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Abstract
The goal of this research is to create a new general family of Topp-Leone distribu-
tions called the Topp-Leone Cauchy Family (TLC), which is exceedingly versatile 
and results from a careful merging of the Topp-Leone and Cauchy distribution fami-
lies. Some of the new family’s theoretical properties are investigated using specific 
results on stochastic functions, quantile functions and associated measures, generic 
moments, probability weighted moments, and Shannon entropy. A parametric sta-
tistical model is built from a specific member of the family. The maximum likeli-
hood technique is used to estimate the model’s unknown parameters. Furthermore, 
to emphasize the new family’s practical potential, we applied our model to two real-
world data sets and compared it to existing rival models.

Keywords Topp-Leone · Statistical distribution · Cauchy · Moments · Entropy · 
Maximum likelihood estimation

1 Introduction

Statistical distributions have long been used to represent data for goals such as pre-
diction and decision-making. Life cycle analysis, reliability, life expectancy, insurance, 
engineering, finance, economics, biological sciences, extreme events, medicine, agri-
cultural engineering, actuarial science, demography, administration, sports, and mate-
rials science are all examples of their applications. Numerous statistical distributions 
consist of additional parameters to well-established continuous distributions in order 
to provide them new and intriguing functions. The most notorious of these families are 

 * Mintodê Nicodème Atchadé 
 nickpowerabc@gmail.com

1 National Higher School of Mathematics Genius and Modelization, National University 
of Sciences, Technologies, Engineering and Mathematics, Abomey, Republic of Benin

2 University of Abomey-Calavi/ International Chair in Mathematical Physics and Applications 
(ICMPA: UNESCO-Chair), 072 BP 50, Cotonou, Republic of Benin

http://crossmark.crossref.org/dialog/?doi=10.1007/s44199-023-00066-4&domain=pdf
http://orcid.org/0000-0002-5507-6251


340 Journal of Statistical Theory and Applications (2023) 22:339–365

1 3

Exponential-G family [1], beta-G family [2], gamma-G family [3]. Recent promising 
families include the Kumaraswamy-G family [4], half-logistic-G family of type II 
[5], generalized odd log-logistic Poisson family [6], odd Frechet-G family of dis-
tributions [7], Garhy-generated family of distributions [8], generalized transmuted 
Poisson-G family [9], Topp-Leone family [10, 11], Topp-Leone-Weibull [12], power 
Lambert uniform distribution [13], Gemeay–Zeghdoudi distribution [14], step stress 
and partially accelerated life testing [15], Burr III-Topp-Leone-G family of distri-
butions [16], Fréchet Topp-Leone-G [17], Topp-Leone G transmuted [18], Topp-
Leone Inverse Lomax [19], new power Topp-Leone-G Family [20], Generalized 
Topp-Leone-Weibull [12], Topp-Leone-Marshall-Olkin-G family [21], Topp-Leone 
generalized Rayleigh distribution [22, 23], Topp-Leone inverse Rayleigh distribu-
tion [24], truncated exponential Topp Leone Rayleigh distribution [25]. In addition 
to these previous works, recent advancements in the field of statistical distributions 
have introduced promising newcomers, including a novel extension of the Fréchet 
distribution [26], an efficient estimators of population variance in two-phase succes-
sive sampling under random non-response [27], and the half-normal model using 
informative priors under Bayesian Structure [28].

Most statistical distributions face limitations when it comes to adapting to various 
types of data sets. Indeed, certain datasets exhibit specific characteristics like high 
skewness, kurtosis, heavy tails, inverted J-shapes, multimodality, and more. Distribu-
tion generators offer the capability to manage and manipulate these dataset characteris-
tics effectively. In this research, our objective is to create a novel set of distributions by 
merging the Topp-Leone and Cauchy distribution families, and showing how distribu-
tions from the created family offer a large possibility of adapting to real life data. The 
Topp-Leone distributions are extensively employed due to their advantageous attrib-
utes, such as mathematical simplicity and the versatility of their probabilistic functions. 
Its cumulative distribution function (CDF) is given by:

where 𝛼 > 0 and 0 ≤ x ≤ 1 and the pdf is:

The Topp-Leone-G distribution family emerges from the fusion of (1) and P, where 
P represents a CDF. It is precisely this CDF that defines the distinguishing features 
of this distribution family.

