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Abstract
In the count data set, the frequency of some points may occur more than expected 
under the standard data analysis models. Indeed, in many situations, the frequen-
cies of zero and of some other points tend to be higher than those of the Poisson. 
Adapting existing models for analyzing inflated observations has been studied in the 
literature. A method for modeling the inflated data is the inflated distribution. In 
this paper, we extend this inflated distribution. Indeed, if inflations occur in three 
or more of the support point, then the previous models are not suitable. We propose 
a model based on zero, one, … , and k inflated points with probabilities w0,w1,… , 
and w

k
, respectively. By choosing the appropriate values for the weights w0,… ,w

k
, 

various inflated distributions, such as the zero-inflated, zero–one-inflated, and 
zero–k-inflated distributions, are derived as special cases of the proposed model in 
this paper. Various illustrative examples and real data sets are analyzed using the 
obtained results.

Keywords  Regression · Zero to k inflated distribution · Poisson distribution · 
Generalized linear model · Estimation

Mathematics Subject Classification  Primary 62H10 · Secondary 62J12

1  Introduction

One of the important causes of overdispersion in the count data is an inflated num-
ber of zeros in excess of the number expected under the distribution. In such cases, 
one of the appropriate models is zero-inflated Poisson (ZIP) distribution. There are 
numerous papers in the literature dealing with the ZIP model. The earliest studies on 
the ZIP model were done by Cohen [6] and Yoneda [37]. Lambert [14] introduced 
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and studied the ZIP regression model using the Expectation-Maximization (EM) 
approach. Vandenbroek [34] gave a score test for testing a standard Poisson regres-
sion model. Jansakul and Hinde [11] extended this test to a more general situation 
where the zero probability depends on covariates. Ridout et al. [27] derived a score 
test for testing a ZIP regression model against the zero-inflated negative binomial 
alternatives. Agarwal et al. [1] applied the ZIP regression model for analyzing spa-
tial count data sets. The score test using the normal approximation might underesti-
mate the nominal significance level for small sample cases. Jung et al. [12] proposed 
a parametric bootstrap method for this problem. They observed that the ZIP regres-
sion model for prediction is more robust than the usual Poisson regression model. 
Long et al. [20] developed a marginalized ZIP regression model approach for inde-
pendent responses to model the population mean count directly, allowing straight-
forward inference for overall exposure effects and derived an empirical robust vari-
ance estimation for overall incidence density ratios. Zhu et al. [40] have extended 
zero-inflated count models to account for random effects. Lim et al. [16] proposed 
the ZIP regression mixture model to account for both excess zeros and overdisper-
sion caused by unobserved heterogeneity. A Bayesian latent factor ZIP model was 
proposed by Neelon and Chung [25] to analyze the molecular differences among 
breast cancer patients. Furthermore, ZIP models for censored data were studied by 
Saffari and Adnan [28] and Yang and Simpson [36]. Research on these models is 
still in progress. For instance, the ZIP model’s parameters have been estimated using 
the Genetic Algorithm by Dikheel and Jouda [9] and the Shrinkage estimator by 
Zandi et al. [38]. ZIP models continue to be frequently utilized in many studies, even 
with the development of more comprehensive models [24, 32]. Empirical evidence 
shows that inflation may occur at more than one point. For example, Lin and Tsai 
[17] discussed a model that can be applied to both excessive zeros and ones known 
and called the zero–one inflated Poisson (ZOIP) model. Zhang et al. [39] initially 
studied the likelihood-based ZOIP model without covariates. When the covariates 
are available, it is essential to build a ZOIP regression model to clarify the relation-
ship between the covariates and the response variable. Tang et  al. [33], Liu et  al. 
[18], Liu et al. [19], and Arora and Chaganty [5] studied the statistical inference for 
the ZOIP model. Melkersson and Rooth [23] proposed a zero–two inflated Poisson 
model, which accounts for a relative excess of both zero–two children in modeling 
complete female fertility.

In this article, we attempt to provide a generalization for an inflated regres-
sion model based on the Poisson distribution. For this purpose, we generalized the 
inflated points to 0,… , k, for k = 0, 1, 2,… . This generalization provides various 
benefits for the modeling of inflated and non-inflated data. For example, this gener-
alization includes all previous inflated regression models based on Poisson distribu-
tion. Also, this model provides a wide range of models to the researcher, who can 
choose the most appropriate ones according to the data. In summary, the originality 
of this paper lies in the development of the family of inflated Poisson distribution 
and its application to generalized linear models. This generalization is significant 
because it gives the researcher access to the entire family of Poisson-based inflated 
distributions (the most used family in discrete inflated distributions) at a single 
model. Thus researcher chooses the appropriate model for the data set by choosing 
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the appropriate value of k according to the inflation at each point or any number of 
points. Besides, with other choices of k and distribution weights, new models can 
also be introduced. Selecting the appropriate value for k might be a challenge when 
using the ZKIP models. An effective approach for selecting the correct value for k 
in the ZKIP models is described in order to address this issue. Section 7 provides an 
explanation of this algorithm along with useful examples.

Therefore, the rest of the paper is organized as follows. In Sect. 2, we introduce 
the zero to k inflated Poisson (ZKIP) distribution and some special cases. Estimation 
by the maximum likelihood (ML) method and standard errors of the ML estimates 
are outlined in Sect. 3. Section 4 deals with the regression ZKIP model and the ML 
estimation, EM algorithm, and hypotheses testing for this model. In Sect.  5, the 
method of the randomized quantile residual (RQR) for the adequacy of the proposed 
model is introduced. Simulations are conducted in Sect. 6 to assess the usefulness 
of this model. In Sect. 7, two real data sets are used to demonstrate the flexibility 
and superiority of the proposed model against the existing ones. Finally, in Sect. 8, 
conclusions are given.

2 � Proposing the New Model

We can build the zero to k inflated distribution with introducing the function g(y) as

where f(y) is a discrete distribution, say Poisson, 0 ≤ wi, i = 0,… , k, �(w) =
∑k

i=0
wi 

and 0 ≤ �(w) ≤ 1. By substituting the Poisson probability mass function (PMF) 
f (y) = exp(−�)�y∕y!, y = 0, 1,… , into Equation (1), we have

where w = (w0,… ,wk). The discrete random variable Y with the PMF (2) is called 
to follow the ZKIP distribution and denoted by Y ∼ZKIP(w, �). Here, some special 
cases of the family of ZKIP models are given as follows:

•	 k = 0 → ZIP distribution [9, 24, 38] and [32].
•	 k = 1 → zero–one inflated Poisson distribution [17, 19, 33, 39], and [13].
•	 k = 2 → zero–one–two inflated Poisson distribution [32].

(1)g(y) =

⎧
⎪⎪⎨⎪⎪⎩

w0 + (1 − 𝜂(w))f (0), y = 0,

w1 + (1 − 𝜂(w))f (1), y = 1,

⋮ ⋮

wk + (1 − 𝜂(w))f (k), y = k,

(1 − 𝜂(w))f (y), y > k,

(2)g(y;w, 𝜆) =

⎧⎪⎪⎨⎪⎪⎩

w0 + (1 − 𝜂(w)) exp(−𝜆), y = 0,

w1 + (1 − 𝜂(w))𝜆 exp(−𝜆), y = 1,

⋮ ⋮

wk + (1 − 𝜂(w))
𝜆k

k!
exp(−𝜆), y = k,

(1 − 𝜂(w))
𝜆y

y!
exp(−𝜆), y > k,
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•	 k > 1,w1 = w2,… ,wk−1 = 0 → zero and k inflated Poisson distribution [5, 23, 
30].

