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Abstract
A central goal in the world of statistics and data science is the construction of lin-
ear regression models for continuous variables of interest. Often, our objective is to
examine the impact of one or more explanatory variables, after adjusting for demo-
graphic covariates or other known/relevant factor(s). While the traditional approach is
to use hypothesis testing to determine statistical significance, the p-values obtained are
heavily dependent on sample size. This is particularly problematic for large datasets or
“overpowered” studies, where even the tiniest of effects will appear to be highly sig-
nificant. Computing capabilities and cloud-enhanced data sharing have revolutionized
the way we use data worldwide, from healthcare and investments to manufacturing
and retail. While machine learning and artificial intelligence are improving predictive
analytics, we need better statistical inference to help understand and translate ourmod-
els into meaningful and actionable insights. The coefficient of partial determination
(or partial R2) is widely used in applied science to supplement hypothesis testing,
but little work has been done to understand its statistical properties. In this work, we
derive the complete distribution of partial R2 and perform simulated and real-world
data analyses to show the advantages of adding it to your next analysis of Big Data.

Keywords Partial R2 · Big data · Linear regression ·
Coefficient of partial determination · R2

1 Introduction

One of the most commonly encountered and fundamentally important tasks facing a
data analyst is to evaluate and quantify the relationship between a continuous (quanti-
tative) outcome variable and a set of explanatory variables. In many cases, this task is
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accomplished using linear regression models, in which this set can be partitioned into
two groups: primary explanatory variables and secondary covariates. Primary explana-
tory variables are of significant interest to the investigators and their potential impact
on the designated outcome variable comprises the main focus of the analysis. Often,
however, relationships also exist between our outcome variable and non-modifiable
demographic variables, like sex, age, and race. While we want to adjust our regres-
sion analysis to account for these relationships and model our data more accurately,
such variables may not be of primary interest to investigators looking for modifiable,
actionable relationships. We may also want to adjust our model for known or relevant
factors identified in previous studies, which are not of primary interest to our current
study but should be taken into account nevertheless. In each of these cases, we have
secondary covariates to include in the model.

The traditional methodology for evaluating and reporting results from such regres-
sion models usually centers around hypothesis testing. Individual t-tests or partial
F-tests can isolate the effects of one or more primary explanatory variables at a time,
after accounting for all other variables in the model. The corresponding p-values can
then be calculated and compared to some arbitrary significance level, often defaulting
to α = 0.05. We know, however, that p-values obtained from these methods are heav-
ily dependent on sample size [1]. While p-values mathematically do not represent
the magnitude or strength of a relationship, they are often interpreted as doing so in
practice [2]. For under-powered or pilot datasets, statistically significant results are
extremely difficult to achieve, even when a true relationship exists. For over-powered
or large datasets, on the other hand, even the smallest effects will appear to be highly
significant despite not being clinically or scientifically meaningful [1, 3–7].

Though Fisher himself objected to this automatized “accept/reject” process as being
philosophically contrary to the principles of sound science, it has nonetheless remained
an entrenched practice across the scientific community since its inception [8]. It has
been more than a decade since van der Laan and Rose [9] sounded the alarm and
issued a challenge to the statistical community with regard to how it analyzes so-
called “Big Data”. In 2016, the American Statistical Association (ASA) released a
statement [2] outlining six principles for improving the use of p-values to show sta-
tistical significance, including the assertion that “by itself, a p-value does not provide
a good measure of evidence regarding a model or hypothesis”. Three years later, the
American Statistician devoted an entire special edition [10] discussing the limitations
of p-values and proposing a myriad of alternative methods. Even journals outside of
the field of statistics are becoming more and more aware of the issue, though often
proposing less-than-satisfactory solutions to the dilemma, such as simply lowering the
p-value threshold to 0.01 or 0.005 [3, 4, 6, 8].

The stark reality, however, is that the overwhelming majority of statistical anal-
yses in 2024, even for Big Data, are still driven by hypothesis testing. Journals are
often reluctant (and, at times, completely unwilling) to publish study results without
accompanying p-values, though there are encouraging signs that suggest this practice
is becoming less frequent [8]. One improvement that is gaining traction in the research
community is the reporting of effect sizes along with p-values, to add a dimension of
relationship strength. However, many different ways to calculate an effect size for a
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given research question exist, many of which are also heavily influenced by sample
size.

