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Abstract

In the last two decades, advancements in artificial intelligence and data science have attracted researchers’ attention
to machine learning. Growing interests in applying machine learning algorithms can be observed in different scientific
areas, including behavioral sciences. However, most of the research conducted in this area applied machine learning
algorithms to imagining and physiological data such as EEG and fMRI and there are relatively limited non-imaging and
non-physiological behavioral studies which have used machine learning to analyze their data. Therefore, in this perspec-
tive article, we aim to (1) provide a general understanding of models built for inference, models built for prediction (i.e.,
machine learning), methods used in these models, and their strengths and limitations; (2) investigate the applications of
machine learning to categorical data in behavioral sciences; and (3) highlight the usefulness of applying machine learn-
ing algorithms to non-imaging and non-physiological data (e.g., clinical and categorical) data and provide evidence to
encourage researchers to conduct further machine learning studies in behavioral and clinical sciences.
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1 Introduction

Through the lens of data analysis statistics, the main goal of behavioral sciences researchers was to create models for infer-
ring human behavior for about a century. They applied specific methods such as null hypothesis to draw conclusions and
find causalities and underlying mechanisms of behaviors. For about two decades, machine learning methods (which we
refer to throughout the article as models of prediction) have gained interest and become widely used in research papers.
In this approach, researchers attempt to build models for prediction, meaning their main goal is to design a model that
can forecast unseen future behavior with the highest possible accuracy. Both models of inference and prediction provide
some advantages and limitations, which we discuss below. We here argue that one of these models or combinations of
them should be used in future work. In this study, we aim to review these two type of models (inference and prediction).
The article is structured as follows:

>4 Hany Alashwal, halashwal@uaeu.ac.ae | 'Department of Psychology, School of Literature and Humanities, Shahid Bahonar University
of Kerman, Kerman, Iran. 2College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates. 3Department
of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa. “School

of Psychology, Faculty of Society and Design, Bond University, Queensland, Gold Coast, Australia.

Discover Psychology (2022) 2:22 | https://doi.org/10.1007/544202-022-00027-5

Check for
updates

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s44202-022-00027-5&domain=pdf
http://orcid.org/0000-0001-6983-0334
http://orcid.org/0000-0002-5721-5104
http://orcid.org/0000-0001-5971-273X

Review Discover Psychology (2022) 2:22 | https://doi.org/10.1007/544202-022-00027-5

1) In Sect. 2, we describe models investigating mechanistic processes (models built for inference), the way they treat
data, methods used in the models, the underlying assumptions, and we explain how their theoretical limitations
paved the way for predictive models’ popularity.

2) In Sect. 3, we introduce models built for prediction, their similar language and methods with models created for
inference, how they treat data, advantages and degrees of freedom they offer (via various examples), and we briefly
introduce "deep learning" family as part of machine learning (and models of prediction). Then, we explain the pitfalls
of machine learning and the efforts made to address them. Finally, we show how it is possible to combine both types
of models in order to complete each other to reach the highest performance. Through these explanations, we also
discuss a significant, often ignored, concern called Ground Truth.

3) InSect. 4, we discuss the fact that although multi-modal data or cognitive measurements can also benefit from using
models of prediction, these models are mainly applied to continuous data such as physiological signals and neuro-
imaging data.

4) Inthe final section, we summarize the articles and encourage researchers working with non-imaging and non -physi-
ological signals data to take machine learning into consideration.