If Y ∼ZKIP(y;�, �), then the moment generating function is obtained from 
Eq. (2) as

Equation (3) gives the expectation and variance of the random variable Y as

Figure 1 shows PMF of the ZKIP distribution for � = 1 and some selected values of 
k and w.

3 � Estimation

Let Y = (Y1,… , Yn) be a random sample arising from the ZKIP distribution. 
In this section, we study the problem of estimating unknown parameter vector 
� = (w, �) on the basis of Y. Let

(3)MY (t) = E[exp(tY)] =

k∑
i=0

wi exp(ti) + (1 − �(w)) exp[�(exp(t) − 1)].

(4)E(Y) =

k∑
i=1

iwi + (1 − �(w))�,

(5)Var(Y) =

k∑
i=1

i2wi −

(
k∑

i=1

iwi

)2

− �(1 − �(w))

[
2

k∑
i=1

iwi − ��(w) − 1

]
.

Fig. 1   PMF of the ZIP, ZOIP, ZOTIP, and ZOTTIP distributions, for � = 1 and � = 2
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We can rewrite PMF (2) as

 where I(y > k) = 1 −
∑k

i=0
Ii(y). Thus, the likelihood function (LF) of the observed 

sample Y = y reads

Then the logarithm of the LF (LLF) is

 From Eq. (8), the ML estimates are derived by solving the following equations with 
respect to the parameters:

where

(6)Ii(y) =

{
1, y = i,

0, y ≠ i, i = 0,… , k,

g(y;w, 𝜆) =

k∏
i=0

{
wi + (1 − 𝜂(w))

𝜆y

y!
exp(−𝜆)

}Ii(y)

×

{
(1 − 𝜂(w))

𝜆y

y!
exp(−𝜆)

}I(y>k)

,

(7)

Lobs(y;w, �) =
n

∏

j=1

{ k
∏

i=0

(

wi + (1 − �(w))�
yj

yj!
exp(−�)

)Ii(yj)

×

(

(1 − �(w))�
yj

yj!
exp(−�)

)I(yj>k)
}

.

(8)
�obs(w, �; y) ∝

n
∑

j=1

{ k
∑

i=0

[

Ii(yj) log
(

wi + (1 − �(w))�
yj

yj!
exp(−�)

)]

+ I(yj > k)(log(1 − �(w)) − � + yj log(�))
}

.

(9)
��obs(w, �; y)

�wl

=

n∑
j=1

{ k∑
i=0,i≠l

[
Ii(yj) × K1i((yj,w, �)

]
+ Il(yj) × K2l(yj,w, �)

(10)− I(yj > k)

(
1

1 − 𝜂(w)

)}
= 0, l = 0,… , k.

(11)

𝜕�obs(w, 𝜆; y)

𝜕𝜆
=

n∑
j=1

{
k∑

i=0

[
Ii(yj) × K3i(yj,w.𝜆)

]
+ I(yj > k)(yj∕𝜆 − 1)

}
= 0,
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Since there is no closed-form solution for this system of equations, we may use 
numerical methods to estimate the parameters. To do this, we need to derive the ele-
ments of the observed information, which are given by

where

K1i(yj,w, �) =

−
�
yj

yj!
exp(−�)

wi + (1 − �(w))
�
yj

yj!
exp(−�)

,

K2i(yj,w, �) =

1 −
�
yj

yj!
exp(−�)

wi + (1 − �(w))
�
yj

yj!
exp(−�)

,

K3i(yj,w, �) = −
�1j(w)

wi + (1 − �(w))
�
yj

yj!
exp(−�)

,

�1j(w) =
(1 − �(w))(� − yj) exp(−�)�

yj−1

yj!
.

𝜕2�obs(w, 𝜆; y)

𝜕w2
l

=

n∑
j=1

{
−

k∑
i=0,i≠l

[
Ii(yj) × K2

1i
(yj,w, 𝜆)

]

− Il(yj) × K2
2l
(yj,w, 𝜆) −

I(yj > k)

(1 − 𝜂(w))2

}
, l = 0,… , k,

𝜕2�obs(w, 𝜆; y)

𝜕wl𝜕ws

=

n∑
j=1

{ k∑
i=0,i≠l,s

[
Ii(yj) × K2

1i
(yj,w, 𝜆)

]
+ Il(yj)

×
𝜈3j(w, 𝜆)(1 − 𝜈3j(w, 𝜆))

(𝜈2lj(w, 𝜆))
2

+ Is(yj) ×
𝜈3j(w, 𝜆)(1 − 𝜈3j(w, 𝜆))

(𝜈2sj(w, 𝜆))
2

−
I(yj > k)

(1 − 𝜂(w))2

}
, l, s = 0,… , k,

𝜕2�obs(w, 𝜆; y)

𝜕wl𝜕𝜆
=

n∑
j=1

k∑
i=0,i≠l

Ii(yj)
𝜆yj−1 exp(−𝜆)(𝜆 − yj)wi

yj!(𝜈2ij(w, 𝜆))
2

+ Il(yj)
𝜆yj−1 exp(−𝜆)(𝜆 − yj)(wl + 1 − 𝜂(w))

yj!(𝜈2ij(w, 𝜆))
2

l = 0,… , k,

𝜕2�obs(w, 𝜆; y)

𝜕𝜆2
=

n∑
j=1

{ k∑
i=0

[
Ii(yj) ×

𝜈1j(w) exp(−𝜆)(𝜆 − xj)(1 − 𝜂(w))

(𝜈2ij(w, 𝜆))
2 × yj!

]

− I(yj > k)(yj∕𝜆
2)

}
,

�2ij(w, �) = wi + (1 − �(w))
�yj

yj!
exp(−�),
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and

For the problems of interval estimation and testing statistical hypotheses, the Fisher 
information (FI) matrix is useful. The FI matrix (�(Θ) = �ij, i, j = 0,… , k + 1), 
obtained from the observed information matrix by taking the expected values of 
each entry, is given as follows:

�3j(w, �) =
�yj

yj!
exp(−�).

�ll = −E

(
𝜕2�obs(w, 𝜆; y)

𝜕w2
i

)

= n

k∑
i=0,i≠l

[
K2
1i
(i,w, 𝜆) × g(i;w, 𝜆)

]
+ nK2

2l
(l,w, 𝜆) × g(l;w, 𝜆)

+ nPr(Y > k)∕(1 − 𝜂(w))2, l = 0,… k.

