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Abstract
Many issues in real life are riddled with confusion, vagueness, and ambiguity. The 
Topp-Leone distribution is a significant one-parameter probability distribution in the 
context of classical probability theory. There is a gap in the literature when it comes 
to dealing with circumstances involving interval-valued data with a classical Topp-
Leone distribution. So, in this connection, neutrosophic Topp-Leone distribution is 
presented in this paper as an extension of the traditional Topp-Leone distribution. 
The new neutrosophic distribution takes into account the indeterminacy and crisp 
form of interval-valued distributions. The suggested distribution’s mathematical 
features were derived, including moments and related measures, quantile function, 
survival, hazard, inverted hazard functions, and mills ratio. Maximum likelihood is 
used to estimate model parameters. Finally, a complex dataset is utilized to show the 
usefulness of the proposed distributions.
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1 Introduction

Probability distributions have become a fundamental component of any scientific inquiry. 
These probability models describe a variety of real-world random events [1]. Various 
lifetime probability distributions are available in the literature to analyze data sets from 
different fields, including engineering, medicine, actuarial sciences, and economic and 
social sciences. The Topp-Leone distribution [2] is among the most often used continu-
ous distributions. It is commonly utilized to analyze unit interval datasets alternative to 
renowned bounded distributions Beta and Kumaraswamy distributions. Since its develop-
ment, several scholars have researched the distribution, see for example [3–8].

Neutrosophy statistics is an extension of classical statistics. The Neutrosophy term 
was originally presented by [9] and it is the generality of Fuzzy logic. Neutrosophy 
logic guides the investigation of false or true propositions that are uncertain, neutral, 
inconsistent, or somewhere in between [10, 11]. Every subject in mathematics has a 
neutrosophic element or the feature of indeterminacy. Smarandache was the first to use 
the neutrosophic approach in calculus, precalculus, and statistics to address imprecision 
in study variables [12]. Neutrosophic statistics has thus led to the emergence of study 
fields that address the impact of indeterminacy in statistical models. The neutrosophic 
principle of statistical modeling has recently been described in the literature for the first 
time [13]. Ref. [14] discusses neutrosophic measurements of probability and descrip-
tive statistics. Neutrosophic Cramer Mises goodness-of-fit test was proposed by [15]. 
Recently some neutrosophic probability distributions have been introduced and studied. 
Some examples are; neutrosophic Rayleigh distribution [16], neutrosophic beta [17], 
neutrosophic Exponential distribution [18], neutrosophic Kumaraswamy distribution 
[19], and neutrosophic Weibull distribution [20].

In this work, a unique extension of the Topp-Leone distribution is developed for 
modeling uncertain data regarding research variables. We call this distribution that 
is obtained the "Neutrosophic Topp-Leone distribution-(NTLD)." To the best of my 
knowledge, the Topp-Leone model’s neutrosophic calculus has not been covered in any 
published work. It is therefore one of the things that spurs us on to keep working.

2  Neutrosophic Topp‑Leone Distribution and Its Properties

Definition 1: Let the YN = d + uI;uI ∈
[

YL, YU
]

 where YL and YU are lower and upper 
values of the neutrosophic Topp-Leone random variable having determined part d and 
indeterminate part uI;uI ∈

[

IL, IU
]

 . Note that the neutrosophic Topp-Leone distribution 
(NTLD) reduces to classical Tope-Leone distribution when YL = YU . The neutrosophic 
probability density (npdf) of NTLD has a Neutrosophic shape parameter �N ∈

[

�L, �U
]

 
is defined by.

Some plots of npdf are offered in Fig. 1.

(1)fN
(

y;𝛼N
)

= 2𝛼Ny
𝛼N−1(1 − y)(2 − y)𝛼N−1, 0 ≤ y ≤ 1, 𝛼N > 0.
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Figure 1 shows that NTLD is a flexible distribution with only one parameter. It 
has a variety of forms, including exponentially decreasing and unimodal.

The corresponding neutrosophic cumulative distribution function (ncdf) is

Some plots of ncdf for selected value parameters are presented in Fig. 2.

3  Statistical Properties

In this section, some statistical properties of Neutrosophic Topp-Leone dis-
tribution are derived including moments, quantile function, and reliability 
characteristics.