2 Models built for inference in behavioral sciences

One of the main goal of behavioral scientists and psychologists is to infer and predict human behavior. Inferring behaviors
means explaining the causality of behaviors precisely, explaining relationships among variables, and achieving better
mechanistic insights regarding human behavior [1, 2]. To understand mechanistic processes researchers use specific
statistical methods to treat input and output variables (also known as dependent and independent variables). These
methods are formal mathematics such as confidence intervals and hypothesis testing, and rely on strong assumptions
such as normality, linearity, non-collinear variables, variable independence [3, 4]. Scientists apply classical statistics to
answer questions such as which input variables, compared to other input variables, exercise contributing effects on
output variables in the gathered experimental sample? For this purpose, for instance, models of inference isolate the
effects of a single variable to measure the behavioral changes and attribute them as the effects of that variable. This is a
common agenda in many well controlled experimental designs [5] like studies comparing the effects of an intervention.
Another example is provided by Koing et al. who aimed to understand multitasking performance; they created a regres-
sion model and considered fluid intelligence, working memory, attention, polychronicity, and extraversion to predict
multitasking performance in 122 participants [6]. Koing et al. compared observed data (here multitasking performance)
and expected data generated from their created model and tested their hypotheses such as whether all the variables have
important contributions in predicting multitasking performance. Based on how generated data fit in specific statistical
data distribution, their hypotheses are either confirmed or rejected, which results in discovering new relationships that
presumably are not due to noise. These results are considered as true effects [7]. If available data are sufficient, assump-
tions such as equal variance become explicitly verified and in case of necessity, the model will be refined [8] as they found
polychoronicity and extroversion do not have significant effects on predicting multitasking performance, and therefore,
can be eliminated from the model. The advantage of this approach is that it is simple to understand. Scientists use few
variables that clinically or theoretically are considered crucial with mainly limited linear interactions among them. There-
fore, interpreting results is not complicated. This way of treating variables imposes serious limitations on the models
built for inference, paving the way for models built for prediction to address these limitations.

Recently many criticisms have been made against the methods used in models investigating mechanistic processes.
These critics argue that having an emphasis on explaining the roots and causal underpinnings of behaviors have ended
in mechanistic models that, despite their appealing theoretical underpinnings, have not demonstrated potential in fore-
casting future behaviors. These methods are mainly concerned with whether the "goodness of fit" between the statistical
model and sample data is adequate or whether implications of different theories confirm the magnitudes and directions
of regression coefficients. These may restrict models to make better predictions [2].

The generalizability of models designed for inference is also questionable. In social and medical research fields, the
inference is mainly drawn based on statistical tests on aggregated data. The underlying assumption is that what is
estimated from groups can be generalized to individuals and lead to understanding subjective phenomena such as
behaviors. Generalizing group-based level findings to single-subject level is possible as long as the processes in question
are ergodic [9]. Ergodicity means that the effects under investigation are homogenous across individuals and stable in
the course of time [10]. Since psychological variables and constructs are organized within people over time, if there are
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individual exceptions, the generalizations based on groups are not ergodic. This is why the classical statistics applied to
groups rather than individuals raises serious questions regarding the extent to which derived results can be generalized
[111.

In addition, models of inference were designed for a number of sample sizes and variables that are now considered
small to moderate. Furthermore, since most statistical models are based on many assumptions such as limited interac-
tions among variables [12], considering more input variables and associations contributes to weaker explanatory [8].

However, Yarakoni and Westfall argued that one reason for choosing the inferential methods in psychology relied
on poor understanding of tools to generate a successful prediction and slow pace of deploying the tools after being
developed [2]. Today, data science and artificial intelligence allowed scientists to address classical statistics limitations
regarding a large number of assumptions, generalizability, complexity, and a small number of input variables, and poor
prediction power.

3 Models designed for prediction in behavioral sciences

Recent advancement in artificial intelligence and data analysis has shed light on models for prediction (i.e., machine
learning) as an approach creating a context in which researchers can address previous statistic and methodological limita-
tions, which contributed to considerable improvement in scientific modeling predictions [13-16]. Models of prediction
create systems involving advanced statistical and probabilistic techniques that learn from data and detect latent patterns
to predict unobserved or out-of-sample data accurately. The questions that machine learning tries to answer are more
heuristic, like what variables are helpful to distinguish people with specific traits or characteristics from others [5]. Models
built for prediction and models built for inference are both based on relationships in data and it is often the case that
both use similar terms with different meaning and purposes. For instance, researchers applying regression algorithms
to understand mechanistic processes focus on how well it accounts for the original dataset while in predictive models,
the focus is on how accurately these algorithms can predict new data [17].

