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Abstract
Achieving high strength, ductility, and toughness via microstructure design is challenging due to the interrelated depend-
encies of strength and ductility on microstructural variables. As a natural extension of the microstructure design work in 
Bhattacharyya and Agnew (Microstructure design of multiphase compositionally complex alloys I: effects of strength con-
trast and strain hardening, 2024), an optimization framework to obtain the microstructure that maximizes the toughness is 
described. The strategy integrates a physics-based crystal plasticity model, which accounts for damage evolution within the 
reinforcement through a “vanishing cracked particle” model that is governed by Weibull statistics, and a genetic algorithm-
based optimization routine. Optimization constraints are imposed in the form of bounds on the microstructure parameters 
such that they are most likely attainable by conventional thermomechanical processing. Various matrix strain hardening 
behaviors are considered, as well as the strength contrast between the two phases and fracture behavior of the reinforcement. 
It is shown that the addition of a fine-grained (hard) reinforcing phase is preferred as is a matrix that exhibits sustained strain 
hardening such as is observed under TRIP/TWIP scenarios. Finally, the Pareto-optimal set of solutions for several scenarios 
are presented which offer new insights into the linkages between microstructure and mechanical properties.

Keywords Pareto frontier · Weibull statistics · Strain hardening · Damage · Fracture · Considére criterion

Introduction

It is already well-established that the mechanical (and func-
tional) properties of crystalline materials depend critically 
on their microstructure, which can be tailored during the 
manufacturing process in order to optimize the performance 
of a material with a given chemistry and a given application. 
The search for sustainable materials with improved proper-
ties is a longstanding challenge of material science and engi-
neering. The task of finding solutions which maximizing one 
or more specified objectives while satisfying all constraints 
is of utmost importance. Solving an optimization problem 
involving a single objective function such as strength, corro-
sion resistance, oxidation resistance, etc. has been the prime 
focus of engineers and this usually results in a single optimal 
solution. In such cases, all the other properties are ignored 
and often considered to be unimportant. In reality, however, 

several conflicting objectives are simultaneously sought 
and a single optimal solution may be non-existent. A multi-
objective optimization problem has to be solved in order to 
identify the set of possibilities with different trade-offs. In 
such cases, the Pareto-optimal solutions, or non-dominated 
solutions are what is sought [2]. Although a whole locus of 
Pareto-optimal solutions exists, in practice, only one of these 
solutions will be selected, based on additional technical or 
practical considerations.

Effective multi-objective optimization in context of the 
materials design involves knowledge of chemistry–pro-
cessing–structure–properties–performance (CPSPP) rela-
tionships of the integrated computational materials engi-
neering (ICME) framework [3]. However, a great deal 
of materials design seems to focus almost exclusively 
on chemistry [4–8]. In the present work, a framework to 
obtain the microstructure that maximizes the strength, 
ductility, and toughness for dual-phase, composite type 
metallic alloys, is described. The strategy integrates a 
physics-based crystal plasticity model, which accounts for 
damage evolution in the reinforcing phase, and a genetic 
algorithm-based optimization routine. The Pareto-optimal 
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set of solutions for strength–ductility trade-off is investi-
gated and linkages between microstructure and mechani-
cal properties are obtained, which will allow engineers 
to evaluate how close their present microstructures are to 
the Pareto frontier and how to alter the microstructures to 
obtain the optimal properties. This will help remove the 
Edisonian nature that process engineering can take and 
provide helpful guidance.

While some of the results and conclusions presented 
here may appear obvious in retrospect, the authors con-
tend that hindsight is 20–20, and no straightforward 
answer to the questions, “What microstructures would 
place a dual-phase alloy on the Pareto frontier of strength 
and ductility, and which specific microstructure would 
yield the highest toughness, here defined as the prod-
uct of tensile strength & uniform elongation (vis a vis 
Considère criterion)?” exists. The present work aims to 
provide straightforward answers to these questions. This 
is the second part of a two-series paper. The companion 
paper primarily focuses on establishing the connections 
between the constitutive response of the individual phases 
and the aggregate behavior, without considering damage. 
This work considers cracking of the reinforcing phase 
and highlights the role that microstructure has on the 
strength–ductility trade-off.

Modeling Framework

The single-crystal elasto-viscoplastic constitutive models 
for a ductile, face-centered cubic (FCC) structured matrix 
and a strong, intermetallic reinforcing phase, as well as 
the choice of material parameters are described in detail 
in the first part of this two-series paper [1]. The aggre-
gate response of a polycrystal comprises 1000 grains of 
the matrix and 1000 grains of the reinforcement phase, 
weighted to represent the crystallographic texture of each 
of the phases, is computed using the elasto-viscoplastic 
self-consistent (EVPSC) algorithm introduced by Moli-
nari [9, 10] and extended to cases of finite strain by Wang 
et al. [11]. The particular FORTRAN95 implementation 
employed was written by Calhoun [12] and the dislocation 
density-based hardening law of Beyerlein and Tome [13] 
was introduced for the present work. Table 1 summarizes 
the various model parameters used in this work.

