Skip to main content

Advertisement

Log in

Selective profiling of liver-related specific proteins based on sofosbuvir-modified magnetic separation material

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

It has great significance in profiling specific proteins throughout for better understanding of complex pathological processes and in-depth pharmacological studies. In this work, an efficient protein profiling strategy was developed based on the specific protein–drug interaction. Sofosbuvir (SOF), as a first-line drug for the treatment of hepatitis C, was modified onto the surface of nanoparticles through stable chemical bonds to fabricate a novel magnetic separation material denoted as Fe3O4@SiO2@PAA@SOF. With sequence coverage as the screening parameter, nine proteins were profiled from fetal bovine serum (FBS) of which eight were liver related. Similarly, the strategy was applied to hepatocellular carcinoma (HCC) patient serum. Eight proteins were profiled and all of them were liver related, demonstrating the superb specificity and selectivity of this strategy for profiling liver-related proteins by virtue of protein–SOF interaction. When serum proteins from HCC patients were compared to those from healthy people, one unique differential protein (D3DQX7) was profiled, which was liver related and was a potential target for ameliorating liver diseases. For further research, this material design concept and protein profiling strategy can be extended to employ other drugs for corresponding studies.

Graphical abstract

Sofosbuvir, as a therapeutic drug for liver diseases, was modified onto the surface of magnetic nanoparticles to fabricate the specific selective separation material (Fe3O4@SiO2@PAA@SOF). Based on protein–SOF interaction, the material was applied to adsorb specific proteins from different serum samples. After MS analysis, specific proteins, most of which were liver related, were successfully profiled from FBS and HCC patient serum, fully demonstrating the superb specificity and selectivity of this protein profiling strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. N.L. Anderson, N.G. Anderson, The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteom. 1, 845–867 (2002)

    Article  CAS  Google Scholar 

  2. N. Rifai, M.A. Gillette, S.A. Carr, Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24, 971–983 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. M.M. Akhilesh Pandey, Proteomics to study genes and genomes. Nature 405, 837–846 (2000)

    Article  Google Scholar 

  4. S. Mahrus, J.C. Trinidad, D.T. Barkan, A. Sali, A.L. Burlingame, J.A. Wells, Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134, 866–876 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Gallien, E. Perrodou, C. Carapito, C. Deshayes, J.-M. Reyrat, A. Van Dorsselaer, O. Poch, C. Schaeffer, Lecompte, Ortho-proteogenomics: multiple proteomes investigation through orthology and a new MS-based protocol. Genome Res. 19, 128–135 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J.-S. Kim, Z. Dai, U.K. Aryal, R.J. Moore, D.G. Camp, S.E. Baker, R.D. Smith, W.-J. Qian, Resin-assisted enrichment of N-terminal peptides for characterizing proteolytic processing. Anal. Chem. 85, 7 (2013)

    Article  Google Scholar 

  7. W. Dormeyer, S. Mohammed, B.V. Breukelen, J. Krijgsveld, A.J.R. Heck, Targeted analysis of protein termini. J. Proteome Res. 6, 4634–4645 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. G. Xu, S.B.Y. Shin, S.R. Jaffrey, Chemoenzymatic labeling of protein C-termini for positive selection of C-terminal peptides. ACS Chem. Biol. 6, 1015–1020 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H.B.R. Eivazzadeh-Keihan, Z. Amiri et al., Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. Trends Anal. Chem. 141, 20 (2021)

    Article  Google Scholar 

  10. G.K. Sofer, L. Hagel, G.K. Sofer, et al. Handbook of process chromatography: a guide to optimization, scale up, and validation[J] (1997)

  11. R.H. Davis, Theory for crossflow microfiltration (1992)

  12. S.L.M.L. Mir, V. Goel, R. Kaiser, Crossflow microfiltration: applications, design, and cost (1992)

  13. Z.A.L. Zeman, Microfiltration and ultrafiltration: principles and applications (1996)

  14. M.B.P.F. García, M. Wolf, S. Reinlein, M.F. von Roman, S. Berensmeier, High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Sep. Purif. 150, 8 (2015)

    Google Scholar 

  15. F.G.F. Jiao, H. Wang, Y. Deng, Y. Zhang, X. Qian, Y. Zhang, Polymeric hydrophilic ionic liquids used to modify magnetic nanoparticles for the highly selective enrichment of N-linked glycopeptides. Sci. Rep. 7, 11 (2017)