Models of prediction (i.e., machine learning) offer advantages over models built for inference, contributing to its
high growth in science. First, inferential statistics’ reliance on strong assumptions such as error distribution, additivity of
parameters with linear predictors are not satisfied most of the time in clinical practice and become ignored in the scien-
tific literature. This issue is solved since models of prediction methods rely on minimal a priori assumptions. Second, in
contrast to traditional statistics that researchers handpick few variables based on their knowledge to avoid collinearity,
machine learning is able to consider all available data on a specific field [3], especially in situations where there are few
observations and many predictors. For example, investigating rare mental or physical conditions (e.g., suicide or blind
sightedness) requires recording all possible information such as brain structure and function, genetics information,
and historical and demographical information about subjects to draw a valid conclusion. Methods used in inferential
models like regression models have serious limitations when variables outnumbering subjects. Machine learning and,
in general, models of prediction made it possible to apply a number of approaches on small datasets. Thus, machine
learning algorithms provide degrees of freedom to make good predictions even when input variables exceed subjects [4].

Furthermore, models of predictions and machine learning can analyze complex systems. Complex systems involve
interactions among many factors inside and outside of systems. Mental disorders also have such complexity, and the
subsystems such as biology, emotion, cognition, behavior, and environment interact with each other within an indi-
vidual [10, 18]. Models built for inference analyzing few variables and few interactions at a group level cannot estimate
such complex situations accurately [10]. Machine learning and models built for prediction, instead, allows researchers
to analyze complex multivariate relationships related to high-dimensional data with known interdependencies [19].

Psychologists and computer scientists have also taken advantage of the models of prediction capability of applying
models to individuals rather than groups. For example, Spape et al. [20] developed a model to predict what kinds of
faces each individual thinks as attractive. These researchers showed pictures of different faces to participants and asked
them to rate their attractiveness. After that, through machine learning and artificial intelligence, Spape et al. detected
the patterns based on which each participant called pictures attractive or ugly. Then, they used the patterns and pro-
duced novel faces (attractive/ugly) and asked participants again to rate them. The results showed that the accuracy of
predicting individuals’answers was high [20].

Machine learning techniques can be divided into supervised learning in which data are categorized and labeled (for
example, healthy and diagnostic group). Unsupervised learning can cluster data based on their similarities without prior
knowledge or labels. And semisupervised learning which is the intercept of the two previous techniques and includes
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labeled and unlabeled data. Psychology can apply a wide range of these techniques based on the problems they are
trying to address. For instance, a form of supervised learning is classification involves automatic detection of regulari-
ties in data according which the data would be classified into different predefined categories. Psychology researchers
apply these algorithms to classify healthy individuals from those suffering from mental disorders or any other types of
diseases or abnormalities, called diagnosing. For example, Magnin et al. used the Support Vector Machine algorithm to
classify 16 patients with Alzheimer’s disease from 22 healthy elderlies based on their MRI data and reached the prediction
accuracy of 94% [21]. Today, models of prediction such as machine learning algorithms are developed to predict and
diagnose diseases such as Alzheimer’s disease, depression, anorexia, anxiety disorders, specific phobia, and substance
abuse with the highest accuracy [4, 22-26].

Furthermore, changes in brain structure and function, cognition, and physiology due to many disorders and diseases
occur continuously. For instance, Alzheimer’s disease gradually progresses in the course of years, and sometimes the
disease onset starts years before the last stage. So, in order to manage patients more effectively, it is necessary to esti-
mate the progression of diseases through accurate prediction generated from baseline clinical scores [22, 27]. Machine
learning-based methods such as pattern regression have attracted attention for many purposes including prognosis brain
disease and mental disorders. Pattern regression recognition involves estimating continuous variables such as cogni-
tive scores rather than categorical. For example, Stonnington et al. [28] studied Alzheimer’s disease (AD). They applied
relevance vector regression algorithm to participants MRI data to predict several continuous scores evaluating dementia
severity, such as Mini-Mental State Examination (MMSE), Alzheimer’s disease assessment scale (ADAS), Auditory Verbal
Learning Test (AVLT) and dementia rating scale (DRS) in AD, mild cognitive impairment (MCI) and healthy control groups
[28]. There are numerous neuroimaging studies that investigated models with high accuracy to predict the transition
from mild cognitive impairment to Alzheimer’s disease [22, 27]. Neuroimaging and clinical studies also have generated
accurate predictions in psychotic transition [29, 30]. Models of prediction are also a helpful tool to aid health care systems
and caregivers to make treatment decisions. For example, Whitifield et al. classified patients with social anxiety disorder
based on their MRl into those who can or cannot benefit from cognitive behavioral therapy [31]. The significance of these
types of studies is that considerable waste of expenditure, time, and energy resulting from testing therapies by trial and
error without achieving satisfactory outcomes can be effectively avoided.