(2)FN

(

y;�N
)

= y�N (2 − y)�N .
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Fig. 1  Neutrosophic probability density for NTL distribution
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3.1  Moments

Theorem 1. The ordinary moments of NTL distribution are

Proof: By definition, the rth moments of NTL distribution can be obtained as

Making substitution 
(

y

2

)

= x , we get

(3)��
rN

= 2
r+2�N�N

[

B

(

1

2
, r + �N , �N

)

− 2B

(

1

2
, r + �N + 1, �N

)]

��
rN

= ∫ 1

0
yrfN(y)dy

= 2�N∫ 1

0
yr+�N−1(1 − y)(2 − y)�N−1dy

��
rN

= 2�N∫ 1

0
yr+�N−1(2 − y)�N−1dy − 2�N∫ 1

0
yr+�N (2 − y)�N−1dy

��
rN

= 2
2�N+r−1�N∫

1

2

0

xr+�N−1(1 − x)�N−1dx − 2
2�N+r�N∫

1

2

0

xr+�N (1 − x)�N−1dx
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Fig. 2  Neutrosophic cumulative distribution function plots for NTL distribution
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After some computations, we get the moment’s final form

where B(a, y) = ∫ y

0
xa−1(1 − x)a−1dx is an incomplete beta function.

3.2  Quantile function and associated measures

The neutrosophic quantile function of NTL distribution is

First, second, and third neutrosophic quantiles

3.3  Some Reliability Properties

The survival and hazard functions of NTLD are, respectively

And

The reversed hazard function is

The cumulative hazard is

��
rN

= 2
r+2�N−1�N

[

B

(

1

2
, r + �N , �N

)

− 2B

(

1

2
, r + 1 + �N , �N

)]

(4)MpN = 1 ±

√

(

1 − p
1

�N

)

M1N =

[{

1 ±

√

1 −
(

1

4

)
1

�L

}

,

{

1 ±

√

1 −
(

1

4

)
1

�U

}]

.

M2N =

[{

1 ±

√

1 −
(

1

2

)
1

�L

}

,

{

1 ±

√

1 −
(

1

2

)
1

�U

}]

.

M3N =

[{

1 ±

√

1 −
(

3

4

)
1

�L

}

,

{

1 ±

√

1 −
(

3

4

)
1

�U

}]

.

(5)SN(y) = 1 − y�N (2 − y)�N .

(6)hN(y) =
2�Ny

�N−1(1 − y)(2 − y)�N−1

1 − y�N (2 − y)�N
.

(7)rN(y) =
2�Ny

�N−1(1 − y)(2 − y)�N−1

y�N (2 − y)�N
=

2�N(1 − y)

y(2 − y)

(8)
HN(y) = −���

(

SN(y)
)

,

= −���
[

1 − y�N (2 − y)�N
]

.
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The Mills Ratio

4  Parameter Estimation

The neutrosophic maximum likelihood estimation technique is utilized to calcu-
late the parameter of the NTL distribution. Let yN1, yN2, yN3,… , yNn be a random 
sample from NTL distribution, then the ML estimator of �N , is obtained by maxi-
mizing the log-likelihood function given below

Partially differentiate with respect to �N

Equating Eq. (10) and some algebraic simplification

(9)
M =

SN (y)

fN (y)
,

=
1−y�N (2−y)�N

2�Ny
�N−1(1−y)(2−y)�N−1 .

l
(

�N
)

= nlog2�N + (�N − 1)

n
∑

i=1

logyNi +

n
∑

i=1

log
(

1 − yNi
)

+ (�N − 1)

n
∑

i=1

log
(

2 − yNi
)

(10)
�l
(

�N
)

��N
=

n

�N
+

n
∑

i=1

logyNi +

n
∑

i=1

log
(

2 − yNi
)

.

Table 1  Simulation results of NTL distribution

Parameters Sample size ABs MREs MSEs

[0.1, 0.5] 5 [0.0281, 0.1326] [0.4171, 0.4784] [0.0053, 0.1504]
15 [0.0163, 0.0567] [0.2403, 0.2872] [0.0016, 0.0415]
30 [0.0113, 0.0352] [0.1665, 0.2223] [0.0008, 0.0229]
45 [0.0040, 0.0118] [0.0497, 0.1200] [0.0001, 0.0060]
60 [0.0029, 0.0079] [0.0341, 0.1066] [0.0001, 0.0046]

[1.5, 2.0] 5 [0.3769, 0.5193] [0.4667, 0.4716] [1.2708, 2.3203]
15 [0.1713, 0.2073] [0.2867, 0.2877] [0.3726, 0.6635]
30 [0.0907, 0.1270] [0.2196, 0.2188] [0.1943, 0.3553]
45 [0.0301, 0.0483] [0.1217, 0.1235] [0.0546, 0.1008]
60 [0.0239, 0.0405] [0.1045, 0.1080] [0.0405, 0.0766]