To address these limitations, this paper focuses on an under-utilized family of
alternatives to traditional hypothesis methods known as coefficients of determination.
In Section 2, we provide notation for a linear model framework and we define two
members of this family --- R2 and partial R2 --- which will serve as the central foci of
the paper. Following this, in Section 3, we derive the complete distribution of partial
R2. After detailing results from a simulation study and real-world Big Data analysis,
we provide our conclusions and future directions in Section 6.

2 Background and Notation

Consider a linear regression model with p explanatory variables, each with n obser-
vations, defined by

�Y = β0�1n + X �β + �ε, (1)

where �β is the p-dimensional vector of regression coefficients, X is the n × p design
matrix of explanatory variables, and �ε ∼ N (�0, σ 2 In) is the n-dimensional vector of
independent error terms.

The most well-known member of the family of coefficients of determination is the
coefficient of multiple determination, denoted by R2, which describes the overall
strength of a linear regression model. We can interpret the value of R2 for a given
model as the estimated proportion of variability in the response variable that can be
collectively explained by the explanatory variables in the model. Mathematically,

R2 = SSR

SST O
,

where SSR and SST O are the regression sum of squares and total sum of squares,
respectively, for the ordinary least squares (OLS) estimate of model (1) [11]. Because
of its construction as a ratio, the usefulness and interpretability of R2 aren’t affected
by sample size in the same way that F-statistics and p-values are. Recent advances
in methodology have extended its utility as a performance criterion in applications
such as machine learning and cluster analysis [12, 13]. Koerts and Abrahamse [14]
showed that the coefficient of multiple determination is a consistent estimator for the
analogously-interpreted population parameter φ, as defined by Barten [15]. Cramer
[16] built on this work to show that R2 follows a non-central beta distribution.

Suppose we can partition the p explanatory variables in the model from (1) into the
two subsets described in Section 1. That is, suppose there are q primary variables of
interest (call this Subset A, represented by regression coefficient vector �βA and design
matrix XA), while the other p−q variables are covariates for which we want to adjust
(Subset B, represented by �βB and XB). Then, grouping our explanatory variables by
subset, we can rewrite the “full” model from (1) as

�Y = β0�1n + XA �βA + XB �βB + �ε (2)
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To study the collective usefulness of the q primary variables of interest in modeling
our outcome of interest, we could test the null hypothesis of �βA = �0. Under this null
hypothesis, we can write a “reduced” model as

�Y = β0�1n + XB �βB + �ε (3)

Then, we can define the partial coefficient of determination for the q primary vari-
ables in Subset A, given that the (p − q) covariates in Subset B are already included
in the model, as

R2
Y A|B = SSEReduced − SSEFull

SSEReduced
, (4)

where the subscripts denote the sum of squares corresponding to either the full or
reduced models from (2) and (3). This quantity is commonly referred to as partial R2

and has an analogous interpretation to that of the coefficient of multiple determination
(R2). Partial R2 estimates the proportion of remaining variability in the response
variable that can be explained collectively by the q primary explanatory variables,
after adjusting for the p − q covariates. Unlike R2, however, the distribution and
mathematical properties of partial R2 have not previously been studied, despite its
somewhat frequent use in practice and its inclusion in the default analysis output for
many statistical software packages and procedures. The following section begins to
fill that gap, providing a derivation of the distribution of partial R2.

3 Distribution of Partial R2

Rewriting the denominator of (4) and multiplying by a form of one, we have

R2
Y A|B =

1
σ 2 [SSEReduced − SSEFull ]

1
σ 2 [SSEReduced − SSEFull ] + 1

σ 2 · SSEFull
(5)

We can see that R2
Y A|B can thus be written in the form U

U+V . A straightforward two-
variable transformation can be used to verify the following property (i.e. from Johnson
and Kotz [17]).