As for advantages and advancements in models built for prediction, deep learning models showing promising results
in creating models of complicated behaviors. Deep learning is part of broader family of machine learning based on artifi-
cial neural network which uses layers to extract progressively higher level features from raw input. Deep neural networks
algorithms contain simple units being organized in layers and then stacked to create deep networks. The data are trained
on connections and relationships among the units and learn information extraction to solve tasks. A combination of
large annotated datasets and complicated network architectures and advances in computer hardware paved the way
for addressing many problems in computer vision and behavioral research such as pose estimation [32, 33], which refers
to measuring body parts’' geometrical configuration. Scientists use videography to approximate poses in the course of
time and transform them into dynamic, kinematics and action [34, 35]. The advancement of deep learning contributes
to several studies conducted on relatively small datasets and achieve excellent results for different poses such as loco-
motion reaching, egg lying in flies, trail tracking in mice, and hunting in cheetahs [36-38]. In terms of speed, accuracy
and robustness of pose estimation, deep learning was found to be fast accurate and generalizable even when it comes
to complicated experiments such as measuring interactions of multiple animals with objects, or social behaviors in bats
or bee stingers. In terms of standard game theories, deep learning was also shown to be powerful. Game theory is a
framework in which analyzing multi-agent systems and their strategic interactions is under study. For example, security
systems investigating how to allocate security guards strike a balance between maximizing the use of scarce resources
and rational adversaries. In the most existing studies in this area models are based on the assumption that participant
are 100% rational or they try to create models based on cognitive psychology and experimental economics; but deep
learning by performing automatically cognitive modeling allows researchers to be self-sufficient and independent of
such expert knowledge [39].

Having said that, models for prediction do, however, have a number of limitations. Firstly, since models of prediction
use complex nonlinear relationships between variables to find patterns in data, these complicated relationships and
algorithms have made it challenging to interpret machine learning results [40]. Interpretability concerns about the extent
to which models allow for human understanding and it is a vital factor to understand causes of relationships. Generally,
interpretable models include few understandable components, whereas non-interpretable models encompass a large
number of complex components [41]. Therefore, models of prediction emphasis on data science rather than mechanistic
insight have made it hard to interpret and, in order to avoid misinformed conclusions, expertise in both psychology and
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data science is crucial. Secondly, although the goal of models of prediction is to make an accurate prediction, there are
studies showing that models built for inference can have similar performance, if not better, to machine learning (models
of prediction) in this regard [22, 42]. Thirdly, even when the performance is high, the results can be questionable. One
of the trivial examples is studies estimating criminality based on individuals’facial photos. Although the classifiers have
succeeded in accurately categorizing images of criminals from non-criminals, it is not clear based on what differences in
the categories this discrimination is made. For instance, if in all images, the criminals wear black hats and non-criminal
put on no hat, itis possible to reach 100% accuracy in classifying them, but it is not related neither to crime nor to facial
structure. Criminal mugshots are generally taken in different conditions from normal non-criminal photos in terms of
camera, resolution, illumination, background, angle, and distance. In addition, time in prison can impact aging, facial
expression, and a higher risk of facial damage like a broken nose. All of the differences related to situations not facial
structure, can lead to higher accuracy despite the fact that they are not related to the relationship between individuals’
face and crime. Furthermore, the available datasets come from mugshots of those arrested, while a high percentage of
criminals are never caught. Therefore, it is essential not to overlook models of prediction limitations manifested in both
poor and high performance [43-45].