[2.5, 3.0] 5 [0.6567, 0.7201] [0.4792, 0.4597] [3.8837, 4.5752]
15 [0.2853, 0.3349] [0.2935, 0.2850] [1.0921, 1.5164]
30 [0.1704, 0.2241] [0.2247, 0.2211] [0.5902, 0.7897]
45 [0.0572, 0.0633] [0.1214, 0.1221] [0.1537, 0.2233]
60 [0.0414, 0.0500] [0.1063, 0.1046] [0.1159, 0.1617]



1 3

Journal of Statistical Theory and Applications 

The analytical results of the NTL distribution for moments and associated 
measures have been validated using Monte Carlo simulation also in this section. 
To assess the validity of theory-based results, the NTL distribution may be easily 
simulated in R software. For this purpose, consider the set of neutrosophic param-
eters � = [0.1, 0.5], [1.5, 2.0] and [2.0, 3.0] in the NTL distribution and 10,000 sam-
ples are generated from the Uniform distribution U[0, 1] . The assessment of the 
parameter estimates is carried out using the following measures (AB) (absolute 
bias), MRE (mean relative error), and MSE (mean square error). Table 1 displays 
the values of AB, MRE, and MSE.

5  Application

In this section, we utilized a real dataset related to the monthly low and high tempera-
tures of Lahore, Pakistan for the last five years (2016–2020). The data observations 
are collected from World Weather Online. The data observations are given in Table 2.

Data having values in unit intervals can be of several types, such as propor-
tions and percentages. Based on positive evidence xN1, xN2,… , xNn , phenomena can 

(11)�̂N = −n

{

n
∑

i=1

logyNi +

n
∑

i=1

log
(

2 − yNi
)

}−1

.

Table 2  Minimum and 
maximum temperature for 
Lahore data

Sr. No X
N

Sr. No X
N

Sr. No X
N

1 [46,72] 21 [80,102] 41 [87,108]
2 [49,80] 22 [72,96] 42 [94,114]
3 [60,87] 23 [63,83] 43 [90,106]
4 [71,98] 24 [56,75] 44 [85,103]
5 [84,107] 25 [49,73] 45 [82,101]
6 [91,110] 26 [54,78] 46 [77,97]
7 [88,104] 27 [62,89] 47 [67,82]
8 [84,102] 28 [72,978] 48 [56,72]
9 [79,103] 29 [85,106] 49 [43,64]
10 [69,97] 30 [92,108] 50 [50,72]
11 [61,86] 31 [89,102] 51 [58,81]
12 [53,79] 32 [86,102] 52 [69,94]
13 [47,69] 33 [80,100] 53 [78,103]
14 [50,79] 34 [82,98] 54 [80,101]
15 [56,87] 35 [71,86] 55 [80,95]
16 [72,102] 36 [60,76] 56 [80,94]
17 [83,107] 37 [54,69] 57 [77,94]
18 [87,107] 38 [55,71] 58 [69,91]
19 [88,104] 39 [61,81] 59 [54,78]
20 [86,104] 40 [79,101] 60 [45,69]



 Journal of Statistical Theory and Applications

1 3

be described by a random variable U, with the theoretical support approximated by 
m = sup

(

xN1, xN2,… , xNn
)

 or a higher value. Next, we may consider the random vari-
able X = U∕m , present in (0, 1). By multiplying by m, we can a posteriori rebuild the 
distribution of U in every scenario. To get data between 0 and 1, we now perform a 
normalization technique by dividing these numbers by 120.

The method of neutrosophic maximum likelihood estimation is used to estimate the 
model parameter. The maximum likelihood estimates and model selection measures, 
neutrosophic Akaike Information Criteria (NAIC), neutrosophic Bayesian Information 
Criteria (NBIC), and neutrosophic Kolmogorov–Smirnov (NKS) test are presented in 
Table 3. All the numerical computations were performed via R software. The fitted 
PDF is shown in Fig. 3.

Table 3  Estimates and Goodness-of-fit measures

Estimates -LogLik AIC KS

[8.2834, 13.772] [67.885, 99.464] [-65.885,—97.464] [0.5400, 0.6100]
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Fig. 3  Fitted pdf (left panel) and cdf (right panel) over empirical data
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6  Conclusion

This study proposes the NTL distribution, a novel representation of the Topp-
Leone statistical model. The structural features of the suggested model in the 
neutrosophic environment are addressed in detail. For neutrosophic variance, 
neutrosophic mean, and other related values, analytical formulas are obtained. 
The neutrosophic reliability properties are derived. We estimate the parameters 
by applying the neutrosophic maximum likelihood method. A simulation study 
was conducted to verify the accuracy of the calculated neutrosophic parameter. 
The simulated results show that indeterminate sample data with a large size esti-
mate the unknown parameter efficiently. An application example of the NTLD is 
considered, primarily for processing indeterminacies in lifetime data.
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