Skip to main content
Log in

A fluorescence-based binding assay for proteins using the cell surface as a sensing platform

  • Note
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Protein–protein interaction (PPI) analysis is very important for elucidating the functions of proteins because many proteins execute their functions in living cells by interacting with one another. In PPI analysis, methods using the sensor chips are widely employed to obtain quantitative data. However, these methods require that the target proteins be immobilized on the sensor chips, and the immobilization processes can affect the binding of the target proteins to their binding partners. In the present work, we propose a PPI analysis system in which the surface of the living cells is utilized as a sensing platform. In our approach, the target protein is displayed on the cell surface by expressing it as a fusion protein with a membrane protein, and the PPI analysis is then conducted by applying its binding partner labeled with a fluorescent dye to the cell surface. We have constructed a model of this binding analysis system using the interaction between biotin protein ligase (BPL) and biotin carboxyl carrier protein (BCCP), where BCCP was displayed on the cell surface and BPL labeled with fluorescein was applied to the cell surface. Here, a red fluorescent protein, mApple, was attached to the C-terminus of the fusion protein of BCCP with a membrane protein. We evaluated the binding level of the labeled BPL by using the intensity ratios of fluorescence from fluorescein to that from mApple. We found that the binding level of the labeled BPL was stably evaluated at least across 60 min observation period and estimated the binding dissociation constant between BPL and BCCP by equilibrium analysis to be 0.33 ± 0.05 μM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. T. Berggård, S. Linse, P. James, Proteomics 7, 2833 (2007). https://doi.org/10.1002/pmic.200700131

    Article  PubMed  CAS  Google Scholar 

  2. V. Srinivasa Rao, K. Srinivas, G.N. Sujini, G.N. Sunand Kumar, Int. J. Proteomics 2014, 147648 (2014). https://doi.org/10.1155/2014/147648

    Article  PubMed  CAS  Google Scholar 

  3. M. Zhou, Q. Li, R. Wang, ChemMedChem 11, 738 (2016). https://doi.org/10.1002/cmdc.201500495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. K. Titeca, I. Lemmens, J. Tavernier, S. Eyckerman, Mass Spectrom. Rev. 38, 79 (2019). https://doi.org/10.1002/mas.21574

    Article  ADS  PubMed  CAS  Google Scholar 

  5. H. Elhabashy, F. Merino, V. Alva, O. Kohlbacher, A.N. Lupas, Structure 30, 462 (2022). https://doi.org/10.1016/j.str.2022.02.004

    Article  PubMed  CAS  Google Scholar 

  6. Y.Y. Wang, W. Li, B.C. Ye, X.B. Bi, Chem. Asian J. 18, e202300226 (2023). https://doi.org/10.1002/asia.202300226

    Article  PubMed  CAS  Google Scholar 

  7. B. Suter, S. Kittanakom, I. Stagljar, Curr. Opin. Biotechnol. 19, 316 (2008). https://doi.org/10.1016/j.copbio.2008.06.005

    Article  PubMed  CAS  Google Scholar 

  8. B. Stynen, H. Tournu, J. Tavernier, P. Van Dijck, Microbiol Mol Biol Rev. Mol. Biol. Rev. 76, 331 (2012). https://doi.org/10.1128/MMBR.05021-11

    Article  CAS  Google Scholar 

  9. G. MacBeath, S.L. Schreiber, Science 289, 1760 (2000). https://doi.org/10.1126/science.289.5485.1760

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Y. Lee, E.K. Lee, Y.W. Cho, T. Matsui, I.C. Kang, T.S. Kim, M.H. Han, Proteomics 3, 2289 (2003). https://doi.org/10.1002/pmic.200300541

    Article  PubMed  CAS  Google Scholar 

  11. T.Y. Low, S.E. Syafruddin, M.A. Mohtar, A. Vellaichamy, N.S.A. Rahman, Y.F. Pung, C.S.H. Tan, Cell. Mol. Life Sci. 78, 5325 (2021). https://doi.org/10.1007/s00018-021-03856-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. A.K. Kenworthy, Methods 24, 289 (2001). https://doi.org/10.1006/meth.2001.1189