Lemma 1 Suppose random variables U ∼ χ2
u with non-centrality parameter λ and

V ∼ χ2
v , such that U ⊥ V . Then, the quantity W = U

U+V ∼ Beta
( u
2 , v

2

)
with

non-centrality parameter λ.
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From linear model theory, V = 1
σ 2 · SSEFull ∼ χ2

n−p−1 [18]. We next seek the

distribution of the quantity U = 1
σ 2 [SSEReduced − SSEFull ]. Using the matrix rep-

resentation for each sum of squares quantity [11], we can write

U = 1

σ 2 [SSEReduced − SSEFull ]

= 1

σ 2

[ �Y T
(In − Hreduced) �Y − �Y T(

In − H f ull
) �Y

]

= 1

σ 2

[ �Y T(
H f ull − Hreduced

) �Y
]
,

where H represents the hat or projection matrix for the indicated model and In repre-
sents the n × n identity matrix. Consider the following result (i.e. from Ravishanker
and Dey [18]):

Lemma 2 Let �Y ∼ MV Nn
( �μ,�

)
, where � has full rank n. Then, the quadratic form

D = �Y T
A �Y ∼ χ2

r with non-centrality parameter λ = �μTA�μ if and only if A� is an
idempotent matrix of rank r .

In our case, we have � = σ 2 In (which clearly has full rank n for σ 2 > 0), and A =
1
σ 2

(
H f ull − Hreduced

)
. Noting that A� = H f ull − Hreduced is itself a projection

matrix, we know that it is idempotent. Applying properties of rank and trace for
idempotent matrices, we have

rank (A�) = trace (A�)

= trace
(
H f ull − Hreduced

)

= trace(H f ull) − trace(Hreduced)

= p − (p − q)

= q

So, applying Lemma 2, we have

U = 1

σ 2 [SSEReduced − SSEFull ] ∼ χ2
q ,

with non-centrality parameter λ = 1
σ 2

[ �βT
XT

(
H f ull − Hreduced

)
X �β

]
.

Finally, we need to establish the independence ofU and V , which we can do using
Craig’s Theorem [18].

Lemma 3 (Craig’s Theorem). Let �Y ∼ MV Nn
( �μ,�

)
, where � is positive definite.

Then, the quadratic forms �Y T
A �Y and �Y T

B �Y are independently distributed if and only
if A�B = 0.
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In our case, we have

A�B =
(
H f ull − Hreduced

σ 2

) (
σ 2 In

) (
In − H f ull

σ 2

)

= 1

σ 2

(
H f ull − Hreduced

) (
In − H f ull

)

= 1

σ 2

(
H f ull − Hreduced − H2

f ull + HreducedH f ull

)

Since hat matrices are idempotent and the product of nested hat matrices is simply the
hat matrix from the reduced model, we have

A�B = 1

σ 2

(
H f ull − Hreduced − H f ull + Hreduced

)

= 1

σ 2 (0)

= 0,

so we have that U and V are independent.
Applying Lemma 1 to (5), we have our final result:

Theorem 4 (Distribution of Partial R2).

R2
Y A|B ∼ Beta

(
q

2
,
n − p − 1

2

)
,

with non-centrality parameter λ = 1
σ 2

[ �βT
XT

(
H f ull − Hreduced

)
X �β

]
.

4 Simulation Study

4.1 Design

To confirm the work above, we simulated datasets of size n = 100 for a variety
of parameter settings. For each combination of settings, a fixed predictor matrix X
was used, containing three primary variables of interest (q = 3) and two adjustment
variables (p − q = 2). The five explanatory variables included a mix of binary and
continuous variables in each subset and were simulated independently, using the dis-
tributions shown in Table 1.

Regression coefficients (βA1, . . . , βB2) were systematically varied from 0 to 10 to
produce a wide variety of effect sizes for simulation testing. For each unique combi-
nation of regression coefficients, B = 1,000,000 response vectors ( �Y ) were simulated

123



Journal of Statistical Theory and Applications

Table 1 Distributions for the
Five Simulated Explanatory
Variables

Primary Variables Adjustment Variables

XA1 ∼ Bernoulli(0.6) XB1 ∼ Uni f orm(−1, 1)

XA2 ∼ Uni f orm(−1, 1) XB2 ∼ Bernoulli(0.8)

XA3 ∼ Uni f orm(−1, 1)

as the sum of XA �βA, XB �βB , and independent random errors following a standard
normal distribution.

4.2 Results

After fitting full and reduced models for each of the response vectors generated above,
the value of partial R2 was calculated for each of the B models.

