data with research and 
development cost of 10 million USD) were analyzed, and 
the ANN was developed using the TensorFlow (v2.12.0), 

Mixing VIPS and NIPS Processes Drying and Roll to Roll 

Fig. 2   The Nitrocellulose membrane manufacturing process. The processes include mixing, vapor-induced phase separation (VIPS), nonsolvent-
induced phase separation (NIPS), drying, and finally a roll-to-roll process
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Keras, Numpy(1.21.5), SciKit-Learn(1.1.1), and Pandas 
(1.4.4) libraries in Python 3.9. Firstly, the data (731 data 
points) were preprocessed to remove any missing values 
and outliers. Next, the preprocessed data (Table 1) were 
descriptively analyzed. Afterwards, the preprocessed data 

were then split into testing and training datasets with a split 
ratio of 20% with zero random state. The training dataset 
was normalized prior to fitting to the machine learning mod-
els and ANN. The initial ANN was built with an input layer 
with 12 input dimensions and 128 neurons and two hidden 

Fig. 3   The machine vision sys-
tem to measure the membrane 
wicking rate

Table 1   An extract of the preprocessed data that contained 557 records

*The measurement units are as follows. Wicking rate- mm/sec, speed-from 0.3 m/min to 1.0m/min, viscosity-from 500 to 1500 cps, thickness-
from 80 to 120 um

Wicking Rate Speed Viscosity Discharge Rate Thickness NC CA Water SDS Oil IPA EtOH MA PEG6000 Tween20

0.286 0.6 1145 230 106 5 0 10 0.03 0 11.536 28.84 44.41 0 0
0.362 0.6 1145 230 112 5 0 10 0.03 0 11.536 28.84 44.41 0 0
0.272 0.6 1119 230 106 5 0.2 10 0.01 0 11.536 28.84 44.41 0 0.1
0.258 0.6 1199 230 99 5 0.2 10 0.01 0 11.536 28.84 44.41 0 0.1
0.231 0.6 1199 230 101 5 0.2 10 0.01 0 11.536 28.84 44.41 0 0.1
0.183 0.6 1164 180 92 5.1 0.25 10 0.03 0 11.536 28.84 44.41 0 0.03
0.206 0.6 1164 180 86 5.1 0.25 10 0.03 0 11.536 28.84 44.41 0 0.03
0.194 0.6 1164 180 88 5.1 0.25 10 0.03 0 11.536 28.84 44.41 0 0.03
0.219 0.6 1049 230 96 5.1 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.258 0.6 1049 230 97 5.1 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.272 0.6 1004 230 104 5.1 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.272 0.6 1025 230 106 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.300 0.6 897 250 100 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.315 0.6 897 250 104 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.362 0.6 897 250 104 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.231 0.6 967 230 95 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.286 0.6 967 230 105 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.330 0.6 967 230 110 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.286 0.6 968 230 103 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.272 0.6 968 230 108 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.272 0.6 1034 230 110 5 0 10 0.03 0 11.536 28.84 44.41 0 0.03
0.244 0.6 1025 230 104 5 0.2 10 0.01 0 11.536 28.84 44.41 0 0.1
0.286 0.6 840 230 96 5 0.2 10 0.01 0 11.536 28.84 44.41 0 0.1
0.362 0.6 840 230 98 5 0.2 10 0.01 0 11.536 28.84 44.41 0 0.1
0.300 0.6 960 230 93 5 0 11 0.03 0 11.092 27.73 46.58 0 0.1
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layers with 128 neurons with the Relu activation function. 
The final layer (output layer) consisted of 1 unit (neuron). 
The model was compiled with the mean square error loss 
function and the Adam optimizer function over 100 epochs. 
The model was evaluated with the predicted wicking rates 
from the test features. The model was then compared for 
the accuracy with the test labels. The model hyperparam-
eters (optimizer, epochs, and batch size) were optimized to 
prevent overfitting.

Results and discussion

Descriptive statistics and linear regression

The preprocessing of the initial dataset reduced the data 
records to 557 from 731 records, due to missing values con-
tained in the dataset. Several outliers were removed based 
on expert opinion and the results obtained for similar recipes 
and operating conditions. The summary statistics for the pre-
processed data set are presented in Table 2. The wicking rate 
varied from 0.06 mm/s to 0.48 mm/s with a mean value of 
0.24 mm/s. The thickness of the membranes ranged from 62 
to 120 mm with a mean value of 96 mm. The discharge rate 
of the equipment varied from 115 m3/m to 330 m3/m. Low 
discharge rates were associated with thicker membranes. The 
thickness of the membrane was significantly affected by the 
discharge rate of the equipment (p < 0.05). The PEG600, 
Tween20, caster oil, CA & SDS chemicals were introduced 
to only few samples. Consequently, the composition of the 
components of the membrane recipe varied drastically. The 
amount of water, SDS, and MA added had a good distri-
bution across a wider range, while the rest of the chemi-
cals were concentrated on two weight composition points 
(Fig. 4). Therefore, the w/w % distributions for most of the 
chemicals were skewed to one side. Yacob [18] explained 
in his thesis that production engineering aims to reduce the 
variations in the components in the manufacturing process 
to reach higher efficiencies. Similarly, UMTR Co., Ltd. nar-
rowed down the chemical composition ranges to optimize 
their processes, which may have contributed to the skewness 
observed in some distributions.