Recently, researchers have made efforts to address the lack of interpretability, which has contributed to emerging
fields such as Explainable Artificial Intelligence (XAl). The goal of XAl is to provide methods increasing interpretability,
transparency, and fairness. Proxy models, introspective models, correlative techniques and saliency, post hoc explana-
tions, and example-based explanations are among these methods which discussing about all of them is beyond the scope
of this article. For example, in post hoc methods categories, the Local-Interpretable Model-Agnostic Explanation (LIME)
is popular and widely used. LIME is a local surrogate model (usually linear or tree) fitted in adjacent of the instance to
explain, and in order to do so, LIME perturbs the instance to explain and generate the required training dataset for fitting
the local explainer. The interpretable model is trained by minimizing the loss functions like weighted Root Mean Square
Error (RMSE). The weight is based on the distance between the instance to explain and the perturbed data meaning that
closer data gain higher weights. In order to have an interpretable model, the loss function should be minimized to the
extent to which complexity measures and fidelity allow. Fidelity is defined as the extent to which an interpretable model
can approximate the original one, and interpretability refers to complexity of the interpretable model. For example, the
number of features that should be applied in the interpretable model is an influential factor. In LIME, the weight and its
direction of each feature illustrate the impact of that feature in the explainer. Therefore, features with positive weights
push the prediction closer to the selected label, and negative weights push it away. In this way, researchers can also
determine and rank features contributions to succeeding the prediction. Therefore, machine learning interpretability can
be seen not only as an issue but also as a tool to extract information from predictive machine learning models [46, 47].
For example Posada-Quintero et al. used machine learning interpretability models to interpret SYM and decision tree
models to find the differences on risk factors and symptoms of burnout syndrome in two categories of teachers. And they
found the most relevant symptoms of burnout were fatigues and headache where the most relevant risk factor was how
satisfied they were with their incomes [48]. In addition to previous attempts to address the interpretability of predictive
models, a new generation of a discipline called artificial cognition provides insights into better interpretability. In artifi-
cial cognition, researchers aim to understand machine behavior similar to cognitive psychology in which scholars try to
understand human behavior. Accordingly, they use similar pipelines such as experimentation. They identify behavior and
its environmental correlates, infer the causes, and determine its boundary conditions. The experimentations are rooted in
Popperian falsificationism tradition in which each theory gains its confirmation by defeating other alternatives. Therefore,
it has high explanatory power. For example, Geirhos et al. [49] aimed to understand why a machine learning algorithm
can recognize objects easily when the shape is distorted by using its texture. They applied the input’s texture to another
input’s shape (e.g., having a cat shape picture filled by elephant skin and testing their machine learning algorithm to see
whether it identifies the picture belongs to cat categories or elephants one [49]. This experimental design was conducted
before to understand human cognition too, and it was found that human mind preference in object feature recognition is
different with machines. In general, this was an example to show how machine learning behavior can be explained [47].
In general, models for inference and models for prediction both have strengths and limitations, and researchers should
choose suitable methods based on their goals and possibilities. For example, they can use models of inference rather
than models of prediction when their knowledge regarding their area of interests is substantial or when their priority is to
provide mechanistic insights. Furthermore, models of inference can be a good choice when they intend to study limited
variables, or the number of observations is much more than variables [3]. On the other hand, ml algorithms can be more
helpful than classical statistics when the priority is to accurately make a predictive model of the behaviors. Furthermore,
machine learning and models of prediction can be used when there are a large number of different types of variables
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involving numerous interactions such as instruments and batteries measuring significant behavioral aspects, reaction
time, demographic data, EEG, MR, genetics, and "omics" data assessing human traits frequency and distributions.