For the null case of �βA = �0, the non-centrality parameter from our proposed Beta
distribution reduces to zero. Thus, in this case, the values of �βB shouldn’t affect the
distribution of partial R2. We can indeed see this from Fig. 1, which shows histograms
of the B values of partial R2 for two selected coefficient combinations ( �βB = �0
and �βB = �1), with the corresponding density curves overlaid from our proposed
distribution given by Theorem 4 above. We can see that the histograms appear to
be virtually identical, as expected, and the overlaid distribution curves provide an
excellent fit.

For the alternative case of �βA �= �0, the non-centrality parameter from our proposed
Beta distribution depends on the projectionmatrices from the full and reducedmodels.
In this case, the values of all regression parameters have a marked effect on the distri-
bution of partial R2, as we can see in Fig. 2. For two selected coefficient combinations
( �βA = �1 and �βA = 10 · �1; �βB = �1), histograms of the corresponding 1,000,000 values
of partial R2 are shown, with the density curves for our proposed distribution overlaid.

As expected, larger effect sizes for the primary variables of interest result in much
larger values of partial R2 and reduced variability in the distribution. Additionally,

Fig. 1 For two different combinations of parameter settings when �βA = �0, histograms of the B = 1,000,000
values of partial R2 are shown, with the density curve from Theorem 4 overlaid in blue
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Fig. 2 For two different combinations of parameter settingswhen �βA �= �0, histograms of the B = 1,000,000
values of partial R2 are shown, with the density curve from Theorem 4 overlaid in blue

the overlaid distribution curves once again provide an excellent fit, lending additional
credence to our proposed distribution in Theorem 4.

5 Application

For decades, it has been widely known in the medical community that increased
levels of high-density lipoprotein-cholesterol (HDL-C) are associated with decreased
risks of cardiovascular disease, from atherosclerosis to coronary artery disease [19].
According to the Centers for Disease Control and Prevention (CDC) and the American
Heart Association (AHA), cardiovascular disease continues to be the leading cause of
death in the United States, resulting in over 650,000 deaths per year and costing over
$200 billion in healthcare utilization and lost productivity. Coronary artery disease
alone is responsible for more than half of these deaths and is present in nearly 7% of
adults age 20 and older [20–23].

Every two years since 1999, the National Center for Health Statistics (NCHS) has
published an extensive set of data collectively known as the National Health andNutri-
tion Examination Survey (NHANES), available at https://www.cdc.gov/nchs/nhanes/
index.htm. Combining laboratory results, medical examinations, and interviews from
approximately 5,000 American children and adults each year, the ongoing goal of
NHANES is to provide a cross-sectional snapshot of the health and nutritional state
of the country. To increase reliability, the survey over-samples from several minor-
ity racial groups and from those aged 60 and older, demographic features we should
account for in the covariate portion of our regression models.

For this analysis, we combined twenty years of NHANES data from 1999 through
2018, all of which is publicly available on the NCHS website (see the link above).
A total of n = 101,316 subjects were available for inclusion in the analysis. As
with most surveys, however, there was a sizeable amount of missingness present and
changes were frequent in the survey variables selected by the NCHS for inclusion
over time. Thus, for modeling purposes, potential explanatory variables were only
considered if they were collected during all twenty years. Since the primary purpose
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Table 2 For each covariate in
the reduced HDL-C model,
individual Type III test statistics
and their corresponding
p-values are given

Variable F-statistic p-value

Age 43.2 5.1 × 10−11

Race 122.0 < 2.2 × 10−16

Gender 2597.5 < 2.2 × 10−16

Education Level 47.3 < 2.2 × 10−16

Year 30.4 < 2.2 × 10−16

of this analysis is not to suggest new scientific relationships nor to illustrate model
selection techniques, two ordinary linear models were fit for log-transformed HDL-C
levels, somewhat naïvely assuming independence between subjects but adjusting for
collection year. All analyses were completed in R, version 3.6.3 (R Foundation for
Statistical Computing; Vienna, Austria).

5.1 ReducedModel

As is often the case with healthcare modeling, we want to adjust our models for age,
race, gender, and level of education. Each of these demographic variables is potentially
important to the model as a whole, but none of them are modifiable risk factors for
further scientific study or patient intervention. As stated above, we also want to adjust
for the year of data collection to account for potential changes in the population over
time. Thus, we will have p − q = 5 covariates in our reduced model.

Fitting the reduced model and performing individual Type III F-tests for each
adjustment variable leads to the results given in Table 2.

