Skip to main content
Log in

Solid-phase microextraction with MIL-53(Al)-polymer monolithic column coupled to pressurized capillary electrochromatography for determination of chlorogenic acid and ferulic acid in sugarcane samples

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this paper, a polymer monolithic column based on poly (Butyl methacrylate-co-ethylene glycol dimethacrylate) (poly (BMA-co-EDGMA)) doped with MIL-53(Al) metal–organic framework (MOF) was prepared using an in situ polymerization method. The characteristics of MIL-53(Al)-polymer monolithic column were studied through scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), energy-dispersive spectroscopy (EDS), X-ray powder diffractometry (XRD), and nitrogen adsorption experiment. Due to its large surface area, the prepared MIL-53(Al)-polymer monolithic column has good permeability and high extraction efficiency. Using MIL-53(Al)-polymer monolithic column for solid-phase microextraction (SPME), coupled to pressurized capillary electrochromatography (pCEC), a method for the determination of trace chlorogenic acid and ferulic acid in sugarcane was established. Under optimized conditions, chlorogenic acid and ferulic acid have a good linear relationship (r ≥ 0.9965) within the concentration range of 50.0–500 µg/mL, the detection limit is 0.017 µg/mL, and the relative standard deviation (RSD) is less than 3.2%. The spike recoveries of chlorogenic acid and ferulic acid were 96.5% and 96.7%, respectively. The results indicate that the method is sensitive, practical, and convenient. It has been successfully applied to the separation and detection of trace organic phenolic compounds in sugarcane samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. S.Y. Ou, Y.L. Luo, C.H. Huang, M. Jackson, Innov. Food Sci. Emerg. 10, 253 (2009). https://doi.org/10.1016/j.ifset.2008.10.008

    Article  CAS  Google Scholar 

  2. M.N. Safdar, T. Kausar, S. Jabbar, A. Mumtaz, K. Ahad, A.A. Saddozai, J. Food Drug. Anal. 25, 488 (2017). https://doi.org/10.1016/j.jfda.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  3. Y. Asikin, M. Takahashi, T. Mishima, M. Mizu, K. Takara, K. Wada, Food Chem. 141, 466 (2013). https://doi.org/10.1016/j.foodchem.2013.03.045

    Article  CAS  PubMed  Google Scholar 

  4. R.S.G. Singh, P.S. Negi, C. Radha, J. Funct. Foods 5, 1883 (2013). https://doi.org/10.1016/j.jff.2013.09.009

    Article  CAS  Google Scholar 

  5. B. Min, L. Gu, A.M. McClung, C.J. Bergman, M.H. Chen, Food Chem. 133, 715 (2012). https://doi.org/10.1016/j.foodchem.2012.01.079

    Article  CAS  Google Scholar 

  6. D. Allen, A.D. Bui, N. Cain, G. Rose, M. Downey, Anal. Bioanal. Chem. 405, 9869 (2013). https://doi.org/10.1007/s00216-013-7405-0

    Article  CAS  PubMed  Google Scholar 

  7. A. Tarafdar, Y. Kumar, B.P. Kaur, P.C. Badgujar, J. Food Process. Preserv. 45, e15428 (2021). https://doi.org/10.1111/jfpp.15428

    Article  CAS  Google Scholar 

  8. S. Feng, Z. Luo, B. Tao, C. Chen, LWT-Food Sci. Technol. 60, 970 (2015). https://doi.org/10.1016/j.lwt.2014.09.066

    Article  CAS  Google Scholar 

  9. P.V. Freitas, D.R. da Silva, M.A. Beluomini, J.L. da Silva, N.R. Stradiotto, J. Anal. Methods Chem. (2018). https://doi.org/10.1155/2018/4869487

    Article  PubMed  PubMed Central  Google Scholar 

  10. Y.H. Zhang, J.Z. Han, W.J. Fu, Y.F. Zhang, H.X. Ma, D. He, Y.M. Dong, Microchem. J. 179, 107592 (2022). https://doi.org/10.1016/j.microc.2022.107592

    Article  CAS  Google Scholar 

  11. G.L. Chen, F.J. Zheng, B. Lin, S.B. Lao, J. He, Z. Huang, Y. Zeng, J. Sun, K.K. Verma, ACS Omega 5, 30587 (2020). https://doi.org/10.1021/acsomega.0c04524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E. Caderby, S. Baumberger, W. Hoareau, C. Fargues, M. Decloux, M.N. Maillard, J. Agric. Food Chem. 61, 11494 (2013). https://doi.org/10.1021/jf4039474

    Article  CAS  PubMed  Google Scholar 

  13. M. Naczk, F. Shahidi, J. Pharmaceut. Biomed. 41, 1523 (2016). https://doi.org/10.1016/j.jpba.2006.04.002

    Article  CAS  Google Scholar 

  14. L.Q. Peng, Y. Zhang, T.C. Yan, Y.X. Gu, Z.X. Yue, J. Cao, Food Chem. 365, 130545 (2021). https://doi.org/10.1016/j.foodchem.2021.130545

    Article  CAS  PubMed  Google Scholar 

  15. K. Vargas-Berrones, L.D.D. León-Martínez, L. Bernal-Jácome, M. Rodriguez-Aguilar, A. Ávila-Galarza, R. Flores-Ramírez, Talanta 209, 120546 (2020). https://doi.org/10.1016/j.talanta.2019.120546

    Article  CAS  PubMed  Google Scholar 

  16. C.F. Grecco, I.D.D. Souza, M.E.C. Queiroz, J. Sep. Sci. 44, 1662 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. A. Roszkowska, N. Miękus, T. Bączek, J. Sep. Sci. 42, 285 (2019). https://doi.org/10.1002/jssc.201800785