A genetic algorithm-based optimization approach is 
used to examine four different types of strain hardening 
responses of the matrix. The dislocation density on slip 
system � , �� , evolves according to the Kocks–Mecking 
relation: d𝜌𝛼 = k𝛼

1

√
𝜌gd𝛾𝛼 − k𝛼

2
(�̇�, T)𝜌𝛼dΓ , where the accu-

mulated shear strain in a grain dΓ =
∑

� d�
� . k�

1
 is the 

athermal storage coeff icient and k𝛼
2
(�̇�, T) is the 

Table 1  Description, symbol, 
and magnitude of the model 
parameters used in this study

Parameters (units) Symbol FCC matrix L21 Heusler References

Boltzmann constant (kg  s−2  K−1) k 1.380622 ×  10−23

Temperature (K) T 298.15
Single crystal elastic constants (GPa) C11 174.4 259.9 [33]

C12 111.8 162.4
C44 99.15 76.48

Shear modulus (GPa) μ 55.7 61
Burgers vector (m) b 0.26 ×  10–9 –
Reference strain rate �̇�0 1 ×  107 – [13, 34]
Shape of strain independent energy barrier pi 1 – [35, 36]

qi 1.5 –
Shape of strain dependent energy barrier pe 0.667 – [34]

qe 1 –
Normalized strain independent activation energy g0,i 0.6 – [1, 37]
Normalized strain dependent activation energy g0,e 1.6 – [37]
Dislocation storage term  (m−1) k1 Table 2 –
Drag stress for recovery (GPa) D –
Normalized activation energy for recovery g0 0.08 –
0 K solute contribution (GPa) �̂ i

t
0.09 1.0  [1]

Hall–Petch strength coefficient (MPa 
√
μm) kHP 149.3 502 [37–40]

Coefficient in Taylor relation � 0.3 –
Weibull modulus m – 16 [41]
Weibull strength (GPa) S – 2.5
Initial dislocation density  (m−2) �0 1 ×  1012 –
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temperature- and rate-dependent dynamic recovery term, 
given by k𝛼

2
(�̇�, T) =

𝜒k𝛼
1
b𝛼

g𝛼

(
1 −

kT

D𝛼b𝛼3
ln
(

�̇�

�̇�0

))
 [13, 14]. The 

reader is referred to the companion paper [1] for details of 
the model. For all cases, the normalized activation energy 
for dynamic recovery, g , is kept constant at 0.08 in order 
to minimize the number of variables since changing the 
drag stress, D, can have a similar effect as changing g . For 
instance, decreasing D is the same as decreasing g , both 
lead to an increase in the dynamic recovery term k2 . An 
additional set of parameters (#5) was used for demonstrat-
ing the effect of fracture strength on toughness (Table 2). 
The initial hardening rate �0 and the saturation stress �1 of 
the individual slip systems of the FCC matrix are calcu-
lated using the well-known relationships: �0 =

1

2
��b�k1 

and �1 =
��b�k1

k2
 . The flow curves of these five different 

matrix material as well as that of the intermetallic hard 
phase (all for a grain size of 50 μm) are shown in Fig. 1a.

Damage Model for Reinforcement

It is reasonable to assume that hard phase-induced dam-
age evolution plays the dominant role in heterogeneous 
materials consisting of a hard phase embedded within a 

soft ductile matrix, since the latter typically has a higher 
damage tolerance. Whether second-phase fracture or inter-
face decohesion dominates depends on several factors such 
as the exact values of the matrix/reinforcement interface 
strength, the fracture strength of the particles, the size and 
the volume fraction of the second phase [15], as well as 
the strain hardening behavior of the matrix [16]. Note that 
the specific form of damage which is considered (crack-
ing of the reinforcing phase) is posited to dominate, in 
general, as the size and the volume fraction of reinforce-
ment are increased [15, 17]. For instance, in dual-phase 
steels, it was found that martensite fracture dominates for 
volume fractions greater than 15% for martensite sizes of 
1–3 μm [15]. Figure 1b shows a backscattered electron 
micrograph of a 6Al–10Cr–40Fe–5Mn–3Mo–30Ni–6Ti 
(in at.%) alloy, comprising of an FCC matrix reinforced 
with  L21 Heusler phase. This alloy has been proposed as a 
relatively low cost, lightweight, corrosion-resistant mate-
rial with adequate strength and ductility, which is of inter-
est for the overall project [18]. The micrograph provides 
evidence of fracture of the  L21 phase after tensile loading, 
which supports the choice of the damage model employed 
in this work. Notably, this alloy system shows fracture of 
the second phase at a relatively low second-phase volume 
fraction of ~ 6% and particle sizes < 10 μm suggesting that 