All five covariates appear to be extremely significant from a hypothesis testing
standpoint. In fact, four of the five p-values from the individual Type III F-tests are
below the floating-point limit of the analysis software used. However, the calculated
R2 for this reduced model is only 0.111, meaning that these five variables collectively
explain only about one-ninth of the variability in HDL-C levels from our data.

5.2 Full Model #1

After employing a model selection procedure known as the Feasible Solutions Algo-
rithm [24], we arrived at the following q = 3 primary explanatory variables of interest:
bodymass index (BMI), triglyceride level, andmean blood cell volume (BCV). Fitting
the full model and again performing individual Type III F-tests for each variable leads
to the results given in Table 3.

It appears that the relationships between HDL-C levels and each of the eight vari-
ables in our full model are highly significant, as all eight p-values are now below
the floating point limit of our analysis software. Thus, it seems that the addition of
our three primary variables of interest improved the model, which is supported by a
partial-F test statistic of 2823.2 and corresponding p-value < 2.2 × 10−16.
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Table 3 For each explanatory
variable in the first full HDL-C
model, individual Type III test
statistics and their corresponding
p-values are given

Variable F-statistic p-value

Age 593.6 < 2.2 × 10−16

Race 93.7 < 2.2 × 10−16

Gender 3237.4 < 2.2 × 10−16

Education Level 113.7 < 2.2 × 10−16

Year 45.0 < 2.2 × 10−16

BMI 2208.1 < 2.2 × 10−16

Triglycerides 4055.6 < 2.2 × 10−16

Mean BCV 251.0 < 2.2 × 10−16

As we saw with the reduced model, small p-values do not necessarily guarantee a
strong model. Looking at the coefficient of multiple determination for this full model,
however, we get a calculated R2 of 0.313. This means that we are now explaining
almost a third of the variability in HDL-C levels from our data, a marked improvement
from the reduced model. This improvement is quantified by a calculated partial R2

of 0.227, meaning that the three primary variables of interest are collectively able
to account for almost a quarter of the remaining variability in HDL-C levels, after
adjusting for our five covariates.

5.3 Full Model #2

An alternative model selection procedure resulted in a different set of q = 3 primary
explanatory variables of interest: diastolic blood pressure (BP), mean platelet volume
(MPV), and monocyte percentage. Fitting the full model and performing individual
Type III F-tests for each variable leads to the results given in Table 4.

Once again, it appears that the relationships between HDL-C levels and each of
the eight variables in this second full model are highly significant from a hypothesis
testing standpoint, as all eight p-values are far below any reasonable significance
level, including six that are below the floating point limit of our analysis software. It

Table 4 For each explanatory
variable in the second full
HDL-C model, individual Type
III test statistics and their
corresponding p-values are
given

Variable F-statistic p-value

Age 58.9 1.7 × 10−14

Race 115.5 < 2.2 × 10−16

Gender 2721.7 < 2.2 × 10−16

Education Level 58.3 < 2.2 × 10−16

Year 28.6 < 2.2 × 10−16

Diastolic BP 89.7 < 2.2 × 10−16

MPV 64.9 8.3 × 10−16

Monocyte % 181.0 < 2.2 × 10−16
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would appear that the addition of this new set of three primary variables of interest
improved the model as well, which is supported by a partial-F test statistic of 118.3
and corresponding p-value < 2.2 × 10−16.

Looking at the coefficient of multiple determination for this model, however, we
get a calculated R2 of just 0.122, which doesn’t suggest much of an improvement from
the reduced model R2 of 0.111. This lack of meaningful improvement is quantified
by a calculated partial R2 of just 0.012. That is, this set of three primary variables
of interest are only able to collectively account for just over 1% of the remaining
variability in HDL-C levels, after adjusting for our five covariates.

5.4 Discussion

From a hypothesis testing perspective, both full models in our example analysis appear
to contain a set of explanatory variableswith strong evidence supporting their inclusion
in any regression model for HDL-C levels, even after adjusting for the five covariates
detailed in the Reduced Model section. Even the most reasonably conservative cutoff
value of α or the most conservative multiple-testing correction procedures wouldn’t
come close to changing the high level of significance indicated by the p-values asso-
ciated with each of the effects from these models. And for most peer reviewers, citing
such significant p-values as evidence of markedly strong association would be suffi-
ciently conclusive. In fact, it might be difficult for the data scientist to choose a “best”
model between the two, leading to the temptation to simply aggregate them into a
single, larger model containing all of these seemingly-important predictor variables.