More importantly, scientists can use both approaches to have better results. For example, during feature selection in
machine learning, it is vital to select those variables which exert the highest impact on outcomes. Including unrelated
features in datasets might decrease accuracy because the tested model does not consider the distinguishing variables.
Classical methods such as ANOVA and multidimensional scaling when the target variable is categorical (like classification)
help the model consider important features and reduce the time of training datasets to detect the pattern and increase
accuracy [3]. Another important example can be evaluating ground truth. Ground truth (GT) is the data reference based
on which discriminative models and algorithms are trained. In many machine learning studies, GT was considered to
be perfectly accurate (100%); but recently, studies highlighted the point that it is not possible to have 100% accuracy,
particularly in medicine or psychology. Since human experts and specialists determine GT labels based on their inter-
pretation and abilities, it is prone to error and disagreement, and they may interpret the same phenomenon differently
and consequently label it differently. In order to address these disagreements and increase reliability, inferential methods
such as Pearson r and spearman Rho are applied. In addition, when ground truth data is skewed inferential methods such
as transformation are used. Therefore these two approaches (machine learning and inferential methods) can promote
each other [50-52].

In addition, one can apply machine learning without predicting behavior; thus the distinction between making pre-
dictions and inferring behavior should not imply that tools used in one of the two models cannot help the other one.
Recently social science researchers used machine learning to discover new concepts, quantify the extent to which these
concepts are prevailed and assess the causal effects. For example, there are a large number of studies using machine
learning to estimate how the effect of a specific intervention can differ across individuals’ characteristics. The derived
information can be used to find more effective target treatments. It can also be used as indirect evidence of the under-
lying mechanism based on which the treatment comes into operation. Machine learning can solve these problems via
estimating average effects within strata defined by the covariates [53].

Broadly speaking, models of prediction is a relatively new method that provides significant advantages for behavioral
sciences. Based on their goals and possibilities, researchers can decide whether models of inference, models of prediction,
a combination of them, or other approaches would be suitable (Table 1). Therefore knowing about the method and its
applications in psychology and behavioral sciences can pave the way for future creative studies.

4 Machine learning applications to behavioral data

Although the popularity of models of prediction (e.g., machine learning) is increasing in almost all areas of science,
the applications of this approach to behavioral sciences have not been adequately addressed in existing studies.
Behavioral sciences are broad fields with various types of assessments, but neuroimaging and physiological signals
are the dominant modalities used in machine learning algorithms [22, 54-56]. It may be because models of predic-
tion happen to become important when scientists start to deal with massive unstructured noisy data. Dimension
reduction as a method to address this type of data contribute to so called “factors” for which interpretation is neither

Table 1 General comparison between models built for prediction and models built for inference

Models of prediction (e.g. machine learning) Models of inference
Goal Prediction Inference
Complexity Considering complex non-linear interactions Designed for few interactions among variables

among variables Few input variables

Large number of input variables
Generalizability Individual participant At a group level
Data Up to large scale dataset Small to moderate sample size
Assumptions Minimal assumptions Larger number of assumptions
Mechanism Detecting patterns in data Comparing groups with each other and with random sample
Reliance Relying on data Relying on theories regarding the essence of the behavior of interest
Limitations Problems with interpretability Low degree of freedom to consider complex relationships

Necessitating satisfaction of many assumptions
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wanted nor necessary. Since the reduced dimensions of such complex datasets do not always require a specific
interpretation, it is likely researchers using neuroimage techniques were searching for methods to analyze such
complex datasets earlier than other field of psychology and behavioral sciences, which has paved the way for black
box models to show exceptional utility [57, 58].

Nonetheless, identifying more comprehensive characterization of behaviors would lead to more accurate predic-
tions. Clinical and cognitive measures, for instance, are inexpensive assessments that play indispensable roles in many
scientific purposes such as diagnosing and evaluating mental disorders. Recently, it was shown that using cognitive
and clinical data significantly increases the accuracy of machine learning predictions compared to not using these
types of data [59]. Following this, some studies incorporated different imaging modalities with clinical, cognitive,
demographic, and genomic data [60-63]. For example, Whelan et al. [64] collected a broad domain of data includ-
ing neural, personality, cognitive, genetic, and demographic data from participants with substance misuse at ages
14 and 16. MRI data were assessed during tasks such as reward processing, motor inhibition control, and emotional
reactivity. They developed a model that can predict alcohol misuse based on brain structure and function, individual
personality and cognitive differences, environmental factors, life experiences, and candidate genes [64]. In terms of
physiological signals there are a number of studies incorporating different modalities such as Heart Rate Variability
and Electrodermal Activity to find biomarkers of Autism, identify cognitive tasks, detect risk for emotional eating
episode, to name but a few [65-67].