    Article  PubMed  CAS  Google Scholar 

  13. H. Kobayashi, L.P. Picard, A.M. Schönegge, M. Bouvier, Nat. Protoc. 14, 1084 (2019). https://doi.org/10.1038/s41596-019-0129-7

    Article  PubMed  CAS  Google Scholar 

  14. E. Blaszczak, N. Lazarewicz, A. Sudevan, R. Wysocki, G. Rabut, Biochem. Soc. Trans. 49, 1337 (2021). https://doi.org/10.1042/BST20201058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. D. Capelli, V. Scognamiglio, R. Montanari, TrAC. Trends Anal. Chem. 163, 117079 (2023). https://doi.org/10.1016/j.trac.2023.117079

    Article  CAS  Google Scholar 

  16. P.J. Jandasa, K. Prabakaran, J. Luoa, D. Holladay, Sens. Actuators A Phys. 331, 113020 (2021). https://doi.org/10.1016/j.sna.2021.113020

    Article  CAS  Google Scholar 

  17. P. Zhang, X. Zhou, J. Jiang, J. Kolay, R. Wang, G. Ma, Z. Wan, S. Wang, Angew. Chem. Int. Ed. Engl.. Chem. Int. Ed. Engl. 61, e202209469 (2021). https://doi.org/10.1002/anie.202209469

    Article  CAS  Google Scholar 

  18. Y. Guan, X. Shan, F. Zhang, S. Wang, H.Y. Chen, N. Tao, Sci. Adv. 1, e1500633 (2015). https://doi.org/10.1126/sciadv.1500633

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Y.Q. Li, S. Sueda, H. Kondo, Y. Kawarabayasi, FEBS Lett. 580, 1536 (2006). https://doi.org/10.1016/j.febslet.2006.01.083

    Article  PubMed  CAS  Google Scholar 

  20. S. Sueda, Y.Q. Li, H. Kondo, Y. Kawarabayasi, Biochem. Biophys. Res. Commun. 344, 155 (2006). https://doi.org/10.1016/j.bbrc.2006.03.118

    Article  PubMed  CAS  Google Scholar 

  21. B. Bagautdinov, Y. Matsuura, S. Bagautdinova, N. Kunishima, J. Biol. Chem. 283, 14739 (2008). https://doi.org/10.1074/jbc.M709116200

    Article  PubMed  CAS  Google Scholar 

  22. S. Sueda, H. Tanaka, M. Yamagishi, Anal. Biochem. 393, 189 (2009). https://doi.org/10.1016/j.ab.2009.06.027

    Article  PubMed  CAS  Google Scholar 

  23. G.J. Kremers, K.L. Hazelwood, C.S. Murphy, M.W. Davidson, D.W. Piston, Nat. Methods 6, 355 (2009). https://doi.org/10.1038/nmeth.1319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. S. Sueda, S. Yoneda, H. Hayashi, ChemBioChem 12, 1367 (2011). https://doi.org/10.1002/cbic.201000738

    Article  PubMed  CAS  Google Scholar 

  25. T. Taniyama, N. Tsuda, S. Sueda, ACS Chem. Biol. 13, 1463 (2018). https://doi.org/10.1021/acschembio.8b00219

    Article  PubMed  CAS  Google Scholar 

  26. S. Jitrapakdee, J.C. Wallace, Biochem. J. 340, 1 (1999). https://doi.org/10.1042/bj3400001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. A. Chapman-Smith, J.E. Cronan Jr., Biomol. Eng. 16, 119 (1999). https://doi.org/10.1016/s1050-3862(99)00046-7

    Article  PubMed  CAS  Google Scholar 

  28. T. Wu, M. Kumar, J. Zhang, S. Zhao, M. Drobizhev, M. McCollum, C.T. Anderson, Y. Wang, A. Pokorny, X. Tian, Y. Zhang, T. Tzounopoulos, H.W. Ai, Sci. Adv. 9, eadd2058 (2023). https://doi.org/10.1126/sciadv.add2058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 21K05130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Sueda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 690 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, K., Sueda, S. A fluorescence-based binding assay for proteins using the cell surface as a sensing platform. ANAL. SCI. 40, 563–571 (2024). https://doi.org/10.1007/s44211-023-00476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00476-5

Keywords

Navigation