However, when we move beyond hypothesis testing and consider other measures
of model quality – in this case, coefficients of multiple and partial determination –
we see that there are stark contrasts between each full model’s ability to represent the
NHANES data. Table 5 summarizes these measures for each model discussed above.

Full Model #1 explains nearly 20% more overall variability in HDL-C levels
than its counterpart. Even more strikingly, it explains nearly 20 times more of the
post-adjustment variability in HDL-C levels than Full Model #2. In large datasets
like NHANES, the usefulness and informativeness of hypothesis testing is reduced,
demanding a deeper and more nuanced approach to regression modeling. Measures
like R2 and partial R2, whose construction as ratios makes them more interpretable
and more robust to extreme sample sizes, can help us better understand and identify
the real relationships that exist (or fail to exist) in our data.

A natural follow-up question we might ask is whether a partial R2 of 0.227 is large
enough to be useful or meaningful to doctors helping patients manage their choles-
terol levels in the real world, given that nearly three-quarters of the post-adjustment

Table 5 For each of the three
HDL-C models fit, the values of
the coefficients of multiple
determination and partial
determination are given

Model R2 Partial R2

Reduced Model 0.111 –

Full Model #1 0.313 0.227

Full Model #2 0.122 0.012
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variability (and two-thirds of the overall variability) is still unaccounted for in our best
model. And might there exist a Full Model #3 whose q = 3 explanatory variables
explain even more of the variability in HDL-C levels than Full Model #1 does? While
the focus of this paper is not on model-building, nor was our motivation for this exam-
ple to discover new scientific relationships regarding a person’s HDL-C levels, these
questions are important to carefully consider in practice.

Unlike hypothesis testing, in which the significance level α = 0.05 has been the
gatekeeper of statistical significance for nearly a century, there is no universally-
accepted “cutoff” for statistical (or practical) significance of a regression model or
subset of variables based on R2 or partial R2. This provides statisticians and their
collaborators with both substantial freedom and a substantial challenge. On the one
hand, researchers are given the flexibility to decide what a meaningful value of R2 or
partial R2 might be in their particular context and field of study. Additionally, they
are given a statistic whose interpretability greatly improves their ability to describe
the linear relationships being reported from their data. On the other hand, making an
intelligent choice requires careful consideration and collaborative thinking, in context,
for each specific discipline of study. Additionally, justifying any such decision to
academic journal reviewers and communicating the implications to the reader becomes
more challenging. But as our NHANES data analysis demonstrates, the dangers of
relying solely on p-values to assess relationships in a regression context strikingly
jeopardize the quality and effectiveness of our modeling efforts and the overarching
scientific research they represent.

6 Conclusion

In this paper, we derived the complete distribution of the partial coefficient of deter-
mination in the context of linear regression modeling, with supporting evidence from
a simulation study. We showed that partial R2 follows a non-central beta distribution
similar in structure to that of the coefficient of multiple determination, though the
dependence of the non-centrality parameter on the nested projection matrices makes
our continued study of its statistical properties more nuanced. From our analyses of the
aggregated NHANES dataset, we demonstrated the urgent need to move beyond the
reporting of p-values in isolation, particularly for linear regression models involving
large datasets. R2 and partial R2, as the estimated proportions of response variabil-
ity explained by the model or by a model subset, add a richer and more informative
element to regression analysis.

Although statistical inference methods would not provide additional information
about partial R2 for large data sets, future directions of this work include using
the distributional results derived here to develop methodology for performing con-
fidence intervals and hypothesis testing for researchers to use when analyzing small-
or medium-sized data sets. Future extensions of this research also include pseudo-R2

measures, which are often used to describe regression models built under generalized
linear model frameworks like logistic and Poisson regression. We also see extensions
of this theory to repeated-measures andmixed-modeling applications as high-leverage
opportunities for improved practice and theoretical understanding. Clearly, within the
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context of each researcher’s field of study, work remains to determine what values of
partial R2 are noteworthy and represent appreciable contextual value. But as we move
beyond a world where p < 0.05 is the blind gatekeeper to statistical significance and
scientific importance, measures like the coefficients of determination will become an
increasingly invaluable tool for analyzing Big Data.
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