    Article  Google Scholar 

  16. T. Wang, D. Babusis, Y. Park et al., Species differences in liver accumulation and metabolism of nucleotide prodrug sofosbuvir. Drug Metab. Pharmacokinet. 35, 7 (2020)

    Article  Google Scholar 

  17. K. Lipa, M.J. Jabłońska, P. Kaczor et al., Sofosbuvir as a drug in recurrent HCV therapy occurring after liver transplantation. J. Educ. Health Sport 8, 15 (2018)

    Google Scholar 

  18. N. Gupta, R. Bodin et al., Autoimmune hepatitis in association with sofosbuvir. Am. J. Ther. 10, 1–3 (2015)

    CAS  Google Scholar 

  19. W.S. Qin E, Cui Y, et al., A case of liver injury caused by DAA based therapy, Hepatol. Int. 11, S1043–S1044 (2017)

  20. D. Bojkova, S. Westhaus, R. Costa et al., Sofosbuvir activates EGFR-dependent pathways in hepatoma cells with implications for liver-related pathological processes. Cells 9, 18 (2020)

    Article  Google Scholar 

  21. F.M. Varshosaz, Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J. Gastroenterol. 21, 12022–12041 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y.A. Li, X.D. Zhao, H.P. Yin, G.J. Chen, S. Yang, Y.B. Dong, A drug-loaded nanoscale metal-organic framework with a tumor targeting agent for highly effective hepatoma therapy. Chem. Commun. (Camb) 52, 14113–14116 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. Z. Li, W. Tao, D. Zhang, C. Wu, B. Song, S. Wang, T. Wang, M. Hu, X. Liu, Y. Wang, Y. Sun, J. Sun, The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo, Asian. J. Pharm. Sci. 12, 285–291 (2017)

    Google Scholar 

  24. I.U.K. Yasir Mehmooda, Y. Shahzad et al., Amino-decorated mesoporous silica nanoparticles for controlled sofosbuvir delivery. Eur. J. Pharmaceut. Sci. 143, 10 (2020)

    Google Scholar 

  25. S.A. Loutfy, H.G. Abdelhady, M.H. Elberry, et al., In vitro evaluation of cytotoxic and anti-HCV-4 properties of sofosbuvir encapsulated chitosan nanoparticles (2020). https://doi.org/10.48550/arXiv.2009.06041[P]

  26. M.J.B. Sofia, D., Chang, W., Du, J., Nagarathnam, D. et al., Discovery of a β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus, J. Med. Chem. 53, 7202–7218 (2010)

  27. R. Ovadia, A. Khalil, Hea Li, Synthesis and anti-HCV activity of β-D -20-deoxy-20-α-chloro-20-β-fluoro and β-d-20-deoxy-20-α-bromo-20-β-fluoro nucleosides and their phosphoramidate prodrugs. Bioorg. Med. Chem. 27, 13 (2019)

    Article  Google Scholar 

  28. B.Y. Yanping Li, Y. Quan, Z. Li, Advancement of prodrug approaches for nucleotide antiviral agents. Curr. Topics Med. Chem. 21, 19 (2021)

    Google Scholar 

  29. Y. Pan, C. Zhang, R. Xiao, L. Zhang, W. Zhang, Dual-functionalized magnetic bimetallic metal-organic framework composite for highly specific enrichments of phosphopeptides and glycopeptides. Anal. Chim. Acta 1158, 338412 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. C. Szabó, G. Veres, T. Radovits, et al., Infusion of sodium sulfide improves myocardial and endothelial function in a canine model of cardiopulmonary bypass. Crit. Care 11 (Suppl 2), P1 (2007)

    Article  PubMed Central  Google Scholar 

  31. O.A. Gressner, C. Gao, M. Siluschek, P. Kim, A.M. Gressner, Inverse association between serum concentrations of actin-free vitamin D-binding protein and the histopathological extent of fibrogenic liver disease or hepatocellular carcinoma. Eur. J. Gastroenterol. Hepatol. 21, 990–995 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Z.H. Jiang, Z.Y. Zhang, M. He et al., The screening and identification of Apolipoprotein A-II from serum differential proteins in hepatocellular carcinoma patients. Chin. J. Hepatol. 18(6), 445–449 (2010)