P(x;𝜏) ∈ [0, 1], 𝛼 > 0 , and P(x;�) is a basic continuous distribution’s CDF depend-
ing on � = (�1,… , �n).

One way to define the Cauchy distribution is by its CDF, which is given by:

(1)F(x;�) = x�(2 − x)� ,

(2)f (x;�) = 2�x�−1(1 − x)(2 − x)�−1.

(3)F(x;�, �) = [P(x;�)]�[2 − P(x, �)]� .

(4)H(x;a, b) =
1

�
arctan

(
x − b

a

)
+

1

2
,
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where a > 0 represents a scale parameter, b a position parameter, and x ∈ ]0; +∞[ . 
By combining P(x, �) and the Cauchy distribution’s CDF (4), we get:

By merging the Topp-Leone distribution family (3) with the Cauchy distribution (5), 
we will create the new family. The representation of the CDF of the Topp-Leone 
distribution family (3) can be restated as:

By combining expressions (5) and (6), we get the new family’s CDF which is 
defined by:

� = (�, a, b, �) and 𝛼, a, 𝜏 > 0 and x ∈ −∞; +∞

The development of this novel distribution family is driven by several motiva-
tions. First, it aims to offer increased flexibility compared to traditional statistical 
distributions like the normal or exponential, which often have limited parameters, 
making them less suitable for modeling highly variable real-world data. This new 
family introduces more parameters, enhancing its ability to adapt to complex phe-
nomena. Second, it extends beyond the restricted value ranges commonly seen in 
classic distributions, making it applicable to a wider range of fields where data may 
lack predefined bounds. Additionally, it seeks to model diverse real-world phenom-
ena more accurately, accounting for behaviors such as heavy tails, asymmetries, and 
extreme values. Finally, its versatility allows for application across various disci-
plines, from environmental sciences to medicine and engineering. Ultimately, the 
overarching goal is to improve the quality of statistical model fitting to real data, 
leading to more precise and reliable results across diverse research and application 
domains.

From this new family of distributions, several are the special members with very 
interesting properties. Within this family, we have introduced a distinct member 
where the basic distribution is represented by the CDF G. This yields the Topp-
Leone Cauchy Rayleigh distribution, which encompasses four parameters. To eval-
uate its effectiveness, we have applied this distribution to two actual datasets and 
compared its performance against other existing competing models.

2  A Special Member: The TLCAR Distribution

The TLCA-G family encompasses various distributions, and the process of discov-
ering a new distribution within this family parallels the process of discovering a new 
base distribution. In this work, the TLCAR distribution is established by utilizing 

(5)H(x;a, b, �) =
1

�
arctan

(
P(x, �) − b

a

)
+

1

2

(6)F(x;�, �) =
[
1 − (1 − P(x;�))2

]�

(7)F(x;�) =

{
1 −

[
1

2
−

1

�
arctan

(
x(P(x;�) + m) − b

a

)]2}�
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the Rayleigh distribution with a positive shape parameter � as the foundational dis-
tribution. The CDF of the Rayleigh distribution can be expressed as:

where 𝜃 > 0 et x ∈ [0,+∞[.

The associated probability density function (PDF) and hazard rate function 
(HRF) are given respectively, by:

and

The CDF that defines the TLCAR distribution is expressed as follows:

where 𝛼, a, 𝜃 > 0 . The associated PDF and HRF of (8) are respectively:

and

L(x;�) = 1 − e

(
−x2

2�2

)
,

l(x;�) =
xe

(
−x2

2�2

)

�2
,

hrf (x;�) =
1

�2
x.

