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Abstract
This paper proposes a new Topp-Leone Exponentiated Pareto (TLEtP) distribution. 
The new distribution family is derived by expanding the Topp Leone-G family of 
distributions with additional positive shape parameters. The corresponding density 
and distribution functions are derived and shown. Some of the derived mathemati-
cal properties of the distribution include quantile function, ordinary and incomplete 
moments generating function (mgf), hazard function, survival function, odd func-
tion, probability weighted moment, and distribution of order statistic. The param-
eters of the distribution are estimated using Maximum Likelihood method. The 
proposed distribution’s validity is demonstrated by fitting two sets of real data and 
comparing the results with two existing same-family distributions, the Topp-Leone 
Pareto type I(TLPI) and Pareto (P), with the Akaike Information Criteria (AIC) and 
Bayesian Information Criteria (BIC), respectively. The comparison of the proposed 
Topp-Leone Exponentiated Pareto (TLEtP) to the Topp-Leone Pareto type I(TLPI) 
and Pareto (P) distribution demonstrate that the TLEtP distribution offers a better fit 
for the data sets than the other two distributions.
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1 Introduction

Since the World Health Organization declared the Corona virus (COVID-19) 
pandemic outbreak a public health crisis and of international concern in 2020, 
approximately 704,241,673 cases and 7,006,177 deaths have been recorded 
worldwide as of 19 March 2024 [1]. Between 2020 and 2021, when the pandemic 
was at its peak, several efforts were made to develop and identify COVID-19 pre-
vention methods. Despite global efforts to develop vaccines and cures, the pri-
mary strategy used to contain the spread was social distancing, isolation, per-
sonal and community hygiene, and mass testing. Prior to the advent of effective 
vaccines, a number of alternative methods were proposed to combat the pan-
demic. Most of these strategies were only able to reduce the spread of the disease 
through the use of personal hygiene measures such as face and nose masks, social 
distancing, patient quarantine, social isolation, mass testing and lockdown. Irre-
spective of the measures taken to limit the transmission of the pandemic, social 
distancing and isolation, as well as general lockdown measures, were all reported 
to be successful in reducing the spread of the virus [2–4].

The development and comparisons of life models (distributions) curves are 
always of key importance in modelling and predicting the outbreak of the disease. 
This is because if the data on the outbreak can be well modelled, the evolution 
of the disease can be traced, and then the spread can be prevented by studying 
the dynamics of the disease in the model. A good model in this resguard can 
be very helpful in decision-making by survival analysts and health authorities. 
The exponentiated-G class was first proposed by [5], who raised the cumulative 
distribution function (cdf) to a positive power parameter. Thus, becoming one of 
many methods proposed by statisticians where parameters are added to distri-
butions. A number of techniques for creating new families of distributions have 
been investigated by [6]. New families of probability distributions that expand 
well-known distributions are frequently created to offer flexibility when modeling 
data in practice. In other words, distributions have been built by expanding popu-
lar families of continuous distributions. By enhancing the original model with at 
least one shape or scale parameter, these generalized distributions offer greater 
versatility. Additionally, statisticians create families of distributions so that distri-
butions can be skewed to the right, left, unimodal, J or reversed J shape to provide 
consistently better fits, which equip other distributions with the same underlying 
model. In fact, a large number of families of continuous probability distributions 
have been developed with one or two parameters, such as the Marshall-Olkin-
G [7], beta generalized-G [8], exponentiated generalized-G [9], exponentiated 
Gompertz using informative prior [10], Burr X-G distribution [11], generalized 
odd generalized exponential family [12], Lomax-G [13], mixture of Lomax distri-
bution [14], Type I general exponential class of distributions by [15], transmuted 
Weibull-G family of distributions [16], and generalized odd generalized exponen-
tial family [17].
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To obtain a better fit of the models, this article proposes the inclusion of new 
parameters and provides evidence that the use of two parameters provides a bet-
ter fit compared to the original distributions. The Topp-Leone Exponentiated-
G and Pareto distribution functions are used to generate a new distribution, the 
Topp-Leone Exponentiated Pareto (TLetP), and the mathematical properties are 
defined. The proposed Topp-Leone Exponentiated Pareto (TLEtP) distribution 
has an exceptional probability density function (pdf) due to its ability to model 
both positively and negatively skewed data with significant tails and symmetric 
data sets, making it a more flexible model. It can also be used to model increas-
ing, decreasing and bathtub hazard and survival rates. These characteristics make 
the proposed model a novel distribution for modelling life data, including sur-
vival, reliability engineering and biomedical life testing. The proposed model is 
then applied to two real COVID-19 datasets to illustrate the properties and flex-
ibility of the distribution. The first example is daily confirmed COVID-19 cases 
recorded in Pakistan and the results are compared with those obtained by [18] 
and the second example uses data from the COVID-19 pandemic in South Africa. 
The rest of the paper is organised as follows: Section 2 explains the procedure for 
generating the Topp Leonne Exponentiated Pareto (TLetP) distribution and devel-
ops its mathematical properties. Section 3 shows how the proposed distribution is 
applied to a real data set and section 4 contains the conclusion.