�ls = −E

(
𝜕2�obs(w, 𝜆; y)

𝜕wl𝜕ws

)

= −n

k∑
i=0,i≠l,s

[
K2
1i
(i,w, 𝜆) × g(i;w, 𝜆)

]

−
n𝜈3l(w, 𝜆)(1 − 𝜈3l(w, 𝜆))

(𝜈2ll(w, 𝜆))
2

× g(l;w, 𝜆)

−
n𝜈3s(w, 𝜆)(1 − 𝜈3s(w, 𝜆))

(𝜈2ss(w, 𝜆))
2

× g(s;w, 𝜆)

+
nPr(Y > k)

(1 − 𝜂(w))2
, l, s = 0,… , k, and l ≠ s,

�l(k+1) = �(k+1)s = −E

(
𝜕2�obs(w, 𝜆; y)

𝜕wl𝜕𝜆

)

= −n

k∑
i=0,i≠l

[
n𝜆i−1 exp(−𝜆)(𝜆 − i)wi

i!(𝜈2ii(w, 𝜆))
2

× g(i;w, 𝜆)

]

−
n𝜆l−1 exp(−𝜆)(𝜆l)(wl + 1 − 𝜂(w))

l!(𝜈2il(w, 𝜆))
2

× g(l;w, 𝜆), l, s = 0,… k,

�(k+1)(k+1) = −E

(
𝜕2�obs(w, 𝜆; y)

𝜕𝜆2

)

= −n

k∑
i=0

[
𝜈1i(w) exp(−𝜆)(𝜆 − i)(1 − 𝜂(w))

(𝜈2ii(w, 𝜆))
2i!

× g(i;w, 𝜆)

]

+
nPr(Y > k)

𝜆2
.
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If � is the arbitrary parameter of model and 𝜃̂ is the ML estimates for this parameter, 
then from Lehmann et al. [15], we have

Therefore, we can use asymptotic distribution (12) to construct an asymptotic confi-
dence interval and hypotheses testing for the parameters of the proposed model (see 
Lehmann et al. [15]) for more details).

4 � ZKIP Regression Model

In Sect. 2, we introduce and motivate the ZKIP distribution. Recall that the PMF of the 
ZKIP distribution is

where P�(y) = exp(−�)�y∕y! for y = 0, 1,… . So the ZKIP is a distribution with 
k + 2 parameters w = (w0,… ,wk) and �. In fact, it is a mixture of k + 2 distributions. 
The first distribution is degenerate at zero with weight w0, and the second is degen-
erate at one with weight w1, and the same goes for up to k. Finally, the (k + 2) th the 
distribution is the Poisson with mean � with weight (1 − �(w)).

Suppose that we have a vector y = (y1,… , yn) of n independent count responses 
from a ZKIP distribution. We assume that, associated with each yi, the vector of covari-
ates (xT

i
) has been observed. The layout of the observed data is shown in Table 1.

From (13), the LF of the available data in Table 1 can be rewritten as

where � = (�1,… , �n) and P�j
(yj) = exp(−�j)�

yj

j
∕yj!, (yj ≥ 0). To connect the param-

eters with the covariates, we follow the standard generalized linear model (GLM) 
framework for the multinomial distribution;\, see Agresti [2] for further reading. The 
k + 2 mixing distributions can be viewed as k + 2 nominal categories. Thus, the 
probabilities of the k + 2 (degenerate(0), degenerate(1), … , degenerate(k),  Poisson) 
categories are w0,w1,… ,wk, (1 − �(w)), respectively. Following the GLM baseline 
category logit model for the multinomial, let

(12)n1∕2(𝜃̂ − 𝜃)
d
�����→ N(0, I−1(𝜃)).

(13)g(y;w, 𝜆) =

{
wy + (1 − 𝜂(w))Py(𝜆), y = 0,… , k,

(1 − 𝜂(w))Py(𝜆), y > k,

(14)

Lobs(w,�|y) =
n∏
j=1

{
k∏

i=0

([
wi + [1 − 𝜂(w)]P𝜆j

(yj)
]Ii(yj))

×
(
[1 − 𝜂(w)]P𝜆j

(yj)
)I(yj>k)

}
,

(15)�0 = log

(
w0

1 − �(w)

)
, �1 = log

(
w1

1 − �(w)

)
,… , �k = log

(
wk

1 − �(w)

)
.
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Here, we treat the Poisson distribution as the baseline category, and thus we have 
((k + 2) − 1) = k + 1 equations for the other k + 1 categories. As in log-linear mod-
els, the ZKIP regression model assumes that the Poisson parameter �i is a loglinear 
function of the covariates;\, that is,

where � = (�1,… , �p)
T is a p-dimensional unknown regression parameters vector. 

For the sake of brevity, we assume that the parameters vector � = (�0,… , �k) is con-
stant. The generalization where these k + 1 parameters are functions of the covari-
ates is straightforward. Thus, the parameters of the ZKIP regression model are � and 
�. In what follows, the problems of estimating parameters and hypotheses testing are 
discussed in detail.

4.1 � Estimation of Regression Parameters

In the following, we study methods for estimating the parameters of the ZKIP regres-
sion model. Two popular methods are the ML and EM methods. The ML method 
involves optimizing the LF (14) or the logarithm of the LF with respect to the unknown 
parameters � and �. By substituting the reparameterizations (15) into the LF (14), we 
can rewrite (8) as follows:

where log(�j) = xT
j
� and �∗ = 1∕{1 +

∑k

l=0
exp(�l)}. The ML estimates can be 

obtained by maximizing the LLF (16) directly with respect to the parameters. Alter-
natively, one can take the partial derivatives of the LLF and solve the (k + 2) score 
equations as follows:

log(�j) = xT
j
�, j = 1,… , n,

(16)

�obs(�, �) = logLobs(�, �|y)

=

n∑
j=1

{ k∑
i=0

[
Ii(yj) log

([
exp(𝛾i) + Pyj

(𝜆j)
]
𝛾∗
)]

+ I(yj > k) log
(
Pyj

(𝜆j)
)
− log

(
1 +

k∑
l=0

exp(𝛾l)

)}
,

Table 1   Form of data for 
regression analyses on inflated 
ZKIP distribution

Observation Response Covariates

1 y1 x11 … x1p

2 y2 x21 … x2p

⋮ ⋮ ⋮

i yi xi1 … xip

⋮ ⋮ ⋮

n yn xn1 … xnp
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 An alternative and popular method for parameter estimation is the EM approach. 
The EM approach treats the observed data y = (y1,… , yn) as a part of com-
plete data that includes z = (z1,… , zn), which is regarded as missing. Here each 
zi = (zi0,… , zi(k+1)) is a k + 2 component vector with PMF (17). By the definition of 
latent variable z, we have

where wk+1 = (1 − �(w)).

Then, the conditional PMF of yi given zi is calculated. Thus, the joint distri-
bution of the observed and missing data, which is given by the ZKIP distribu-
tion, is a mixture of Poisson with k + 1 degenerate distributions at zero to k. Con-
sider a latent variable z = (z0,… , zk+1), which is distributed as a multinomial with 
parameters (1,w0,… ,wk+1). Note that z takes values (0,… , 0, 1i, 0,… , 0) with 
probability wi, i = 0,… , (k + 1). That is,

Thus the conditional distribution of Y given z = (z0,… , zk+1) is

Finally, the joint PMF of (Y , z) is obtained from (17) and (19) as

n�
j=1

�
Ii(yj) ×

exp(𝛾i)

exp(𝛾i) + Pyj
(𝜆j))

�
=

n exp(𝛾i)

1 +
∑k

l=0
exp(𝛾l)

, i = 0,… , k,

n�
j=1

� k�
i=0

�
Ii(yj) ×

Pyj
(𝜆j)(yj − 𝜆j)∕𝜆j

exp(𝛾i) + Pj(𝜆j)

�
+ I(yj > k) ×

Pyj
(𝜆j)(yj − 𝜆j)∕𝜆j

Pj(𝜆j)

�
= 0.