(8)F(x;�) =

⎡⎢⎢⎢⎣
1 −

⎛⎜⎜⎝
1

2
−

1

�
arctan

1 − e

�
−x2

2�2

�
− b

a

⎞⎟⎟⎠

2⎤⎥⎥⎥⎦

�

,

(9)

f (x;�) =
2�

�a�2
×

⎡
⎢⎢⎢⎢⎢⎢⎣

xe
−x2

2�2

1 +

�
1−e

−x2

2�2 −b

a

�2

⎤
⎥⎥⎥⎥⎥⎥⎦

×

�
1

2
−

1

�
arctan

1 − e
−x2

2�2 − b

a

�

×

⎡⎢⎢⎣
1 −

�
1

2
−

1

�
arctan

1 − e
−x2

2�2 − b

a

�2⎤⎥⎥⎦

�−1

,

(10)
h(x;�) =

f (x;�)

1 −

⎡⎢⎢⎣
1 −

�
1

2
−

1

�
arctan

1−e
−x2

2�2 −b

a

�2⎤⎥⎥⎦
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Figure 1 displays a graphical representation of the PDF of the TLCAR distribution, 
while Fig. 2 illustrates its HRF. Notably, Fig. 1 highlights the potential for the PDF 
to display a positive asymmetry and a shape of type J inverted. The PDF can exhibit 
diverse shapes, including increasing, decreasing, inverted, or bathtub-shaped pat-
terns. This observation aligns with previous findings documented in the literature. 
These curvature characteristics are well known to be useful for developing versatile 
statistical models.

3  Several Mathematical Properties of the TLCAR Distribution

This section highlights several important mathematical characteristics of the 
TLCAR distribution.

Fig. 1  Probability density functions of the TLCAR distribution

Fig. 2  TLCAR distribution’s hazard rate functions
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3.1  Serial Development of f

Proposition 1 The serial development of f is given by:

where

and

Proof According to (8), F(x;�) =
⎡⎢⎢⎣
1 −

�
1

2
−

1

�
arctan

1−e
−x2

2�2 −b

a

�2⎤⎥⎥⎦

�

,

Considering K(x;�) = arctan

(
1−e

−x2

2�2 −b

a

)
,

and

Using the binomial formula, we have:

and

So we get:

(11)f (x) =

�∑
i=0

2i∑
j=0

Ti,j × k(x;�) × Kj−1(x;�),

(12)Ti,j = (−1)i+j × j ×

(
�

i

)(
2i

j

)(
1

2

)2i−j( 1

�

)j

,

(13)Kj−1 =[K(x;�)]
j−1, k(x, �) = (K(x;�))� ,

(14)K(x;�) = arctan

(
1 − e

−x2

2�2 − b

a

)
.

(15)F(x;�) =

[
1 −

(
1

2
−

1

�
K(x;�)

)2
]�
,

[
1 −

(
1

2
−

1

�
K(x;�)

)2
]�

=

�∑
i=0

(−1)i
(
�

i

)[
1

2
−

1

�
K(x;�)

]2i
,

[
1

2
−

1

�
K(x, �)

]2i
=

2i∑
j=0

(−1)j
(
2i

j

)(
1

2

)2i−j( 1

�

)j

× [K(x, �)]j,

(16)F(x) =

�∑
i=0

2i∑
j=0

(−1)i+j
(
�

i

)(
2i

j

)(
1

2

)2i−j( 1

�

)j

× [K(x, �)]j.
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 By deriving the expression (16) of F(x) with x, we obtain the serial development 
(11) of f(x).   ◻

3.2  Rényi Entropy

The Rényi entropy associated with the distribution is given by:

where

and

Proof The Rényi entropy of X for a continuous random variable can be defined by:

       So we have:

