Skip to main content
Log in

Pesticide content analysis of red and yellow watermelon juices through a solid phase microextraction using a green copper-based metal–organic framework synthesized in water followed by a liquid phase microextraction procedure

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

For the first time, this survey demonstrates the use of MIL-53 (Cu) in an analytical method for the detection and determination of some pesticides through their extraction and preconcentration from red and yellow watermelon juices. The other predominance of the research is using a green metal–organic framework that is based on copper and synthesized in deionized water. After conducting the synthesis process, Fourier transform infrared spectrophotometry, X-ray diffraction, scanning electron microscopy, and nitrogen adsorption/desorption analyses were carried out. In the analytical approach, the samples were accompanied by the sorbent addition and vortexed to facilitate the sorption of the analytes onto the sorbent and then centrifuged to be settled down. Then, the analyte-loaded sorbent particles were treated with mL-volume of acetonitrile and subjected to vortexing and centrifugation. Eventually, the eluate was mixed with μL-level of carbon tetrachloride and instantly injected into deionized water. The resulting milky solution was centrifuged and consequently, the sedimentation of the organic phase occurred at the bottom of the conical glass test tube. An aliquot of it was injected into a gas chromatograph equipped with flame ionization detector. Low limits of detection (0.85–1.24 μg L−1) and quantification (2.80–4.10 μg L−1), high enrichment factors (275–330), and reasonable extraction recoveries (55–66%) were the main achievements of the presented method. It is worthwhile to be confessed that chlorpyrifos was detected in red watermelon juice at a concentration of 27 ± 2 μg L−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

DLLME:

Dispersive liquid–liquid microextraction

DµSPE:

Dispersive micro-solid phase extraction

DSPE:

Dispersive solid phase extraction

EF:

Enrichment factor

FID:

Flame ionization detector

GC:

Gas chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

LR:

Linear range

MOF:

Metal–organic framework

MS:

Mass spectrometry

RSD:

Relative standard deviation

References

  1. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341, 1230444 (2013)

    Article  PubMed  Google Scholar 

  2. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423, 705 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. B. Rungtaweevoranit, Ch.S. Diercks, M.J. Kalmutzki, O.M. Yaghi, Faraday Discuss 201, 9 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. S. Pezhhanfar, M.A. Farajzadeh, S.A. Hosseini-Yazdi, M.R. Afshar Mogaddam, New J. Chem. 45, 18208 (2021)

    Article  CAS  Google Scholar 

  5. A. Aquino, K.A. Wanderley, C.D.O. Paiva-Santos, G.F. de Sá, M.D.R. Alexandre, S.A. Júnior, S. Navickiene, Talanata 83, 631 (2010)

    Article  CAS  Google Scholar 

  6. N. Chang, Z.Y. Gu, X.P. Yan, J. Am. Chem. Soc. 132, 13645 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. C.X. Yang, S.S. Liu, H.F. Wang, S.W. Wang, X.P. Yan, Analyst 137, 133 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. L. Hao, X. Liu, J. Wang, C. Wang, Q. Wu, Z. Wang, Talanta 142, 104 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. S. Pezhhanfar, M.A. Farajzadeh, S.A. Hosseini-Yazdi, M.R. Afshar Mogaddam, J. Iran Chem. Soc. 19, 2407 (2022)

    Article  CAS  Google Scholar 

  10. X. Yu Guo, Zh.P. Dong, F. Zhao, Zh.L. Liu, Y.Q. Wang, New J. Chem. 43, 2353 (2019)

    Article  Google Scholar 

  11. S. Williamson, A. Ball, J. Pretty, Crop. Prot. 27, 1327 (2008)

    Article  Google Scholar 

  12. C.S. Azandjeme, M. Bouchard, B. Fayomi, F. Djrolo, D. Houinato, H. Delisle, Curr. Diabetes Rev. 9, 437 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. O. Mehrpour, P. Karrari, N. Zamani, A.M. Tsatsakis, M. Abdollahi, Toxicol. Lett. 230, 146 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. F. Moisan, J. Spinosi, L. Delabre, V. Gourlet, J.L. Mazurie, I. Bénatru, M. Goldberg, M.G. Weisskopf, E. Imbernon, C. Tzourio, A. Elbaz, Health Perspect. 123, 1123 (2015)

    Article  CAS  Google Scholar 

  15. S. Pezhhanfar, M.A. Farajzadeh, S.A. Hosseini-Yazdi, M.R. Afshar Mogaddam, Talanta Open 5, 100121 (2022)

    Article  Google Scholar 

  16. K. Seebunrueng, Y. Santaladchaiyakit, S. Srijaranai, Talanta 132, 769 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Zhang, H.K. Lee, J. Chromatogr. A 1249, 25 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. A. Guart, I. Calabuig, S. Lacorte, A. Borrell, Environ. Sci. Pollut. Res. 21, 2846 (2014)

    Article  CAS  Google Scholar 

  19. M. Anastassiades, S.J. Lehotay, D. Stajnbaher, F.J. Schenck, J. AOAC Int. 86, 412 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. P.R. Bautista, V. Termopoli, Chromatographia 82, 1191 (2019)

    Article  Google Scholar 

  21. M.M. Maoto, D. Beswa, A.I.O. Jideani, Int. J. Food Prop. 22(1), 355 (2019)

    Article  CAS  Google Scholar 

  22. G. Bianchi, A. Rizzolo, M. Grassi, L. Provenzi, R.L. Scalzo, Post. Biol. Technol. 136, 1 (2018)

    Article  CAS  Google Scholar 

  23. Y. Ren, M. Shi, W. Zhang, D.D. Dionysiou, J. Lu, Ch. Shan, Y. Zhang, L. Lv, B. Pan, Environ. Sci. Technol. 54, 5258 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. M. Anbia, S. Sheykhi, J. Nat. Gas Chem. 21, 680 (2012)

    Article  CAS  Google Scholar 

  25. S.R. Rissato, M.S. Galhianea, A.G. de Souzab, B.M. Apon, J. Braz. Chem. Soc. 16(5), 1038 (2005)

    Article  CAS  Google Scholar 

  26. F. Hernandez, O.J. Pozo, J.V. Sancho, L. Bijlsma, M. Barreda, E. Pitarch, J. Chromatogr. A 1109, 242 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. M. Nemati, M.A. Farajzadeh, A. Mohebbi, F. Khodadadeian, M.R. Afshar Mogaddam, J. Sep. Sci. 43(6), 1119 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. S. Li, P. Gao, J. Zhang, Y. Li, B. Peng, H. Gao, W. Zhou, J. Sep. Sci. 35, 3389 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University of Tabriz for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Ali Farajzadeh.

Ethics declarations

Conflict of interest

There are no competing interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezhhanfar, S., Farajzadeh, M.A., Hosseini-Yazdi, S.A. et al. Pesticide content analysis of red and yellow watermelon juices through a solid phase microextraction using a green copper-based metal–organic framework synthesized in water followed by a liquid phase microextraction procedure. ANAL. SCI. 39, 357–368 (2023). https://doi.org/10.1007/s44211-022-00249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00249-6

Keywords

Navigation