Table 2  Strain hardening 
parameters related to the 
accumulation and recovery of 
dislocations

Case k1(m−1) k1b
� �∕�0 D(MPa) k2 �1∕�

#1 1 ×  108 0.026 256 200 2.73 0.003
#2 2 ×  108 0.052 128 300 3.70 0.004
#3 3 ×  108 0.078 85 400 4.24 0.006
#4 1 ×  108 0.026 256 800 0.75 0.010
#5 1.5 ×  108 0.039 171 1200 0.80 0.015
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Fig. 1  a The flow curves of five matrix materials with different strain 
hardening behavior as detailed in Table 1, as well as that of the inter-
metallic hard phase, all for a grain size of 50  μm. b Backscattered 
electron micrograph of a 6Al–10Cr–40Fe–5Mn–3Mo–30Ni–6Ti (in 
at.%) corrosion-resistant compositionally complex alloy comprises 

of an FCC matrix reinforced with  L21 Heusler phase, showing evi-
dence of fracture of the  L21 phase after tensile loading. c Cumulative 
Weibull distribution showing the probability of fracture vs. stress for 
two different characteristic stresses S = 2.5 and 3.0 GPa
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the damage model employed is appropriate for the ranges 
of grain sizes and volume fractions explored in this work.

The basics of the damage model for the reinforcing phase 
have been described briefly in an overview paper [18]. A 
stress-based fracture criterion is employed in which the con-
tribution of both the hydrostatic mean stress, �m , and the 
equivalent stress, �eq , are taken into account, i.e., damage 
initiates when �eq

(
1 +

�m

�eq

)
= �c [19, 20]. The damage in the 

second phase is assumed to occur stochastically according 
to the cumulative Weibull distribution function:

where S represents the stress at which the probability for 
cracking is 1 − 1/e = 63% (see Fig.  1c). For simplicity, 
V/V0 is assumed to be 1 [21, 22]. In order to account for 
the fact that some load transfer from the matrix to the frac-
tured particles still occurs via shear of the lateral particle 
sides, the so-called ‘Vanishing Cracked Particle’ (VCP) 
model is employed [23, 24]. In this model, it is assumed 
that the load carried by the cracked second-phase particle 
is approximately equal to that carried by an equal volume 
of the matrix.

Genetic Algorithm‑Based Optimization

Using Considére criterion, d�
d�

= � , the uniform elonga-
tion, �u , and the ultimate tensile stress, �u , are obtained 
from the stress–strain data generated by the crystal plas-
ticity model. The toughness T is defined as �u�u and is 
chosen as the objective function, which can be stated as 
�
∗ = argmaxT(�), where x is a set of design variables, 𝐱∗ 

is the combination of the design variables that leads to 
maximum T. For a given microstructure optimization, three 
quantities viz. the volume fraction of the second phase, vf , 
the FCC matrix and the second-phase grain sizes ( dm , and 
df , respectively) are chosen as the design variables. The 
lower and upper bounds of the design variables were cho-
sen as 0.01 ≤ vf ≤ 0.40 and 1 ≤ dm = df ≤ 50μm , in order 
to restrict attention to microstructures which are practically 
achievable via conventional thermomechanical processing 
[25]. While a genetic algorithm (GA)-based optimization 
strategy using the GA function in MATLAB [26] is used to 
obtain �∗ , it is to be noted that any other strategies such as 
grid search methods, particle swarm, or simulated annealing 
algorithms can also be employed.

A population size of 158 was used and the initial popu-
lation is generated using the default gacreationuniform 
function which creates a random population with a uniform 