    CAS  Google Scholar 

  33. Z.T. Hui Jiang, Pujun Gao, Xu. Yonghong, Xinjuan Kong, Han Zhang et al., Interaction of Beta2-glycoproteinI with lipopolysaccharide leads to NF-kappa B activation in hepatocellular carcinoma. Chin. J. Clin (Electronic Edition) 7, 5 (2013)

    Google Scholar 

  34. V.G. Jonnalagadda, K. Choudhary, V. Kranti Matety, Afamin, a novel biomarker: one for all concerns? J. Clin. Mol. Med. 1(2), 1–2 (2018)

    Article  Google Scholar 

  35. J.-S. Kim, H.-J. Lee, Y.-J. Kim, Y.-B. Kim, The mesh density effect on stress intensity factor calculation using ABAQUS XFEM. J. Mech. Sci. Technol. 33, 4909–4916 (2019)

    Article  Google Scholar 

  36. T.T. Chang, C.H. Ho, Plasma proteome atlas for differentiating tumor stage and post-surgical prognosis of hepatocellular carcinoma and cholangiocarcinoma. PLoS ONE 15, e0238251 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. T. Chen, X. Dai, J. Dai, C. Ding, Z. Zhang, Z. Lin, J. Hu, M. Lu, Z. Wang, Y. Qi, L. Zhang, R. Pan, Z. Zhao, L. Lu, W. Liao, X. Lu, AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death Dis. 11, 822 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. N. Fu, H. Du, D. Li, Y. Lu, W. Li, Y. Wang, L. Kong, J. Du, S. Zhao, W. Ren, F. Han, R. Wang, Y. Zhang, Y. Nan, Clusterin contributes to hepatitis C virus-related hepatocellular carcinoma by regulating autophagy. Life Sci. 256, 117911 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. W.L. Jianwen Zhang, B. Fu, K. Hu, S. Liu, H. Li, Q. Zhang, M. Li, G. Chen, Proteomic screening of serum hepatocellular carcinoma-associated proteins by an acetonitrile-pretreatment method. J. Sun Yan-Sen Univ. (Med. Sci.) 31, 5 (2020)

    Google Scholar 

  40. F. Ozdemir, A. Baskiran, The importance of AFP in liver transplantation for HCC. J. Gastrointest. Cancer 51, 1127–1132 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. F. Xue, L. Yang, B. Dai, H. Xue, L. Zhang, R. Ge, Y. Sun, Bioinformatics profiling identifies seven immune-related risk signatures for hepatocellular carcinoma. PeerJ 8, e8301 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  42. T.M. Qing-hua Chang, Y. Tao, T. Dong, Xx. Tang, G.-h Ge, Zj. Xu, Pan-cancer analysis identifies ITIH1 as a novel prognostic indicator for hepatocellular carcinoma. Aging 13, 24 (2021)

    Google Scholar 

  43. L.E. Santiesteban-Lores, M.C. Carneiro, L. Isaac, L. Bavia, Complement system in alcohol-associated liver disease. Immunol. Lett. 236, 37–50 (2021)

    Article  CAS  PubMed  Google Scholar 

  44. Y.L. Liya Mu, C. Wang, X. Zhang, Diagnostic value of combined α1-antitrypsin, α1-acid glycoprotein and prealbumin assay for hepatocellular carcinoma. Shanxi Med. J. 17, 3 (1988)

    Google Scholar 

  45. A.T.-C.C. Terence Chuen-Wai Poon, B. Zee, S. King-Wah Ho, T. Shu-Kam Mok, T. Wai-Tong Leung, P. James Johnson, Application of classification tree and neural network algorithms to the identification of serological liver marker profiles for the diagnosis of hepatocellular carcinoma. Oncology 61, 9 (2001)

    Google Scholar 

  46. T. Utsunomiya, K. Ogawa, K. Yoshinaga, M. Ohta, K. Yamashita, K. Mimori, H. Inoue, T. Ezaki, Y. Yoshikawa, M. Mori, Clinicopathologic and prognostic values of apolipoprotein D alterations in hepatocellular carcinoma. Int. J. Cancer 116, 105–109 (2005)