2  Methods

A four-parameter distribution, the Topp Leone Exponentiated-G Family of Distribu-
tions, is proposed by [19] with the probability density function (pdf) and cumulative 
distribution function (cdf) of the family are given as:

and

where � is the vector of parameters of the baseline distribution. The cdf and pdf of 
the baseline distribution correspond to the Pareto distribution.

and

Some properties like moments, moment generating function, quantile, hazard func-
tion, survival function, odd function, distribution of order statistics, and estimate of 
the parameters using the method of maximum likelihood are described.

(1)F(x;�, �) = {1 − [1 − (G(x,�))�]2}�

(2)f (x;�, �) = 2��g(x;�)G(x;�)�−1{1 − [G(x;�)]�}{1 − [1 − (G(x,�))�]2}�

(3)G(x, �, �) = 1 −

(

�

x

)�

(4)g(x;�, �) = ���x−(�+1)
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2.1  The Proposed Topp‑Leone Exponentiated Pareto (TLEtP) distribution

In this sub-section, a new Topp-Leone exponentiated Pareto distribution is derived. 
To obtain the the new distribution, (3) is inserted into (1) to give the cumulative dis-
tribution function (cdf) of TLEtP as:

On differentiation Eq. (3) with respect x, we have the pdf given as:

Therefore,

Where x ≥ 0 , 𝛽 > 0 is the scale parameters and 𝛼, 𝜃, 𝜆 > 0 are the shape parameters.
We can represent the distribution using binomial expansion on (6) as:

Then,

(5)F(x;�, �, �, �) =

{
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1 −
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1 −
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�

x

)�
)�]2}�
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[

1 −

(

�

x

)�]�−1

{

1 −

[

1 −

(

�

x

)�]�
}{

1 −

[

1 −

(

1 −

(

�

x

)�
)�]2}�−1

(1 − Z)b−1 =

x
∑

i=0

(−1)i
(

b − 1

i

)

Zi

{

1 −

[

1 −

(

1 −

(

�

x

)�
)�]2}�−1

=

x
∑

i=0

(−1)i
(

� − 1

i

)[

1 −

(

1 −

(

�

x

)�
)�]2i

[

1 −

(

1 −

(

�

x

)�
)�]2i+1

=

x
∑

j=0

(−1)j
(

2i + 1

j

)

[

1 −

(

�

x

)�]�j

[

1 −

(

�

x

)�
]�(1+j)−1

=

x
∑

k=0

(−1)k
(

�(1 + j) − 1

k

)

(

�

x

)�k



1 3

Journal of Statistical Theory and Applications 

Therefore,

and

We can also represent the distribution using binomial expansion on (5) as:

and

Figure  1a and b show the cdf and pdf of the proposed distribution with different 
simulated parameters.

Using Eqs. (7) and (8), various properties of the TLEtP distribution are presented 
in section (2.2).

(7)
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2.2  Mathematical properties

2.2.1  Moments

2.3  Moment Generating Function (mgf)

The moment-generating function of X can be obtained using the following equation.