Pr = 1 − exp

⎡
⎢⎢⎢⎣
−
V

V0

⎛
⎜⎜⎜⎝

�eq

�
1 +

�m

�eq

�

S

⎞
⎟⎟⎟⎠

m⎤
⎥⎥⎥⎦
,

distribution. The raw fitness scores (toughness values) are 
scaled based on the rank of each individual using the default 
fitscalingrank function. For instance, an individual with rank 
n has scaled score proportional to 1/√n. In order to choose 
the parents for the next generation, the default selection 
function, selectionstochunif, is used where the probability 
that a parent is selected is proportional to its scaled score. 
The fraction of population which comprises crossover chil-
dren, CrossoverFraction, was set to 0.6, and was generated 
using the default crossoverscattered function which creates 
a random binary vector and chooses the genes of the parents 
based on the binary vector values and combines them to 
form the child. EliteCount which specifies how many indi-
viduals in the present generation are guaranteed to survive 
to the next generation was set to 5% of the population size. 
The default mutation function mutationgaussian was chosen 
which adds a random number to each entry of the parent 
to make small changes in the individuals in the population 
to create mutation children and increase the diversity. Con-
vergence is achieved if the average relative change in the 
best fitness function value over MaxStallGenerations (set 
to 15) is less than or equal to the FunctionTolerance (set to 
0.1). A Slurm-based parallel computing framework, where 4 
nodes with 40 processes (tasks) per node are employed. Each 
EVPSC simulation takes ~ 20 min. A run of the GA optimi-
zation with the given population size takes ~ 15 generations 
to converge in ~ 10 h.

Pareto Frontier

The strength–ductility Pareto frontier is the locus of all 
microstructural states (phase fractions and grain sizes) 
which cannot be tailored to further improve the strength 
without sacrificing the ductility. In this work, the Pareto 
frontier is constructed using the simulations performed 
by the GA-based optimization routine. The GA routine 
runs ~ 2500 simulations before converging. Using a cus-
tom MATLAB function, the �u , the �u , and the toughness 
values are calculated for all these simulation runs, and 
the Pareto frontier is calculated using the following algo-
rithm. First, the data are sorted in one of the coordinate 
dimensions (e.g., ductility). Then, in order of decreasing 
ductility, each point (a microstructural state and the cor-
responding �u , �u , and toughness values) is tested to deter-
mine whether the strength of the current point is greater 
than the maximum strength of any previously processed 
point. If it is, then the current point is considered as on 
the frontier. The final output is a set of maximal or non-
dominated points where there is no other point in the total 
set whose strength and ductility values are both greater 
than or equal to the corresponding values of this maximal 
set. A line is fitted to these maximal points to obtain the 
Pareto frontier. The slope of the Pareto frontier (the rate of 
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decrease in strength with increasing ductility) will prove 
significant in what follows. To summarize, a schematic 
showing the microstructure-based mechanical property 
optimization framework, highlighting the connections 

between microstructure, crystal plasticity model account-
ing for damage in the reinforcing phase, and the GA-based 
optimization strategy to obtain optimal microstructures 
and the Pareto frontier is shown in Fig. 2.

Fig. 2  A schematic showing the microstructure-based mechanical 
property optimization framework. The material microstructure is 
used as input to a crystal plasticity model which accounts for dam-
age evolution within the reinforcement through a “vanishing cracked 
particle” model that is governed by Weibull statistics, to predict 
the stress–strain response of the aggregate. Considere criterion is 
employed to determine the uniform elongation, εunif, and the ultimate 

tensile stress, σUTS, from the aggregate stress–strain data. A genetic 
algorithm-based optimization routine is employed, which varies the 
design variables, in order to maximize the design objective “tough-
ness,” defined as σUTS × εunif. The Pareto-optimal set of solutions for 
strength–ductility trade-off is constructed using the simulations per-
formed by the GA-based optimization routine
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Fig. 3  a The effect of hard phase’s fracture strength on tough-
ness of two-phase aggregate illustrated using three different frac-
ture strengths: infinite fracture strength, S/τm = 30 and 25, where 
the matrix CRSS τm = 0.1 GPa. The plot shows that even with rein-

forcements of finite fracture strength, the overall toughness can be 
improved as compared to the matrix. b The fraction of fractured sec-
ond-phase grains as a function of strain, for S/τm = 25 and 30, for dif-
ferent volume fractions (0.1–0.4) of the second phase
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Results and Discussion

Role of Damage of the Second Phase

Figure 3a shows the effect of the hard phase’s fracture 
strength on the toughness of the two-phase aggregate. The 
matrix behavior is given according to case #5 (Table 2). 
Three different fracture strengths are considered: infinite 
fracture strength, 3.0 GPa, and 2.5 GPa. The latter two 
correspond to S

�m
 = 30 and 25, respectively, where the 

matrix critical resolved shear stress (CRSS), �m = 0.1 GPa. 
The case of infinite fracture strength was detailed in the 
companion paper [1], and it was shown that the overall 
toughness can be improved with increasing volume frac-
tion of reinforcement, provided it has sufficiently high 
strength and the matrix has sustained strain hardening 
behavior. The present results show that, even with rein-
forcing materials of finite fracture strength, the overall 
toughness can be maintained or even improved. For 
instance, adding 10% reinforcing phase with a fracture 
strength S

�m
  = 30 leads to an improvement in the toughness 

as compared to that of the matrix. At the limit of weak 
reinforcements (here S

�m
 = 25), the toughness monotoni-

cally decreases with reinforcement addition, suggesting 
that no second-phase addition is beneficial. Figure 3b 
shows the fraction of fractured second-phase grains as a 
function of strain. As the volume fraction of second phase 
increases (from 0.1 to 0.4), the fraction fractured also 
increases. At a given volume fraction and applied strain, a 
stronger reinforcement is less prone to fracture, as 
expected.