(17)Pr

�
z = (z0,… , zk+1)

�
=

⎧
⎪⎪⎨⎪⎪⎩

w0, z = (1, 0,… , 0),

w1, z = (0, 1, 0,… , 0),

⋮ ⋮

wk, z = (0, 0, 0,… , 1, 0),

wk+1, z = (0, 0, 0,… , 0, 1),

(18)Pr(yj, zj) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

w0, z0j = 1, yj = 0,

w1, z1j = 1, yj = 1,

⋮ ⋮

wk, zkj = 1, yj = k,

wk+1 ×
exp(−�j)�

yj

j

yj!
, z(k+1)j = 1, yj ≥ 0.

(19)Pr

�
Y = y�z = (z0,… , zk+1)

�
=

⎧
⎪⎪⎨⎪⎪⎩

1, z0 = 1, y = 0,

1, z1 = 1, y = 1,

⋮ ⋮

1, zk = 1, y = k,
exp(−�)�y

y!
, zk+1 = 1, y ≥ 0.
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Therefore from (20), the complete LF of the ZKIP model is

By (15), the LLF of the complete data (y, z) reads

For w1 = ⋯ = wk = 0, the ZKIP is reduced to the ZIP model. From (22), the LLF of 
the ZIP for the complete data is derived as

Lambert [14] used Eq. (22) as the LLF of the complete data for the ZIP model to 
obtain the EM estimates.

We now proceed to describe the EM algorithm (Dempster et  al. [8];\, Wu 
[35]) for the ZKIP model. The first step in the EM algorithm involves selecting 
some initial values for the unknown parameters. The choice of the initial values 
is important for the convergence of the algorithm. An incorrect choice of the ini-
tial values could result in slow convergence or breakdown of the algorithm. We 
recommend using the proportions of zeros, … , k’s, respectively, in the observed 
data as initial values for the parameters w0,… ,wk and use the relations (15) to get 
initial values �00,… , �k0, for the parameters �0,… , �k, respectively. The next step 
involves filling the latent values zi by their expectations, which is the E-step. We 

(20)

Pr
(

Y = y, z = (z0,… , zk+1)
)

= Pr
(

Y = y|z = (z0,… , zk+1)
)

× Pr
(

z = (z0,… , zk+1)
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w0, z0 = 1, y = 0,
w1, z1 = 1, y = 1,
⋮ ⋮

wk , zk = 1, y = k,
wk+1 ×

exp(−�)�y
y! , zk+1 = 1, y ≥ 0.

(21)Lcomp(w,�; y, z) =

n∏
j=1

{
k∏

i=0

[
w
zij×Ii(yj)

i

]
×
(
wk+1Pyj

(�j)
)z(k+1)j

}
.

(22)

�comp(w,�; y, z) = log Lcomp(�, �|y, z)

=

n∑
j=1

{ k∑
i=0

zijIi(yj)

[
�i − log(1 +

k∑
l=0

e�l )

]
+ z(k+1)j logwk+1

+ z(k+1)j logPyj
(�j)

}
.

�
comp

(w,�; y, z1) =

n∑
j=1

{
z0j[�0 − log

(
1 + exp(�0)]

)

+ (1 − z0j) logw1 + (1 − z0j) logPyj
(�

j
)

}
.
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will use the conditional expected values of E(z|y) given in Table 2 to generate zi
’s.

We use Table 2 to estimate the missing values in the expectation step of the 
EM algorithm as follows:

For the maximization step in the EM algorithm, we solve the following score equa-
tions instead of maximizing the complete LF directly:

where ẑ(k+1)j = 1 −
∑k

i=0
ẑij. In summary, the EM algorithm to estimate the param-

eters (�0,… , �k) and the regression parameter � for the ZKIP regression model is as 
follows. 

1.	 Select initial values �0, (�00,… , �k0) for the parameters � and the vector of param-
eters (�0,… , �k), respectively.

2.	 E-step: Estimate ẑij’s, i = 0,… , k using Eqs. (23) and (24).
3.	 M-step: Solve Eqs. (25) and (26) and obtain updated estimates �1, (�01,… , �k1).

4.	 Repeat E-step and M-step until the parameter estimates converge.

In the next subsection, we discuss how to obtain the standard errors of the estimates 
obtained by the EM algorithm.

4.2 � Standard Errors for the EM Algorithm

The most commonly used method to get the standard errors in the mixture models is 
to compute the matrix of partial derivatives of the LLF for the observed data, that is, 
to calculate the information matrix from the observed data. Lambert [14] used this 
method for computing the standard errors for the ZIP regression model. Lin and Tsai 
[17] used the Hessian matrix to get the standard errors for the zero–k inflated Pois-
son model without actually computing second-order partial derivatives of the LLF. 
Recall that the Hessian matrix comes out as a byproduct of the nonlinear optimiza-
tion methods in the common statistical packages.

(23)ẑij = E(zij|yj = i) =
exp(𝛾i)

exp(𝛾i) + Pi(𝜆j)

(24)and ẑij = E(zij|yj ≠ i) = 0, i = 0,… , k, j = 1,… , n.

(25)
𝜕�comp

𝜕�
=

n∑
j=1

ẑ(k+1)j(yj − exp[xT
i
�])xT

i
= 0,

(26)
𝜕�comp

𝜕𝛾i
=

n�
j=1

ẑijIi(yj) −
n exp(𝛾i)

1 +
∑k

l=0
exp(𝛾l)

= 0, i = 0,… , k,
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To compute the standard errors of the estimates obtained by the EM algorithm, 
we follow the approach described by Louis [22]. The relation between the likelihood 
of the complete, observed, and missing data is given by

where y and z stand for the observed and missing data, respectively. By taking the 
logarithm from Equation (27), we get

where �obs(w,�|y) = log
{
Lobs(w,�|y)

}
, �comp(w,�|y, z) = log

{
Lcomp(w,�|y, z)

}
 

and �miss(w, �|(z|y)) = log{Lmiss(w, �|(z|y))}. Taking second-order partial deriva-
tives from Eq. (28), the information matrices for the complete, observed, and miss-
ing data satisfy the following identity:

where the matrices Icomp and Imiss are, respectively, the Hessian matrix of the LLF 
of complete data and the LLF of missing data. Since the right hand side of Eq. (29) 
depends on the missing data, Louis [22] suggested to take the expected value of the 
missing data given the observed. This gives us the identity

In other words, Louis [22] estimated of the observed information matrix by

Note that the LLF of the complete data for the ZKIP regression model is given by 
Eq.  (22), and the corresponding first-order derivatives are shown in Eqs.  (25) and 
(26). The elements of the matrix E(Icomp|y) are the expected values of the negative 
of second-order partial derivatives of the complete LLF (22) given by

(27)Lcomp(w,�|y, z) = Lobs(w,�|y)Lmiss(w,�|(z|y)),

(28)�obs(w,�|y) = �comp(w,�|y, z) − �miss(w,�|(z|y)),

(29)Iobs = Icomp − Imiss,

(30)Iobs = E(Iobs|y) = E(Icomp|y) − E(Imiss|y).

