Skip to main content
Log in

Iodine-mediated photoinduced autoinductive tandem chromogenic system for visual colorimetric detection of triacetone triperoxide explosive

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A long-standing challenge in colorimetric detection of triacetone triperoxide (TATP) explosive is low sensitivity. We herein developed an iodine-mediated photoinduced auto-inductive tandem chromogenic system to achieve exponential signal amplification. The strategy employs the KI-TATP reaction and photo-induced autocatalytical oxidation of o-phenylenediamine (OPD) that work in tandem. The resulting I3 from the KI-TATP reaction oxidizes OPD to yellow 2,3-diaminophenazine (DAP) that is further excited by blue light illumination to produce reactive oxygen species (ROS). The obtained ROS, in turn, promotes the oxidation of OPD to gain more DAP, causing the auto-inductive chromogenic reaction processes. This tandem chromogenic system is applied for visual colorimetric detection of TATP, allowing the selective and sensitive detection of TATP down to 42.8 μM. Moreover, analyses of TATP in real samples are performed, and the satisfactory recovery results are achieved. Furthermore, a field detection kit is also developed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of the current study are available from the corresponding author upon reasonable request.

References

  1. H. Lin, K.S. Suslick, J. Am. Chem Soc 132, 15519 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. W. Xu, Y. Fu, Y. Gao, J. Yao, T. Fan, D. Zhu, Q. He, H. Cao, J. Cheng, Chem. Commun 51, 10868 (2015)

    Article  CAS  Google Scholar 

  3. J. Chen, W. Wu, A.J. McNeil, Chem. Commun 48, 7310 (2012)

    Article  CAS  Google Scholar 

  4. A. Kende, F. Lebics, Z. Eke, K. Torkos, Microchim. Acta 163, 335 (2008)

    Article  CAS  Google Scholar 

  5. V. Krivitsky, B. Filanovsky, V. Naddaka, F. Patolsky, Anal. Chem 91, 5323 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. X. Yu, Y. Gong, W. Xiong, M. Li, J. Zhao, Y. Che, Anal. Chem 91, 6967 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. W. MacCrehan, S. Moore, D. Hancock, Anal. Chem 83, 9054 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. S. Malashikhin, N.S. Finney, J. Am. Chem. Soc 130, 12846 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. Z. Can, A. Uzer, K. Turkekul, E. Ercag, R. Apak, Anal. Chem 87, 9589 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. A. Üzer, S. Durmazel, E. Erçağ, R. Apak, Sens. Actuators B Chem 247, 98 (2017)

    Article  Google Scholar 

  11. Z. Li, W.P. Bassett, J.R. Askim, K.S. Suslick, Chem. Communicat. 51, 15312 (2015)

    Article  CAS  Google Scholar 

  12. K.L. Peters, I. Corbin, L.M. Kaufman, K. Zreibe, L. Blanes, Anal. Method-UK 7, 63 (2015)

    Article  CAS  Google Scholar 

  13. J. Yan, S. Lee, A. Zhang, J. Yoon, Chem. Soc. Rev. 47, 6900 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. E. Sella, D. Shabat, J. Am. Chem. Soc. 131, 9934 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. E. Sella, A. Lubelski, J. Klafter, D. Shabat, J. Am. Chem. Soc. 132, 3945 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. L. Gabrielli, F. Mancin, J. Org. Chem 81, 10715 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. X. Sun, E.V. Anslyn, Angew. Chem. Int. Edit 56, 9522 (2017)

    Article  CAS  Google Scholar 

  18. I.S. Turan, O. Seven, S. Ayan, E.U. Akkaya, ACS Omega 2, 3291 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. X. Sun, S.D. Dahlhauser, E.V. Anslyn, Journal of the. J. Am. Chem. Soc 139, 4635 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. J. Wang, H. Li, Y. Cai, D. Wang, L. Bian, F. Dong, H. Yu, Y. He, Anal. Chem. 91, 6155 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Q. Ye, S. Ren, H. Huang, G. Duan, K. Liu, J.-B. Liu, ACS Omega 5, 20698 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. Zhang, S. Wu, X. Lu, P. Wu, J. Liu, ACS Nano 13, 14152 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. G. Liu, T. Wu, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Technol 33, 2081 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Key Research and Development Project of Science & Technology Department of Sichuan Province (Grant No. 2021YFS0316) and National and Sichuan’s Training Programs of Innovation and Entrepreneurship for Undergraduate (Grant No. 2022106190198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 542 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cui, Y., Lin, Y. et al. Iodine-mediated photoinduced autoinductive tandem chromogenic system for visual colorimetric detection of triacetone triperoxide explosive. ANAL. SCI. 39, 935–943 (2023). https://doi.org/10.1007/s44211-023-00298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00298-5

Keywords

Navigation