(9)

�r = E(Xr) =

∞

∫
�

xrf (x)dx
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∞
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�
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=
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�
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Fig. 1  The cdf and pdf of TLEtP distribution with different parameter values
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2.4  Quantile Function

The TLEtP distribution is simply approximated by inverting (5). If � has a uni-
form U ∼ (0, 1) distribution, then the equation’s solution is:

Equation (10) is the quantile function of the Topp-Leone exponentiated Pareto 
distribution and Eq. (11) is the median for the Topp-Leone exponential Pareto 
distribution.
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2.5  Hazard Function

The hazard function is defined by:

Considering the definition above, the hazard function of TLEtP distribution is given 
as:

Figure 2 shows the hazard function with different parameter values.

H(x;�, �, �, �) =
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Fig. 2  Hazard function plot of TLEtP distribution with different parameter values
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2.6  Survival Function

The survival function, which is the probability of an item not failing prior to some time, 
can be defined as:

So, the survival function for the TLEtP distribution is given as:

And, the survival function plot can be seen in Fig. 3.

S(x;�, �, �, �) = 1 − F(x;�, �, �, �)

S(x;�, �, �, �) = 1 −

{

1 −

[

1 −

(

1 −

(

�

x

)�
)�]2}�

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Su
rv

iv
al

 fu
nc

tio
n

α = 3 λ = 2 θ = 1.5 β = 0.5
α = 3.5 λ = 2 θ = 1.5 β = 0.4
α = 2.8 λ = 1.5 θ = 2.2 β = 0.3
α = 2.3 λ = 1.2 θ = 3 β = 0.2
α = 3 λ = 2 θ = 2.5 β = 0.3
α = 2.6 λ = 2.1 θ = 2.5 β = 0.6

Fig. 3  Survival function plot of TLEtP distribution with different parameter values
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2.7  Odds Function

The odds function is obtained using the relation:

The odds function of TLEtP distribution is given as:

2.8  Distribution of Order Statistics

Let X1,X2,… ,Xn be n independent random variable from the TLEtP distribu-
tion and let X(1),X(2),⋯ ,X(n) be their corresponding order statistics. Let Fr∶n(x) 
and fr∶n(x) , r = 1, 2, 3,… , n denote the cdf and pdf of the rth order statistics Xr∶n 
respectively. The pdf of the rth order statistics of Xr∶n is given as:

Where

and

The maximum order statistics is obtained by setting r = n in Eq. (13) as:

And, the minimum order statistics is obtained by setting r = 1 in Eq. (13).
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Now

2.9  Parameter Estimation

Since maximum likelihood estimators give the maximum information about the 
population parameters, this section presents the maximum likelihood estimates 
(MLEs) of the parameters that are inherent within the distribution function.

Let X1,X2,… ,Xn be random variables of the TLEtP distribution of size n. The 
log-likelihood function of the TLEtP distribution is obtained as:

Deriving the Eq. (16), we have:
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Equations (17), (18), and (20) do not have a simple form and are intractable. As a 
result, we have to resort to using interactive procedures to estimate the parameters.

3  Application Using Real‑Life Data Sets

The application of the TLEtP distribution is demonstrated using two data sets. The 
performance of the distribution with regards to providing reasonable parametric fit 
to the data sets was compared to Topp-Leone Pareto type I(TLPI) and Pareto (P) 
distributions using the Akaike information criterion (AIC) and Bayesian information 
criterion (BIC), respectively. The model with a minimum value of AIC and BIC is 
chosen as the best model to fit the data set.
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Table 1  Positive cases recorded 
in Pakistan from March 24 to 
April 24, 2020 (Al-Marzouki 
et al. 2020)

108 102 133 170 121 99 236 178 150
161 258 172 407 577 210 243 281 186
254 336 342 269 520 414 463 514 427
796 555 742 642 785 783 605 751 806
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3.1  Example 1

The first data set as listed in the Table 1 represents the daily confirmed COVID-19 
cases recorded in Pakistan from March 24 to April 28, 2020, previously used by Al-
Marzouki, et al. (2020).