Genetic Algorithm‑Based Optimum Microstructures

Cases #1–4 with a reinforcement fracture strength of S
�m

 = 25  
were used for the GA-based optimization. When each of 
these “pure phase” material is combined to produce an 
aggregate, the GA-based optimal microstructure that lead to 
the highest toughness value is shown in Table 3. It is evident 

that, depending on the strain hardening response of the 
matrix material, a wide range of microstructures will lead to 
the optimum properties. More importantly, the maximum 
toughness that one can achieve strongly depends on the 
behavior of the matrix. For instance, as the strain hardening 
rate of the matrix material increases, the maximum achiev-
able toughness value increases from ~ 200 to ~ 300 MPa.

Figure 4 shows the dependence of toughness on the sec-
ond-phase volume fraction for all grain sizes. The scatter 
in the results is due to the grain size effect and it is evident 
that the volume fraction is the key factor that determines the 
toughness of the aggregate. It has already been shown that 
grain sizes only have a second-order effect which results 
in the few outliers [18]. The plots also show that when the 
matrix strain hardening rate is high, a lower volume fraction 
of the reinforcing phase is predicted to result in maximum 
toughness, whereas for a low matrix strain hardening rate, 
a higher volume fraction of the reinforcing phase results in 
the maximum toughness, and in the limit, any reinforcement 
addition is detrimental for the toughness (Case #3). As the 
second-phase content increases, a larger amount of strain 
(stress) is partitioned to the second phase, which either leads 

Table 3  The optimal 
microstructure obtained by the 
GA-based routine, i.e., volume 
fraction ( vf) , matrix ( dm , in 
μm), and reinforcement grain 
sizes ( df , in μm) for the types of 
matrix material

The optimal uniform elongation ( �u ), ultimate tensile strength ( �u , in MPa), and toughness (in MPa), 
defined as �u × �UTS , are also listed

Case Optimized microstructure Optimized properties

vf dm df �u �u Toughness

#1 0.33 5 2 0.229 818 187
#2 0.13 1 1 0.244 1084 264
#3 0.01 1 2 0.279 1172 327
#4 0.23 45 13 0.575 1164 669
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fraction for all grain sizes for cases #1–4 (Table 2)
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to yielding (plastic flow) or damage in the second phase, 
leading to toughness degradation. Lower hardening rate 
leads to lower overall stress levels in the aggregate, mean-
ing the strength contrast between the two phases does not 
rapidly decrease. In such situations, the addition of a higher 
amount of hard phase is beneficial because of the increase in 
strength associated with this phase. The situation is opposite 
for a high hardening matrix.

On the other hand, if the matrix has a sustained strain 
hardening response akin to alloys which exhibit TRIP/TWIP 
behavior, then much higher toughness values ~ 650 MPa can 
be achieved with reinforcement addition. In such scenarios, 
the sustained hardening rate of the matrix compensates (up 
to a point) for the decrease in the hardening rate associated 

with a higher amount of strain partitioning in the second 
phase. This implies that a matrix that exhibits TRIP/TWIP 
effects, leading to a sustained strain hardening rate, will pro-
mote higher toughness values than can be achieved with 
a matrix which exhibits the typical saturation type strain 
hardening response stemming from dislocation–dislocation 
interactions alone.

It is worth restating that the exact values of the optimal 
microstructural variables and the corresponding properties 
will vary with the choice of parameters. For instance, the 
optimal volume fraction would be lower for a reinforce-
ment having a lower fracture strength. For the chosen set of 
parameters, the toughness values are relatively insensitive 
to the reinforcement grain size since only a small amount of 
the strain is partitioned to the second phase. Regardless of 
details, the approach provides guidance for alloy and micro-
structure design.

Pareto Frontier

Figure 5 shows the strength–ductility Pareto frontier for case 
#4. (One can consider each case as being comprised of a 
particular matrix and reinforcement material combination, 
though the grain sizes and phase fractions are free variables.) 
The red points on the frontier are instances of Pareto-optimal 
choices. Materials researchers are well-acquainted with the 
concept of “the banana curve” for steels [27, 28] where an 
increase in strength is accompanied by a decrease in duc-
tility. Indeed, many papers in the literature are concerned 
with developing materials (especially compositions) whose 
properties are in “the white space” which lies “beyond the 
banana curve” e.g., [29, 30].