(31)Îobs = E(Iobs|y) = E(Icomp|y) − E(Imiss|y).

Table 2   E(z|y) for the ZKIP regression model

z y = 0 y = 1 ⋯ y = l ⋯ y = k y ≥ k

z0
exp(�0)

exp(�0)+P0(�j)
0 ⋯ 0 ⋯ 0 0

z1 0 exp(�1)

exp(�1)+P1(�j)

⋯ 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮

zl 0 0 exp(�l)

exp(�l)+Pl(�j)
0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮

zk 0 0 ⋯ 0 ⋯ exp(�k )

exp(�k )+Pk (�j)
0

zk+1
P0(�j)

exp(�0)+P0(�j)

P1(�j)

exp(�1)+P1(�j)

⋯ Pl(�l)

exp(�l)+Pl(�j)

⋯ Pk (�j)

exp(�k )+Pk (�j)

1
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To see this, from Eq. (15), we have

and then Eq. (22) yields

From Eq. (32) we conclude that

After some algebraic manipulations and the value of E(z|y) from Table 2, the fol-
lowing result is concluded

Similarly, E
[
−�2�comp∕��l��s

]
 and E

[
−�2�comp∕����

T
]
 are obtained. The LLF of 

the missing data for the ZKIP regression model is

Finally, the elements of the matrix E(Imiss|y) are the negative of the expected value 
of the second-order derivatives of (35). These are given by

E

�
−
�2𝓁comp

��2
i

�
=n ×

exp(�i)(1 +
∑k

l=0
exp(�l)) − exp(2�i)

(1 +
∑k

l=0
exp(�l))

2
, i = 0,… , k,

E

�
−
�2𝓁comp

��l��s

�
=n ×

exp(�l)(1 +
∑k

l=0
exp(�l)) − exp(�l + �s)

(1 +
∑k

m=0
exp(�m))

2
, l, s = 0,… , k,

E

�
−
�2𝓁comp

����T

�
=

n�
j=1

�
P0(�j) ×⋯ × Pk(�j) − exp(�0 +⋯ + �k)

�
�j

[exp(�0) + P0(�j)] ×⋯ × [exp(�k) + Pk(�j)]
(xjx

T
j
).

1 − �(w) = wk+1 =
1

1 +
∑k

l=0
�l

,

(32)
��comp

��i
=

n�
j=1

�
zijIi(yj)

�
1 −

e�i

1 +
∑k

l=0
e�l

�
+ z(k+1)j

e�i

1 +
∑k

l=0
e�l

�
.

(33)

�2�comp

��2
i

=

n�
j=1

�
zijIi(yj)

�
exp(�i)(1 +

∑k

l=0
exp(�l)) − exp(2�i)

(1 +
∑k

l=0
exp(�l))

2

�

+ z(k+1)j
exp(�i)(1 +

∑k

l=0
exp(�l)) − exp(2�i)

(1 +
∑k

l=0
exp(�l))

2

�
.

(34)E

�
−
�2�comp

��2
i

�
= n ×

exp(�i)(1 +
∑k

l=0
exp(�l)) − exp(2�i)

(1 +
∑k

l=0
exp(�l))

2
.

(35)

�miss(�, �) =

n∑
j=1

{ k∑
i=0

[
zij𝛾i

]
+ z(k+1)j logPyj

(𝜆j)

}

−

n∑
j=1

{ k∑
i=0

Ii(yj) log
(
exp(𝛾i) + Pyj

(𝜆j)
)}

−

n∑
j=1

(
I(yj > k) logPyj

(𝜆j)
)
.
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4.3 � Hypothesis Testing

Testing the impact of the jth covariate on the count response is equivalent to testing 
H0 ∶ �j = 0 vs. H1 ∶ �j ≠ 0. This hypothesis test is straightforward and can be done 
using the standard Wald statistic, z = 𝛽i∕SE(𝛽i), which has asymptotically standard 
normal distribution under the null hypothesis H0. Here, SE(𝛽j) minus twice the LLF 
stands for the standard error of the estimate 𝛽j. An alternative approach for testing 
H0 ∶ �j = 0 is to use the generalized likelihood ratio test statistic defined by

which has asymptotically the chi-Square distribution with one degree of freedom, 
where �̃ and �̃ denote the ML estimates under the hypothesis �j = 0 and 𝛽  and �̂ are 
the ML estimates under the ZKIP model.

Since 0 ≤ wi ≤ 1, (i = 0,… , k), the null hypothesis H0 ∶ wi1
= ⋯ = wir

= 0, 
0 ≤ ir ≤ k, corresponds to testing the parameters to check the necessity of their pres-
ence in the model. In this case, the regularity conditions are not met. That is, the stand-
ard asymptotic theory for the LRT statistic (36) is not applicable, and in fact, its asymp-
totic distribution is a mixture of chi-Square distributions.

5 � The Model Diagnosis

The model diagnosis is an essential step to ensure that a fitted model is adequate for the 
observed data set. However, diagnosing counts models is still a challenging research 
problem. Pearson and deviance residuals are often used in practice for diagnosing 
counts models, despite wide recognition that these residuals are far from normality 
when applied to count data. RQRs, proposed by Dunn and Smyth [10] and Park et al. 
[26], are used to overcome the above-mentioned problems. The key idea of the RQR 

E

[
−
�2𝓁miss

��2
i

]
=

n∑
j=1

{
Ij(yj)

exp(�j)Pyj
(�j)

(exp(�j) + Pyj
(�j))

2

}
, i = 0,… , k,

E

[
−
�2𝓁miss

��l��s

]
=0, l, s = 0,… , k and l ≠ s,

E

[
−
�2𝓁miss

����i

]
=

n∑
j=1

{
Ij(yj)

exp(�j)Pyj
(�j)

(exp(�j) + Pyj
(�j))

2

}
, i = 0,… , k,

E

[
−
�2𝓁miss

����T

]
=

n∑
j=1

[
P0(�j) ×⋯ × Pk(�j) − exp(�0 +⋯ + �k)

]
�jxjx

T
j

[exp(�0) + P0(�j)] ×⋯ × [exp(�k) + Pk(�j)]

−

n∑
j=1

{ k∑
i=0

Ii(yj)

[
exp(�i)Pyj

(�j)
(
�j − (yj − �j)

2
)
+ P2

yj
(�j)�j

]
xjx

T
j

(exp(�j) + Pyj(�j)
)2

}
.

(36)−2 logΛ = −2 log
Lobs(

��,��, 𝛽j = 0)

Lobs(�̂, �̂)
,
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is to randomize the lower tail probability into a uniform random number between the 
discontinuity gap of the cumulative density function (CDF). It can be shown that the 
RQRs are normally distributed under the true model. To the best of our knowledge, the 
RQR has not been applied to the residual analyses for zero-inflated or modified mixed 
effects models.

To do this, we follow the Dunn and Smyth [10] approach. The RQR inverts the fitted 
distribution function for each response value and finds the equivalent standard normal 
quantile. Let G(y;w, �) denote the CDF for random variable y. If the CDF is continu-
ous, then G(yi;w, �) is uniformly distributed on the unit interval. RQRs can thus be 
defined as

where Φ−1(⋅) is the quantile function of the standard normal distribution. However, 
if the CDF is discrete, then randomization is added to modify qi in Eq. (37). To be 
more specific, let g(yi;w, �) denote the PMF of y. The CDF can be redefined as

where U is a uniform random variable on [0, 1],  and G(y−;w, �) is the lower limit of 
G in y. When G is discrete, we let ai = limy→y−

i
G(y; ŵi, 𝜆̂i) and bi = G(yi; ŵi, 𝜆̂i). 