The wicking rate was significantly (p < 0.05) correlated 
with the water content, SDS, and EtOH composition. The 
chemical composition affected the thickness of the mem-
branes and the diameter of the pores, which may have con-
tributed to the above observation. These phenomena were 
further corroborated by the SEM images. A sample of SEM 
images is provided as Fig. 5, which highlights the increase 
in pore size when the water content changed from 8 to 10%. 
The larger pores promoted the lateral flow within the mem-
brane which resulted in a higher wicking rate. The chemical 
composition of the casting solution changed the viscosity of Ta
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the mixture (within the range 543–1233 mPa.s). The changes 
in viscosity affected the membrane morphology due to its 
ability to influence the solvent/non-solvent phase inver-
sion rate [19]. Lower viscosities allow excessive solution to 
penetrate porous support material, that will reduce the pore 
diameter [20].

Aside from the chemical composition, the operating 
conditions of the manufacturing line also affected the 
wicking rate of the membrane. The wicking rate was posi-
tively correlated to the discharge rate. The SEM analysis 
showed that high discharge rates were attributable to the 
increased pore sizes. Although the temperature program 
and the humidity control during the manufacturing process 
can affect the wicking rate [21], this study did not inves-
tigate the effects of these on the wicking rate. Instead, we 

kept the temperature program and the humidity control 
measures constant throughout the entire research period, 
as described in the Materials and Methods section of this 
article. Ahmad et al. [10] in their study demonstrated that 
porosity of the membrane increased with the increasing 
drying temperature during the manufacturing process. 
They observed this phenomenon for a range of polymer 
content. Therefore, the authors believe that our experi-
ments should be extended to various temperature profiles 
for a more comprehensive study. Besides, the external tem-
perature may also affect the membrane morphology, as 
the mixture gets exposed to the external environment dur-
ing the manufacturing process. In this study the external 
environment temperature was maintained at 25 °C using 
a HVAC system. Therefore, further analysis is needed to 

Fig. 4   The correlation matrix displaying the distribution of the variables and linear correlation among the parameters
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determine the effect of the external temperature on the 
membrane.

The multiple linear regression analysis (Fig. 6) per-
formed with all the data had an R-square value of 0.503. 
The relatively low fit is attributable to the poor linear rela-
tionship that the majority of the parameters had with the 

wicking rate. The correlation coefficients for the discharge 
rate, thickness, NC, CA, water, SDS, oil, IPA, EtOH, MA, 
PEG6000, and Tween20 were -0.888, 0.002, 0.032, -0.024, 
0.032, -0.076, 0.02, -0.006, 0.001, -0.008, -0.083, and 
-0.015, respectively. Most of the coefficients were less 
than 0.5, suggesting that the relationships were nonlinear 
except in the case of the discharge rate.

Fig. 5   The SEM images for 8 (Left), 9 (Middle), and 10% (Right) water content while maintaining NC -5%, CA: MA 1:1,IPA:EtOH-1:2.5, SDS 
-0.5,TWEEN 20- 0.05

Fig. 6   Multiple regression analysis of the dataset. The predicted wicking rate of the Linear regression model is presented by the blue line and the 
actual wicking rates for those 557 data points are presented in orange color markers
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Prediction using ANN

The predictions using the ANN model proved to be more 
accurate with a loss of 0.059. The loss function was carefully 
observed to avoid any over/underfitting. This was further 
prevented by optimizing the hyperparameters considered in 
this study. The ANNs use nonlinear algorithms to create 
relationships with nodes. That may be the reason why the 
ANN provided better results compared to the multiple linear 
regression. Our developed model was tested only with a por-
tion of the original dataset that we built in collaboration with 
UMTR Co., Ltd. The model did not consider the impact of 
the temperature and the humidity conditions of the environ-
ments and the conditions of the NIPS and VIPS processes in 
this study, as we maintained them at a fixed state.

Conclusion

This research explored the possibility of using ANNs to 
predict the membrane wicking rate using the membrane 
recipe generation data and parameters of the VIPS and NIPS 
processes. The company UMTR Co., Ltd had spent nearly 
10 million USD to develop membranes of specific wicking 
rates to be used for Influenza A and Covid-19. Although the 
manufacturing equipment was available, it took significant 
trial and error process to identify the appropriate recipe that 
will generate a suitable membrane. The time consumed and 
cost of developing a fit-for-purpose membrane therefore has 
created a barrier for research and even manufacturing. In this 
study we demonstrated that the ANNs can accurately predict 
the membrane wicking rate, and this can assist research-
ers and membrane manufacturers in manufacturing mem-
branes with a specific wicking rate more quickly. Besides, 
the authors observed that water content, SDS, and EtOH 
composition had a significant impact on the morphology of 
the membrane and the wicking behavior of the membrane. 
These findings will assist researchers in focusing on which 
parameters to optimize if the problem lies primarily with 
the wicking rate of the membrane. This is the first study to 
predict the wicking rate using the samples obtained from 
membrane manufacturers and there is a need to assess other 
similar materials to find out its feasibility. Furthermore, we 
recommend expanding the case studies by varying the tem-
perature and humidity of membrane manufacturing process 
to make the research more comprehensive.
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