There are three important points of distinction in the 
present work. First, the shape of the Pareto frontier shown 
in Fig. 5, which is discussed further below, is unlike that 
of the typical “banana curve.” Second, it is not possible to 
“go beyond” this curve unless the fundamental, govern-
ing assumptions are proven false, because this is the locus 
of truly optimal microstructures. Third, this curve is not a 

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
900

950

1000

1050

1100

1150

1200

1250

1300
3'

1''

3''

u
)a

P
M(

u

1
2

4

3

5

6

1'

Fig. 5  The strength–ductility Pareto frontier of a two-phase aggre-
gate, where the matrix hardening behavior is described by case #4 
(Table 2). The red points on the frontier are instances of Pareto-opti-
mal choices of strength and ductility. Points denoted by orange × are 
examples of points which lie below the frontier, i.e., they are not 
Pareto-efficient, since there exist points on the frontier which domi-
nate them. These non-optimal points can be pushed to the frontier by 
optimizing the microstructure as illustrated for points 1 and 3. The 
resulting optimal points are denoted as 1′, 1″ and 3′, 3″, respectively 
(Color figure online)

Table 4  The volume fraction ( vf) , matrix ( dm , in μm) and rein-
forcement grain sizes ( df , in μm) and uniform elongation ( �u ), ulti-
mate tensile strength ( �u , in MPa), and toughness (in MPa), defined 

as �u × �u , of six non-optimal points shown in orange in Fig.  5, for 
matrix strain hardening behavior given by #4 in Table 2

# vf dm df �u �u Toughness

1 0.39 41 39 0.372 1188 441
2 0.11 1 45 0.445 1177 524
3 0.01 1 2 0.446 1110 495
4 0.13 2 40 0.473 1169 553
5 0.05 3 13 0.521 1076 561
6 0.06 9 9 0.586 1026 601
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collection of all possibilities. Rather, there are an infinite 
number of points which lie below the frontier, such as the 
few examples shown in orange. These orange points are 
not Pareto-efficient, since there exist points on the frontier 
which dominate them. In other words, the strength–ductility 
combinations resulting from these microstructures are not 
optimized. The aim of this paper and what should be the 
aim of materials designers and process engineers is to insure 
that the materials we produce lie on the frontier. Table 4 
shows the values of the microstructural variables that lead 
to these non-optimal points. A couple of these are used for 
illustration. Let us consider point #1. If a similar level of �u 
is desired, reducing the matrix grain size from ~ 40 to 8 μm 
leads to a higher strength which will make the point lie on 
the frontier, without changing the reinforcement content. 
Conversely, if a higher �u is desirable at the same strength 
level, then decreasing the reinforcement content from 39 to 
26% and the reinforcement size from 39 to 5 μm will also 
push the point to the frontier. These optimal points 1′ and 
1″ are shown in Fig. 5, and the corresponding microstruc-
tures that would move #1 to the Pareto frontier are shown 
in Table 5. Between these two scenarios, 1′ and 1″ lie an 
infinite number of routes via which the Pareto frontier can 
be reached, limited only by processing realities.

Now let us consider point #3. By increasing the rein-
forcement content from 1 to 37%, as well as by increas-
ing the grain sizes of both the phases (from ~ 1 to 19 and 

44 μm, respectively), this point can be pushed to the frontier, 
by maintaining a similar level of �u . Alternatively, if the 
strength level is held constant, then by increasing the rein-
forcement content to ~ 19%, and the grain sizes of both the 
phases to ~ 40 μm, this point can be made to lie on the fron-
tier. These two optimal points 3′ and 3″ are shown in Fig. 5 
and the corresponding microstructures that would move #3 
to the Pareto frontier are shown in Table 4. In many cases, 
a simultaneous increase in the second-phase fraction and 
matrix grain size would have enabled simultaneous increase 
in both tensile strength and uniform elongation, thus push-
ing closer the Pareto frontier. It is notable that larger matrix 
grain size has been determined to promote optimal combi-
nations of tensile strength and uniform elongation in an era 
where so much emphasis has been placed on nanostructur-
ing [31, 32] There are practical bounds to the present design 
predictions. Very large grain sizes relative to component 
sizes could lead to undesirable, inhomogeneous defor-
mation. That said, the grain size dependence of strength 
becomes quite weak at grain sizes larger than about 50 μm.