Then, the randomized quantile residual is defined by

where G∗
i
 is a uniform random variable on the interval (ai, bi], and qi ∼ N(0, 1). Here, 

N(0, 1) stands for the standard normal distribution. Therefore, the only information 
that is required for calculating RQRs is the CDF of the response variable. In numeri-
cal analysis, we will use RQRs to investigate the adequacy of the used models.

6 � Simulation Studies

In this simulated scenario, we have evaluated the efficiency of the ZKIP regres-
sion model with the link function log(�) = �0 + �1x1 + �2x2, where �0 = 0.5, 
�1 = �2 = −0.05, w0 = w1 = w2 = w3 = 0.2 and x1 and x2 are, respectively, gener-
ated from N(0, 1) and the Bernoulli distribution with parameter 0.5 and k = 0, 1, 2, 3. 
In each step, we select a sample with sizes of n = 100, 500, 1000 from ZKIP regres-
sion (k = 0, 1, 2, 3) models and estimate the parameters of the assumed models 
using the ML method. We repeat this step 10,000 times. If the model and its related 
definitions work correctly, the estimates obtained for the parameters of this models 
should be close to their real values. Also, as the sample size rises, the means of bias 
and standard error should be decreased. This assertions are supported by Table 3’s 
results.

For the next simulated scenario, we have selected a sample with sizes 
n = 100, 500, 1000, from Z3IP regression model (with the parameters similar to 

(37)qi = Φ−1[G(yi; ŵi, 𝜆̂i)],

G∗(y;w, �) = G(y−;w, �) + U × g(y;w, �),

qi = Φ−1[G∗
i
],
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Table  3). Then, we have fitted the regression ZKIP with k = 0, 1, 2 and Poisson 
models, for the same sample. As anticipated, the proposed model performed admira-
bly results. The regression Z3IP model shows the best outcomes based on the com-
parative criteria in Table 4.

7 � Real Data Analysis

To assess the performance of the proposed ZKIP model and the corresponding 
regression version, two real data sets are analyzed.

7.1 � Example 1 (Alcohol Consumption)

DeHart et al. [7] described a study in which “moderate to heavy drinkers” (at least 12 
alcoholic drinks/week for women, 15 for men) were recruited to keep a daily record 
of each drink that they consumed over a 30-day study period. Participants also com-
pleted a variety of rating scales covering daily events in their lives and items related 
to self-esteem. Among the researchers’ hypotheses, the negative events, particularly 
those involving romantic relationships, are suspected to be related to the amount of 
alcohol consumed, especially among those with low self-esteem.

In this example, we consider numall (number of alcoholic beverages, or 
“drinks,” consumed in one day) as a response variable. In Tables 5 and 6 , we 
fit the ZKIP distribution to this data set. In the following, negevent (an index for 
combining the total number and intensity of negative events experienced during 
the day) and nrel (a measure of negative relationship interactions) are consid-
ered covariate variables. Tables 7 and 8 show the fitted regression ZKIP models.

The results in Tables 5 and 6 show that the ZKIP regression model with k = 6 
performs well and dominates the rest models. Tables  7 and 8 also confirm that 
the regression ZKIP with k = 6 is the best model among the considered models. 
In Table 9, we consider the problem of the hypothesis testing H0 ∶ w6 = 0 against 
the alternative H1 ∶ w5 > 0 and H1 ∶ w7 = 0, with significance level � = 0.05. The 
asymptotic distribution is 0.5�2

0
+ 0.5�2

1
, where �2

0
≡ 0, for the Alcohol consump-

tion data set (for more details, see [29]). We see that k = 6 is the best choose for 
the ZKIP model.

With these explanations, an algorithm can be presented to choose the appropriate 
value of k. We start fitting the inflated model from k = 0 and continuing this fitting 
until k,   so there is no significant difference between the fitting of k and the larger 
k + 1.

7.2 � Example 2 (Lung Data Set)

This data set is about survival in those with advanced lung cancer from the “North 
Central Cancer Treatment Group” (Loprinzi et  al. [21]). Performance scores rate 
how well the patient can perform usual daily activities. The Eastern Coopera-
tive Oncology Group (ECOG) performance score is measured by the physician as 
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0 = asymptomatic, 1 = symptomatic but completely ambulatory, 2 = in bed < 50% 
of the day, 3 = in bed > 50% of the day but not bedbound, 4 = bedbound (ph.ecog). 
We consider the ph.ecog as the response variable and the Age and Sex of patients 
as covariates. The fitted ZKIP model for the response variable in the Lung data set 
is shown in Tables 10 and 11 . It is observed that the ZKIP model with k = 2 is the 
best one. Tables 12 and 13 confirm the same results in the regression ZKIP model. 
Table  14 also introduces k = 2 as an appropriate value for the regression ZKIP 
model for this data set.

Figures 3 and 5 for, respectively, real data sets 1 and 2 show the RQRs of the 
regression ZKIP model for all observations. For the best k-obtained regression 
ZKIP fitted, these figures approximately show a random scatter around zero for 
RQR in the three real data sets, which seems to be reasonable. Figures 2 and 4 
also show that the RQRs follow approximately the N(0,  1) distribution for the 
obtained k (Figs. 2, 3, 4, 5).

Table 3   Bias of ML estimates and standard errors (in parentheses), and model diagnostics in the simula-
tion study

n Parameter k = 0 k = 1 k = 2 k = 3

100 𝛽0 − 0.0301 (0.0015) − 0.0635 (0.0023) − 0.1405 (0.0162) − 1.2247 (0.0470)

𝛽1 − 0.0024 (0.0010) 0.0001 (0.0012) − 0.0060 (0.0093) − 0.0676 (0.0409)

𝛽2 − 0.0031 (0.0020) − 0.0024 (0.0024) − 0.0237 (0.0114) − 0.5169 (0.0707)

ŵ0 − 0.0148 (0.0007) − 0.0373 (0.0009) − 0.0631 (0.0011) − 0.0735 (0.0010)
ŵ1 – − 0.0224 (0.0009) − 0.0408 (0.0011) − 0.0336 (0.0010)
ŵ2 – – − 0.0077 (0.0007) 0.0052 (0.0007)
ŵ3 – – – 0.0019 (0.0005)

500 𝛽0 − 0.0049 (0.0007) − 0.0144 (0.0011) − 0.0415 (0.0019) − 0.1350 (0.0059)

𝛽1 − 0.0003 (0.0004) 0.0001 (0.0005) 0.0011 (0.0007) − 0.0005 (0.0036)

𝛽2 − 0.0009 (0.0009) 0.0000 (0.0011) 0.0005 (0.0014) 0.0087 (0.0064)

ŵ0 − 0.0024 (0.0003) − 0.0080 (0.0004) − 0.0295 (0.0007) − 0.0676 (0.0010)
ŵ1 – 0.0057 (0.0004) − 0.0249 (0.0007) − 0.0569 (0.0010)
ŵ2 – – − 0.0081 (0.0004) − 0.0206 (0.0005)
ŵ3 – – – − 0.0031 (0.0002)