Furthermore, Personality computing (PC) is the intersection of personality and computer science which attempt
to extract personality theory driven data such as Big Five trait or HEXACO from machine-sensed information like
speech pattern, written text, digital footprint and non-verbal behaviors by machine learning [68]. In order to improve
interpretability, Researchers applying machine learning in personality field report terms like variables importance and
predictor effects in addition to measures of predictive performance and extend the existing theoretical constructs
such as behavioral manifestations of personality traits [69].

Apart from studies incorporating multimodal data, behavioral researchers who work only on non-imaging and
non- physiological data can also benefit from machine learning and models of prediction. Koutsouleris et al. [70], for
example, built a 189 item questionnaire, based on data from 334 individuals having experienced the first episode
of psychosis recorded in 44 mental health centers and managed to predict their subsequent functional outcomes.
They used classification (support vector machine) to label outcomes based on good outcomes (Global Assessment
of Functioning [GAF] score > 65) vs bad outcomes (GAF < 65). The results indicated questionnaire can predict the out-
comes with accuracies above 70% in both a one-month and a one-year periods. This study is an illustrative example
of machine learning strength in gathering features parsimoniously to build a new questionnaire [45]. Kessler et al.
[71] also gathered baseline information by interviewing 1056 subjects with major depression, re-interviewed them
10-12 years later, and compared the results of the classical method to the results obtained from machine learning
algorithms. They asked about the number of years since age-of-onset with episodes lasting more than 2 weeks and
lasting most days throughout the year. The researchers also investigated whether respondents were ever hospitalized
for depression after their first episode, and if they were disabled at the time of interview because of their depression.
In general, they intended to predict persistence severity, chronicity, hospitalization, disability, and suicide attempts in
people with major depression. They used regression ensemble trees algorithm and the features included temporally
primary comorbid lifetime disorders, parental depression, major depressive disease incident episode symptoms,
and other information about the incident episode such as age-of-onset and whether the episode was triggered
or endogenous. Eventually, the accuracy in predicting high persistence, hospitalization, disability, suicide attempt
were above 70% (that for high chronicity was 63%), which was more precise than predictions made by the classical
statistics method (logistic regression) [46].

In general, although the number of non-imaging and non-physiological studies of behavioral sciences that have
used models of prediction are significantly smaller than the imaging studies, the results are promising and in some
cases nhon-imagining data generate more accurate outputs than imaging data. For example, Samper-Gonzalez et al.
[72] compared the performance of MRI and fluorodeoxyglucose positron emission tomography to cognitive and clini-
cal scores at predicting Alzheimer’s disease in patients with mild cognitive impairment (MCl), and they found that the
latter assessments made a better prediction than the former [47]. Therefore, a better understanding of what models of
prediction have brought about to non-imaging behavioral sciences may pave the way for researchers to conduct more
creative experiments using machine learning and generate more accurate models with non-imaging data. In sum, the
future work should investigate the applications of machine learning in psychology and behavioral sciences working
with non-imaging data.

@ Springer



Review Discover Psychology (2022) 2:22 | https://doi.org/10.1007/544202-022-00027-5

5 Conclusions

Machine learning is a novel approach that brings considerable benefits to behavioral sciences, such as relatively
accurate diagnosis and prognosis of mental disorders and making better treatment decisions. This approach can be
applied to either neuroimaging data, non-imaging data, or combinations of different data types. Therefore, behavioral
researchers depending on their research interests and the type of data they work with can investigate the applica-
tions of machine learning algorithms. In particular, further investigations is suggested in non-imaging assessments
to extend the current findings of machine learning applications in this less studied area.
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