Depending on the matrix strain hardening behavior, the 
Pareto frontier exhibits two different shapes. The curve may 
be convex, as shown in Fig. 5, which is replotted together 
with the corresponding microstructural variables and tough-
ness in Fig. 6. Cases #2 and #3 exhibit a similar shape 
(Figs. 7 and 8, respectively), albeit with a different degree 
of convexity. As the matrix hardening rate decreases, the 

Table 5  The microstructures 
that would push points #1 
and #3 (Table 4) to the Pareto 
frontier (1′, 1″, 3′ and 3″ in 
Fig. 5) and the corresponding 
�u , �u , and toughness values

# vf dm df �u �u Toughness

1′ 0.39 8 18 0.376 1281 481
1″ 0.26 45 5 0.554 1188 658
3′ 0.37 19 44 0.437 1270 555
3″ 0.19 47 46 0.590 1119 660

Fig. 6  The strength–ductility Pareto frontier of a two-phase aggre-
gate, where the matrix hardening behavior is described by case #4 
(Table 2). The microstructure that gives rise to the frontier is shown 

a dependence on the reinforcement volume fraction, b dependence on 
the matrix grain size, and c the values of toughness given by εu × σu, 
along the frontier
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level of convexity also decreases, such that for case #2, the 
Pareto frontier is only slightly convex (Fig. 7). Starting from 
the pure matrix material (which exhibits the highest ductility 
and the lowest strength), the tensile strength dramatically 
increases for a given reduction in ductility (e.g., going from 
A to B in Fig. 6a) as second-phase reinforcement is added. 
At higher levels of reinforcement, the rate of reduction in 
ductility for a given increase in strength diminishes (e.g., 
going from C to D). This is also reflected in Fig. 6c, which 
shows the variation of toughness along the Pareto frontier, 
and shows that the highest toughness is associated with a 
coarse matrix. Note, that for the present linear hardening 
case #4, one can achieve a single position on the frontier 
with very different grain sizes (Fig. 6b). In other words, a 
wide range of matrix grain sizes can be employed to achieve 
a singular position (combination of ultimate strength and 
ductility) on the frontier by varying other microstructure 

attributes (i.e., phase fraction). The situation is different for 
cases #3 and #2, where the highest toughness results from 
a finer matrix grain size (Figs. 7b, 8b). For case #3, the 
optimal volume fraction is 0.01 essentially suggesting that 
the matrix material provides the highest toughness and any 
reinforcement addition is detrimental. For case #2, the opti-
mal volume fraction is 0.13 which is intermediate to cases 
#3 and #4.

Upon further reduction of the matrix hardening rate (i.e., 
below #2), the Pareto frontier shape changes to concave up 
for case #1 (Fig. 9). This shape implies that as one moves 
from high to low uniform elongation, there is a larger rate 
of increase in strength associated with a similar level of 
reduction in ductility. This situation arises when the rate of 
increase in tensile strength for a given increment in second-
phase content (or grain size reduction) increases for a nearly 
constant level of ductility reduction. Note, a finer matrix 

Fig. 7  The strength–ductility Pareto frontier of a two-phase aggre-
gate, where the matrix hardening behavior is described by case #3 
(Table 2). The microstructure that gives rise to the frontier is shown 

a dependence on the reinforcement volume fraction, b dependence on 
the matrix grain size, and c the values of toughness given by εu × σu, 
along the frontier

Fig. 8  The strength–ductility Pareto frontier of a two-phase aggre-
gate, where the matrix hardening behavior is described by case #2 
(Table 2). The microstructure that gives rise to the frontier is shown 

a dependence on the reinforcement volume fraction, b dependence on 
the matrix grain size, and c the values of toughness given by εu × σu, 
along the frontier
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grain size is advantageous in this case (Fig. 9b), which 
is similar to cases #2 and #3 but contrary to #4, suggest-
ing that finer matrix grains are preferred, for a matrix that 
exhibits parabolic strain hardening response stemming from 
dislocation–dislocation interactions alone, whereas for a 
matrix exhibiting sustained hardening rate, a coarser matrix 
grain size is preferable to maintain a high strength contrast 
between the phases. Finally, although the toughness only 
marginally increases, it does show a maximum around the 
highest strength portion of the Pareto frontier. The other 
possibility, which is not reflected here, is the linear Pareto 
frontier which reflects the situation where the increase in 
strength is balanced by the reduction in ductility such that 
the slope remains constant.