1000 𝛽0 − 0.0024 (0.0005) − 0.0075 (0.0007) − 0.0227 (0.0014) − 0.0668 (0.0030)

𝛽1 − 0.0023 (0.0003) − 0.0002 (0.0004) 0.0005 (0.0005) 0.0001 (0.0009)

𝛽2 − 0.0005 (0.0006) − 0.0003 (0.0007) 0.0009 (0.0010) − 0.0034 (0.0020)

ŵ0 − 0.0016 (0.0002) − 0.0041 (0.0003) − 0.0156 (0.0005) − 0.0508 (0.0009)
ŵ1 – − 0.0032 (0.0003) − 0.0136 (0.0005) − 0.0445 (0.0009)
ŵ2 – – − 0.0044 (0.0003) − 0.0169 (0.0005)
ŵ3 – – – 0.0028 (0.0004)
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Table 4   Frequency comparisons associated with simulated data from the ZKIP regression distribution

n Count Observed k = 0 k = 1 k = 2 k = 3 Poisson

100 0 15 14.99 35.58 14.78 14.54 12.36
1 20 21.02 28.65 21.45 20.48 22.97
2 27 22.53 17.78 28.26 27.42 23.71
3 22 17.73 9.36 12.34 21.54 18.05
4 4 11.46 4.53 9.07 5.04 11.33
5 3 6.45 2.11 6.00 3.74 6.20
6 3 3.25 0.99 3.67 2.64 3.05
7 3 1.50 0.48 2.11 1.79 1.38
8 < 3 1.01 0.45 2.04 2.28 0.90
− Log L 187.1926 187.0785 184.3587 179.1421 187.8374
ABE 24.1239 59.5964 23.1806 5.8907 27.1555
�2 14.1239 68.2423 12.9983 1.5044 15.4826

500 0 114 118.46 202.91 116.42 116.17 82.02
1 110 106.51 130.03 111.84 109.15 136.76
2 111 106.68 81.50 117.47 113.13 124.18
3 108 78.14 43.89 60.97 107.45 81.53
4 18 46.80 21.94 41.12 17.41 43.31
5 14 24.28 10.52 24.76 11.95 19.75
6 10 11.30 4.93 13.72 8.10 8.01
7 4 4.82 2.28 7.13 5.46 2.96
8 < 11 2.98 1.90 6.30 8.89 1.46
− Log L 884.4426 884.1051 880.0346 840.6413 905.5831
ABE 91.3488 225.866 103.1793 13.8187 142.0298
�2 55.7628 198.331 60.2662 1.8025 107.152

1000 0 244 246.34 395.49 242.06 237.75 188.77
1 232 238.08 275.01 244.24 234.09 287.97
2 229 216.23 167.21 235.71 230.04 241.64
3 203 145.28 85.27 121.15 199.13 148.85
4 32 81.24 40.48 73.72 35.44 75.78
5 18 40.32 18.78 40.72 22.68 34.04
6 14 18.49 8.76 21.17 14.36 14.07
7 9 8.07 4.19 10.63 9.07 5.51
8 < 19 5.91 4.59 10.38 15.19 3.36
− Log L 1719.624 1718.899 1712.996 1655.383 1749.217
ABE 168.9827 407.7418 184.6011 25.6067 155.3624
�2 96.2978 305.8896 102.2458 2.5274 257.0112
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Table 5   Estimates, standard errors (in parentheses), and model diagnostics for the Alcohol consumption 
data set

Parameter k = 0 k = 1 k = 2 k = 3

𝜆̂ 3.1200 (0.0837) 3.5303 (0.1024) 4.3945 (0.1458) 5.2217 (0.1956)

ŵ0 0.1922 (0.0176) 0.2079 (0.0171) 0.2221 (0.0162) 0.2262 (0.0153)
ŵ1 – 0.1091 (0.01671) 0.1544 (0.0154) 0.1706 (0.0144)
ŵ2 – – 0.1561 (0.0172) 0.1877 (0.0157)
ŵ3 – – – 0.0881 (0.0140)
− Log L 1392.4570 1371.9350 1335.2620 1317.9980
AIC 2788.9140 2749.8700 2678.5240 2645.9960

 Parameter k = 4 k = 5 k = 6 Poisson

𝜆̂ 5.8876 (0.2443) 7.2689 (0.3643) 8.7945 (0.5517) 2.5201 (0.0636)

ŵ0 0.2273 (0.0146) 0.2281 (0.0127) 0.2280 (0.0129) –
ŵ1 0.1758 (0.0137) 0.1790 (0.0120) 0.1796 (0.0122) –
ŵ2 0.2001 (0.0147) 0.2093 (0.0126) 0.2114 (0.0127) –
ŵ3 0.1068 (0.0130) 0.1237 (0.0113) 0.1285 (0.0113) –
ŵ4 0.0446 (0.0114) 0.0674 (0.0100) 0.0755 (0.0098) –
ŵ5 – 0.0526 (0.0098) 0.0635 (0.0097) –
ŵ6 – – 0.0304 (0.0085) –
− Log L 1311.7030 1298.8080 1289.6930 14543.280
AIC 2635.4060 2611.6150 2595.3850 2970.6570

Table 6   Observed number of illness and the corresponding expected values under the fitted models in 
Table 5

Count Observed k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 Poisson

0 142 124.01 141.98 142.03 141.98 142.02 142.00 142.02 50.13
1 112 69.32 112.01 11.97 112.00 112.01 112.01 112.00 126.33
2 132 108.48 77.68 131.97 132.04 131.99 132.00 131.99 159.17
3 81 112.48 91.41 50.82 80.99 81.00 80.98 81.01 133.69
4 49 87.74 80.67 55.84 34.11 48.99 49.00 48.99 84.22
5 43 54.75 56.96 49.08 35.62 25.01 43.00 42.99 42.44
6 24 28.47 33.51 35.95 31.00 24.54 12.949 24.00 17.83
7 6 12.69 16.90 22.57 23.12 20.64 12.96 6.33 6.42
8 9 4.95 7.46 12.40 15.09 15.19 11.78 6.96 2.02
9 7 1.72 2.92 6.06 8.76 9.93 9.51 6.80 0.57
10 7 0.54 1.03 2.66 4.57 5.85 6.91 5.97 0.14
11≤ 11 0.20 0.46 1.64 3.71 5.82 10.32 13.72 0.04
ABE 186.2634 152.9210 89.7472 64.0255 48.6561 24.5705 6.3987 259.6502
�2 734.6944 344.4936 97.1405 40.7461 31.5483 15.7199 1.3393 3558.4550
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Table 7   Estimates, standard errors (in parentheses), and model diagnostics (log-likelihood, and AIC) for 
the Alcohol consumption data set

Parameter k = 0 k = 1 k = 2 k = 3

𝛽0 1.1962 (0.0269) 1.2979 (0.0289) 1.5145 (0.0332) 1.6634 (0.0374)

𝛽1 − 0.2204 (0.0486) − 0.1659 (0.0527) − 0.1405 (0.0591) − 0.0546 (0.0672)

𝛽2 0.0736 (0.0223) 0.0597 (0.0239) 0.0437 (0.0252) 0.0176 (0.0261)