    Article  CAS  PubMed  Google Scholar 

  18. T. Deng, D.P. Wu, C.F. Duan, Y.F. Guan, J. Chromatogr. A 1456, 105 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. J.B. Wang, N. Jiang, Z.M. Cai, W.B. Li, J.H. Li, X.C. Lin, Z.H. Xie, L.J. You, Q.Q. Zhang, J. Chromatogr. A 1515, 54 (2017). https://doi.org/10.1016/j.chroma.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  20. W.L. Liu, S. Lirio, Y. Yang, L.T. Wu, S.Y. Hsiao, H.Y. Huang, J. Chromatogr. A 1395, 32 (2015). https://doi.org/10.1016/j.chroma.2015.03.066

    Article  CAS  PubMed  Google Scholar 

  21. T.T. Wang, Y.H. Chen, J.F. Ma, Q. Qian, Z.F. Jin, L.H. Zhang, Y.K. Zhang, Anal. Chem. 88, 1535 (2016). https://doi.org/10.1021/acs.analchem.5b03478

    Article  CAS  PubMed  Google Scholar 

  22. J. Pang, Y. Liao, X. Huang, Z. Ye, D. Yuan, Talanta 199, 499 (2019). https://doi.org/10.1016/j.talanta.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  23. N.N. Wang, S.W. He, W.W. Yan, Y. Zhu, J. Appl. Polym. Sci. 128, 741 (2013). https://doi.org/10.1002/app.37722

    Article  CAS  Google Scholar 

  24. S.D. Chambers, T.W. Holcombe, F. Svec, J.M.J. Fréchet, Anal. Chem. 83, 9478 (2011). https://doi.org/10.1021/ac202183g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J.B. Wang, B. Ni, W.B. Li, J. Sun, Y. Tao, L. Chen, J. Chromatogr. A 1653, 462438 (2021). https://doi.org/10.1016/j.chroma.2021.462438

    Article  CAS  PubMed  Google Scholar 

  26. L.B. Dong, Y.H. Chen, S.B. Chen, C.Y. Hou, S.Y. Wang, R.R. Xuan, K.Y. Fang, T.T. Wang, L.H. Zhang, Y.K. Zhang, Anal. Bioanal. Chem. 413, 1871 (2021). https://doi.org/10.1007/s00216-021-03155-4

    Article  CAS  PubMed  Google Scholar 

  27. Y. Xu, Q. Cao, F. Svec, J.M.J. Fréchet, Anal. Chem. 8, 3352 (2010). https://doi.org/10.1021/ac1002646

    Article  CAS  Google Scholar 

  28. J. Zhang, Z.L. Chen, J. Chromatogr. A 1530, 1 (2017). https://doi.org/10.1016/j.chroma.2017.10.065

    Article  CAS  PubMed  Google Scholar 

  29. J.C. Masini, F. Svec, Anal. Chim. Acta 964, 24 (2017). https://doi.org/10.1016/j.aca.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  30. J. Hou, H.C. Zhang, G.P. Simon, H.T. Wang, Adv. Mater. 32, 1902009 (2020). https://doi.org/10.1002/adma.201902009

    Article  CAS  Google Scholar 

  31. R. Antwi-Baah, H.Y. Liu, Materials 11, 2250 (2018). https://doi.org/10.3390/ma11112250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. B.S. Liu, L. Pei, X.D. Zhao, X.Z. Zhang, H. Huang, Chem. Eng. J. 410, 128431 (2021). https://doi.org/10.1016/j.cej.2021.128431

    Article  CAS  Google Scholar 

  33. F. Maya, C. Palomino Cabello, R.M. Frizzarin, J.M. Estela, G. Turnes Palomino, V. Cerdà, TrAC Trends Anal. Chem. 90, 142 (2017). https://doi.org/10.1016/j.trac.2017.03.004

    Article  CAS  Google Scholar 

  34. W.A. Khan, M.B. Arain, M. Soylak, Food Chem. Toxicol. 145, 111704 (2020). https://doi.org/10.1016/j.fct.2020.111704

    Article  CAS  PubMed  Google Scholar 

  35. S.Y. Ma, J. Wang, L. Fan, H.L. Duan, Z.Q. Zhang, J. Chromatogr. A 1611, 460616 (2020). https://doi.org/10.1016/j.chroma.2019.460616

    Article  CAS  PubMed  Google Scholar 

  36. S.L. Zhang, Z.L. Hua, H.T. Zhao, W.X. Yao, Y.Z. Wu, D.F. Fu, J.C. Sun, J. Sep. Sci. 44, 2113 (2021). https://doi.org/10.1002/jssc.202001240

    Article  CAS  PubMed  Google Scholar 

  37. S. Lirio, W.L. Liu, C.L. Lin, C.H. Lin, H.Y. Huang, J. Chromatogr. A 1428, 236 (2016). https://doi.org/10.1016/j.chroma.2015.05.043

    Article  CAS  PubMed  Google Scholar 

  38. Y.H. Shih, K.Y. Wang, B.T. Singco, C.H. Lin, H.Y. Huang, Langmuir 32, 11465 (2016). https://doi.org/10.1021/acs.langmuir.6b03067

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Guangxi (Grant No. 2019GXNSFDA245025), the Natural Science Foundation of Guangxi (Grant No. 2020GXNSFAA 297168, 2016GXNSFAA380108), and the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University) (CMEMR2019- B10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Feng.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Li, X., Zhu, J. et al. Solid-phase microextraction with MIL-53(Al)-polymer monolithic column coupled to pressurized capillary electrochromatography for determination of chlorogenic acid and ferulic acid in sugarcane samples. ANAL. SCI. 39, 925–933 (2023). https://doi.org/10.1007/s44211-023-00297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00297-6

Keywords

Navigation