Given a particular strength–ductility Pareto frontier, the 
criterion which determines whether there is an optimum in 

the toughness is derived as follows. The total differential of 
the toughness, T = T

(
�u, �u

)
 , is dT =

�T

��u
d�u +

�T

��u
d�u . The 

total derivative of toughness with respect to uniform elonga-
tion1 is, dT

d�u
=

�T

��u

d�u

d�u
+

�T

��u
 . Let the slope of the Pareto frontier 

d�u

d�u
= m , and since toughness T = �u�u ,  �T

��u
= �u and 

�T

��u
= �u . Therefore, a maximum to occur, dT

d�u
= �um + �u = 0 

and d
2T

d𝜀2
u

< 0 , which implies that the maximum toughness is 
obtained when m = −

�u

�u
 . The maximum toughness occurs for 

the microstructure which leads to a strength–ductility com-
bination which satisfies this condition. Figure 10 shows this 
criterion for cases #1 and #4. The predicted combination of 
strength and ductility that leads to the highest toughness 

Fig. 9  The strength–ductility Pareto frontier of a two-phase aggre-
gate, where the matrix hardening behavior is described by case #1 
(Table 2). The microstructure that gives rise to the frontier is shown 

a dependence on the reinforcement volume fraction, b dependence on 
the matrix grain size, and c the values of toughness given by εu × σu, 
along the frontier

0.35 0.40 0.45 0.50 0.55 0.60 0.65

500

600

700

800

900

1000

1100

1200

1300

u

u
 (smoothed)

Toughness
slope
-

u
/

u

u

u ,
To

ug
hn

es
s(

M
Pa

)

-4000

-3000

-2000

-1000

0

Slope
,-

u /
u (M

Pa)

0.20 0.25 0.30 0.35
175

180

185

190

195

500

600

700

800

900

1000

u

u
 (smoothed)

Toughness
slope
-

u
/

u

u

u ,
)a

P
M(

ssenhguo
T

-4000

-3500

-3000

-2500

-2000

-1500

Slope
,-

u /
u

)a
P

M(

Fig. 10  The strength–ductility Pareto frontier of a two-phase aggre-
gate, where the matrix hardening behavior is described by a case #1 
and b case #4 (Table 2). Also shown are the toughness values, slope 

of the frontier d�u
d�u

= m, and − �u

�u
 . The maximum in toughness is pre-

dicted to occur when m = −
�u

�u
 , denoted by dotted red line (Color fig-

ure online)

1 Without loss of generality �u is chosen here, �u can also be used.
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closely matches with the simulation results. The slightly dis-
crepancy, particularly for #4, stems from the numerical 
uncertainties in fitting which underestimates the slope of the 
Pareto frontier and thereby the location of the toughness 
maximum.

Conclusions

A strategy which integrates physics-based crystal plasticity 
model, damage evolution in the reinforcement, and a genetic 
algorithm-based optimization routine is employed to obtain 
the optimal microstructure that maximizes the toughness. 
The results undergird the following conclusions:

(1) The overall toughness of an alloy can be maintained or 
even improved by adding a strong reinforcing phase, 
even if the particles have a finite fracture strength.

(2) A matrix that exhibits a sustained strain hardening rate, 
such as is observed for so-called transformation- or 
twinning-induced plasticity (TRIP/TWIP) scenarios, 
always leads to higher toughness values as compared 
to a matrix which exhibits the typical saturation type 
strain hardening response stemming from dislocation–
dislocation interactions alone.

(3) For the latter case, as the strain hardening rate of the 
matrix increases, the optimal volume fraction of rein-
forcement decreases. This is attributed to increasing 
stress levels which promote strain partitioning and 
damage of the reinforcement which leads to rapid plas-
tic instability of the aggregate.

(4) It is shown that the addition of a fine-grained hard 
reinforcing phase is preferred in most cases. For cases 
where the stress levels are low (due to low matrix strain 
hardening), finer matrix grains are preferred, whereas 
a coarser matrix grain size is preferable for a matrix 
exhibiting sustained hardening rate, in order to main-
tain a high strength contrast between the phases.

(5) It is shown that by modifying the individual phase 
properties, the shape of the strength–ductility Pareto 
frontier can be modified. For matrix exhibiting para-
bolic hardening rates, the shape of the Pareto frontier 
changes from convex to concave up, as the hardening 
rate is decreased. For matrices with sustained harden-
ing rates, the Pareto frontier shape is convex.

(6) The link between microstructure and the Pareto fron-
tier is highlighted, and it is demonstrated that there are 
infinite routes, limited only by processing realities, via 
which the Pareto frontier can be reached, thus provid-
ing a novel approach to design multiphase materials.

(7) An analytical criterion which determines whether there 
is an optimum in the toughness within the bounds of 
the independent variables (rather than at the limits) is 

derived, which adequately matches that observed in the 
simulations.
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