ŵ0 0.1880 (0.0177) 0.2052 (0.0172) 0.2214 (0.0163) 0.2260 (0.0154)
ŵ1 – 0.1047 (0.0168) 0.1524 (0.0154) 0.1701 (0.0144)
ŵ2 – – 0.1549 (0.0173) 0.1872 (0.0157)
ŵ3 – – – 0.0872 (0.0140)
− Log L 1387.778 1369.5200 1334.0820 1317.8610
AIC 2783.5507 2749.0390 2680.1640 2649.7210

 Parameter k = 4 k = 5 k = 6 Poisson

𝛽0 1.7602 (0.0416) 1.9071 (0.0498) 2.0064 (0.0579) 1.0195 (0.0116)

𝛽1 0.0352 (0.0806) 0.2483 (0.1037) 0.4829 (0.1107) − 0.3355 (0.0235)

𝛽2 0.0030 (0.0292) − 0.0163 (0.0333) − 0.0522 (0.0330) 0.1239 (0.0152)

ŵ0 0.2273 (0.0146) 0.2279 (0.0126) 0.2279 (0.0129) –
ŵ1 0.1759 (0.0137) 0.1791 (0.0120) 0.1794 (0.0122) –
ŵ2 0.2003 (0.0147) 0.2094 (0.0125) 0.2111 (0.0127) –
ŵ3 0.1072 (0.0130) 0.1245 (0.0112) 0.1285 (0.0113) –
ŵ4 0.0451 (0.0114) 0.0682 (0.0098) 0.0753 (0.0099) –
ŵ5 – 0.0533 (0.0097) 0.0629 (0.0097) –
ŵ6 – – 0.0298 (0.0084) –
− Log L 1311.6340 1297.8250 1287.6180 1470.9550
AIC 2639.2680 2613.6500 2595.2360 2947.9100
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Table 8   Observed number of illness and the corresponding expected values under the fitted models in 
Table 7

Count Observed k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 Poisson

0 142 141.96 141.02 141.99 141.98 141.98 141.98 142.02 50.14
1 112 69.35 11.99 111.99 112.01 112.02 11.98 112.00 126.33
2 132 108.17 77.68 132.00 132.00 131.99 132.02 132.01 159.17
3 81 112.49 91.41 50.81 80.99 81.00 81.01 81.00 133.69
4 49 84.74 80.67 55.83 34.12 49.00 49.01 49.01 84.22
5 43 54.74 56.95 49.08 35.63 25.01 42.99 42.99 42.44
6 24 28.46 33.51 35.95 31.01 24.54 12.49 23.98 17.82
7 6 12.69 16.90 22.57 23.13 20.64 12.96 6.33 6.42
8 9 4.95 7.64 12.40 15.10 15.19 11.77 6.95 2.02
9 7 1.71 2.92 6.06 8.76 9.94 9.51 6.79 0.57
10 7 0.54 1.03 2.66 4.57 5.85 6.91 5.97 0.14
11≤ 11 0.20 0.46 1.64 3.71 5.83 10.31 13.72 0.04
ABE 186.2441 152.9047 89.6884 64.0094 48.6745 24.6268 6.4005 259.6528
�2 735.2491 344.5580 97.1210 40.7388 31.5452 15.7120 1.3421 3559.0930

Table 9   Testing to choose k in 
Tables 7 and 8

k = 6 vs k = 5 k = 6 vs k = 7

Likelihood ratio 10.207 0.007
P-Value 0.0007 0.4667

Table 10   Estimates, standard errors (in parentheses), and model diagnostics for the Lung data set

Parameter k = 0 k = 1 k = 2 Poisson

𝜆̂ 0.9518 (0.0207) 0.939 (0.0279) 0.4348 (0.0306) 0.9519 (0.0166)

ŵ0 0.0000 (0.0079) 0.0000 (0.0073) 0.0000 (0.0072) –
ŵ1 – 0.2100 (0.0085) 0.3798 (0.0083) –
ŵ2 – – 0.1930 (0.0071) –
− Log L 264.1790 255.8550 241.4580 264.1790
AIC 532.3590 517.7100 490.9170 530.3590

Table 11   Observed number of 
illness and the corresponding 
expected values under the fitted 
models in Table 10

Count Observed k = 0 k = 1 k = 2 Poisson

0 63 88.03 70.44 63.04 88.02
1 114 83.78 114.01 113.98 83.78
2 50 39.86 31.05 50.01 39.87
3≤ 1 12.65 9.72 0.86 12.65
ABE 77.0387 35.1200 0.2085 77.0203
�2 31.3244 20.1757 0.0226 31.3169
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Table 12   Estimates, standard errors (in parentheses), and model diagnostics (log-likelihood, and AIC) 
for Lung data set

Parameter k = 0 k = 1 k = 2 Poisson

𝛽0 − 1.1029 (0.0124) − 1.4226 (0.0136) − 4.8461 (0.0136) − 1.1007 (0.0116)

𝛽1 0.0163 (0.0252) 0.0212 (0.0162) 0.0682 (0.0274) 0.0165 (0.0235)

𝛽2 0.0198 (0.0162) 0.0065 (0.0177) − 0.0697 (0.0177) 0.0059 (0.0152)

ŵ0 0.0000 (0.0078) 0.0000 (0.0075) 0.1581 (0.0075) –
ŵ1 – 0.2190 (0.0086) 0.4426 (0.0088) –
ŵ2 – – 0.1944 (0.0072) –
− Log L 261.8590 252.7920 239.8060 261.8520
AIC 531.7180 515.5830 491.6120 529.7050

Table 13   Observed number of 
illness and the corresponding 
expected values under the fitted 
models in Table 12

Count Observed k = 0 k = 1 k = 2 Poisson

0 63 88.02 70.44 63.04 88.01
1 114 83.78 114.02 114.00 83.78
2 50 39.87 31.04 49.99 39.88
3 ≤ 1 12.65 9.71 0.86 12.65
ABE 77.0289 35.1302 0.1932 77.0074
�2 31.3204 20.1811 0.0227 31.3116

Table 14   Testing to choose k in 
Tables 12 and 13

k = 2 vs k = 1 k = 2 vs k = 3

Likelihood ratio 12.986 1.540
P-Value 0.0002 0.1073

Fig. 2   RQR’s plots for the alcohol consumption data set
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Fig. 3   QQ plots for the RQR’s of the alcohol consumption data set

Fig. 4   RQR’s plots for the Lung data set
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8 � Conclusions

Previous research about the inflated Poisson distribution has suggested that infla-
tion may occur at one or two points. By introducing the ZKIP distribution, in 
addition to covering all previous studies, we allowed the inflated points to be 
three or even more. Also, in this work, we studied the properties of the ZKIP 
distribution and the ZKIP regression model. The flexibility of the ZKIP distribu-
tion (which was perfectly illustrated with real data examples) shows that it may 
be used as a suitable model for real data set analysis with discrete responses. This 
flexibility was also observed in the regression version of the ZKIP distribution.

The introduced model can be used in decision trees, random forests and statis-
tical quality control or any model that can be used for inflated discrete data. Also, 
this model can be developed for the neutrosophic statistics [3, 4, 31].

Fig. 5   QQ plots for the RQR’s of the Lung data set
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