The TLEtP distribution provides a better fit for the data set compared to the TLPI 
model. From Table 2, the TLEtP distribution has the highest log-likelihood and the 

Table 2  The MLEs and information criteria of the models based on confirmed COVID-19 cases 
recorded in Pakistan from March 24 to April 28, 2020

Model �̂� �̂� �̂� 𝛽 -ll AIC BIC

TLEtP 129.1655 1.1920 0.7297 7.1520 243.8687 495.7374 502.0714
TLPI 231.1232 8.1379 0.8163 – 245.9008 497.8016 504.5522
P 0.4191 32.0879 – – 273.2473 550.4946 553.6616
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Fig. 4  Fitted pdfs for the TLEtP, TLPI, and Pareto distribution based on confirmed COVID-19 cases 
recorded in Pakistan from March 24 to April 28, 2020
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smallest AIC and BIC values compared to the other fitted models. This fit can also 
be seen in Figs. 4 and 5.

3.1.1  Example 2

The second data set as listed in the Table 3 represents the active COVID-19 cases 
per day in South Africa from March 11 to August 31, 2020.
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Fig. 5  Fitted cdf, pdf, Q-Q and P-P plots of confirmed COVID-19 cases recorded in Pakistan from 
March 24 to April 28, 2020 for the TLEtP distribution
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The analysis of the data from South Africa showed similar results that of Pakistan, 
i.e., the model with the TLEtP distribution showed a better fit compared to other mod-
els. From Table 4, the TLEtP distribution has the highest log-likelihood and the small-
est AIC and BIC. This fit can be seen in Figs. 6 and 7.

Table 3  Active COVID-19 cases per day in South Africa from March 11 to August 31, 2021

6 3 8 14 23 1 23 31 34 52 38 34
52 38 34 128 152 155 218 243 17 93 46 8
82 43 80 70 31 63 96 89 69 25 145 99
143 91 99 178 251 124 142 165 170 318 267 141
185 247 203 354 297 304 385 447 437 352 236 424
663 525 595 637 698 724 665 785 831 1160 918 767
803 1134 988 1218 1240 1032 649 1673 1466 1837 1727 1716
1674 1455 1713 3267 2642 2539 2312 2594 2112 2430 3147 3359
3809 4302 3495 2801 4078 3478 3825 4966 4621 4288 4518 5688
6579 6215 7210 6334 6130 6945 8124 8728 9063 10,853 8773 8971
10,134 8810 13,734 12,288 13,497 12,058 11,554 10,496 12,757 13,172 13,373 13,285
13,449 9300 8170 13,150 13,104 13,944 12,204 11,233 7096 7232 11,362 11,046
11,014 10,107 8195 5377 4456 8559 8307 7292 7712 6670 3740 2511
2810 3946 6275 4513 3692 2541 2258 3916 3880 3398 3707 2728
1677 1567 2684 2585 1846 2419 2505 1985

Table 4  The MLEs and information criteria of the models based on confirmed COVID-19 cases per day 
in South Africa from March 11 to August 31, 2020

Model �̂� �̂� �̂� 𝛽 -ll AIC BIC

TLEtP 11.1481 0.2743 3.4610 0.0128 1595.0150 3198.0300 3210.644
TLPI 73.8834 0.0124 0.2106 – 1608.6940 3223.3890 3232.849
Pareto 0.2941 36.5483 – – 1603.8520 3211.7040 3221.8560
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4  Conclusion

Recently, statisticians have increasingly created extended distributions from families 
of existing distributions. We have successfully created the novel Topp-Leone Expo-
nentiated Pareto (TLEtP) family of distributions. Furthermore, some mathematical 
characteristics of the newly developed distribution are derived. By analyzing the 
COVID-19 outbreak in Pakistan and South Africa and comparing the data with two 
members of the Topp-Leone Pareto type I (TLPI) and Pareto (P) families of distribu-
tions, we show the adaptability and applicability of the new distributions. Compared 
to (TLPI) and (P) distributions, the proposed distribution (TLEtP) provides a better 
fit for the data set. As a result, we anticipate that the proposed distributions (TLEtP) 
will be useful in a variety of domains, particularly in reliability studies when the 
hazard rate is increasing.
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Fig. 6  Fitted pdfs for the TLEtP, TLPI, and Pareto distribution based on confirmed COVID-19 cases per 
day in South Africa from March 11 to August 31, 2020
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