    Article  CAS  PubMed  Google Scholar 

  47. E.Y. Lee, J.H. Kang, K.A. Kim, T.W. Chung, H.J. Kim, D.Y. Yoon, H.G. Lee, D.H. Kwon, J.W. Kim, C.H. Kim, E.Y. Song, Development of a rapid, immunochromatographic strip test for serum asialo alpha1-acid glycoprotein in patients with hepatic disease. J. Immunol. Methods 308, 116–123 (2006)

    Article  CAS  PubMed  Google Scholar 

  48. X.X. Hongguang Han, J. Zhang, Expression and significance of angiotensin II and angiotensin II type I receptor in human hepatocellular carcinoma. Chin. J. General Surg. 18, 4 (2009)

    Google Scholar 

  49. P. Darebna, P. Novak, R. Kucera, O. Topolcan, M. Sanda, R. Goldman, P. Pompach, Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J. Proteom. 153, 44–52 (2017)

    Article  CAS  Google Scholar 

  50. W.Y. Xianlin Zhan, C. Gao, Research progress on alpha-2-macroglobulin and its glycosylation in tumor. Lab. Med. 32, 6 (2017)

    Google Scholar 

  51. G. Aran, L. Sanjurjo, C. Barcena, M. Simon-Coma, E. Tellez, M. Vazquez-Vitali, M. Garrido, L. Guerra, E. Diaz, I. Ojanguren, F. Elortza, R. Planas, M. Sala, C. Armengol, M.R. Sarrias, CD5L is upregulated in hepatocellular carcinoma and promotes liver cancer cell proliferation and antiapoptotic responses by binding to HSPA5 (GRP78). FASEB J. 32, 3878–3891 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. C. Barcena, G. Aran, L. Perea, L. Sanjurjo, E. Tellez, A. Oncins, H. Masnou, I. Serra, M. Garcia-Gallo, L. Kremer, M. Sala, C. Armengol, P. Sancho-Bru, M.R. Sarrias, CD5L is a pleiotropic player in liver fibrosis controlling damage, fibrosis and immune cell content. EBioMedicine 43, 513–524 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  53. V. Peta, J. Zhu, D.M. Lubman, S. Huguet, F. Imbert-Bismutd, G. Bolbach, G. Clodic, L. Matheron, Y. Ngo, P. Raluca, C. Housset, K. Rezai, T. Poynard, G. FibroFrance-Groupe Hospitalier Pitie Salpetriere, Input of serum haptoglobin fucosylation profile in the diagnosis of hepatocellular carcinoma in patients with non-cirrhotic liver disease. Clin. Res. Hepatol. Gastroenterol. 44, 681–691 (2020)

    Article  CAS  PubMed  Google Scholar 

  54. Y. Shang, M. Luo, F. Yao, S. Wang, Z. Yuan, Y. Yang, Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell Signal 72, 109633 (2020)

    Article  CAS  PubMed  Google Scholar 

  55. H.F. Zhang, X. Gao, X. Wang, X. Chen, Y. Huang, L. Wang, Z.W. Xu, The mechanisms of renin-angiotensin system in hepatocellular carcinoma: from the perspective of liver fibrosis HCC cell proliferation, metastasis and angiogenesis, and corresponding protection measures. Biomed. Pharmacother. 141, 111868 (2021)

    Article  CAS  PubMed  Google Scholar 

  56. D. Li, P. Xie, S. Zhao et al., Hepatocytes derived increased SAA1 promotes intrahepatic platelet aggregation and aggravates liver inflammation in NAFLD. Biochem. Biophys. Res. Commun. 555, 7 (2021)

    Article  Google Scholar 

Download references

Funding

Financial support was from National Natural Science Foundation of China (21974045, 82102503), the National Key R&D Program of China (2021YFF0701900), the Science and Technology Commission of Shanghai Municipality (No. 19142201100, 6142200500), the Fundamental Research Funds for the Central Universities (No. JKJ01221718), and Zhongshan Hospital Fudan University Youth Foundation (2020ZSQN30).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingyi Zhang or Weibing Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Ethics Committee of Zhongshan Hospital Fudan University.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2516 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Wang, Z., Xu, S. et al. Selective profiling of liver-related specific proteins based on sofosbuvir-modified magnetic separation material. ANAL. SCI. 39, 313–323 (2023). https://doi.org/10.1007/s44211-022-00238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00238-9

Keywords

Navigation