(17)ER(X) =
1

1 − �
log

{
�(�−1)∑
i=0

2i+�∑
j=0

Li,j,� Ij,� (x, �)

}
,

(18)
Li,j,� =

(−1)i+j

i!j!
×

Γ(�(� − 1) + 1)Γ(2i + � + 1)

Γ(�(� − 1) − i + 1)Γ(2i + � − j + 1)

×

(
1

2

)2i+�−j( 1

�

)j(2�
�

)�

,

(19)Ij,� (x, �) =∫
ℝ

k(x;�)�K(x;�)jdx,

(20)Kj−1 =[K(x;�)]
j−1, k(x;�) = (K(x;�))�,

(21)K(x;�) = arctan

(
1 − e

−x2

2�2 − b

a

)

ER(X) =
1

1 − 𝛾
log

{
�
ℝ

f (x, 𝜈)𝛾dx

}
, 𝛾 ≠ 1, 𝛾 > 0,

f (x;𝜈)𝛾 =
[
2𝛼

𝜋

]𝛾
× [k(x;𝜈)]𝛾 ×

[
1

2
−

1

𝜋
K(x;𝜈)

]𝛾

×

[
1 −

(
1

2
−

1

𝜋
K(x;𝜈)

)2
]𝛾(𝛼−1)

,

f (x;�)� =

�(�−1)∑
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2i+�∑
j=0

(−1)i+j
(
�(� − 1)

i

)(
2i + �
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(
1
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Therefore, the Renyi entropy is given by:

  ◻

3.3  Moments

At this point, we will take a closer look at the moments of our distribution. 
Moment is a key statistical measure that allows us to characterize the shape of the 
distribution and to better understand its properties and behavior.

Proposition The moment of order s associated with our distribution is given by:

where Ti,j is defined in (12)

Proof The moment of order s of a variable is determined by:

so

By using the serial development (11), we have:

where Ss(x;�) is defined in (23).   ◻

ER(X) =
1

1 − �
log

{
�(�−1)∑
i=0

2i+�∑
j=0

Li,j,� Ij,� (x, �)

}
,

(22)Ms =

�∑
i=0

2i∑
j=0

Ti,j × Ss(x;�),

(23)Ss(x;�) = ∫
+∞

0

xs × k(x;�) × Kj−1(x;�)dx,

Ms = �(Xs),

Ms = ∫
∞

0

xs × f (x)dx,

Ms = ∫
+∞

0

xs ×

�∑
i=0

2i∑
j=0

Ti,j × k(x;�) × Kj−1(x;�)dx

=

�∑
i=0

2i∑
j=0

Ti,j ∫
+∞

0

xs × k(x;�) × Kj−1(x;�)dx,

Ms =

�∑
i=0

2i∑
j=0

Ti,j × Ss(x;�),
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3.4  Moment Generating Function

Proposition The moment generating function is given by:

Proof The moment generating function is determined by:

By using the serial development of exponential function, we have:

So we can write:

�(xr) represents the order moment r of the distribution. So,

By replacing (26) in (25), we obtain:

where

  ◻

(24)MX(t) =

+∞∑
l=0

�∑
i=0

2i∑
j=0

Ti,j ×
tl

l!
× Sl(x;�),

MX(t) = �(etx).

etx =

+∞∑
r=0

(tx)r

r!
,

(25)

MX(t) = �(

+∞∑
r=0

(tx)r

r!
)

=

+∞∑
r=0

�(
(tx)r

r!
)

=

+∞∑
r=0

(t)r

r!
�(xr),

(26)

Mr = �(xr)

=

�∑
i=0

2i∑
j=0

Ti,j,� × Sr(x;�),

MX(t) =

+∞∑
r=0

�∑
i=0

2i∑
j=0

Ti,j ×
tr

r!
× Sr(x;�),

Sr(x;�) = ∫
+∞

0

xr × k(x;�) × Kj−1(x;�)dx.
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3.5  Incomplete Moments

The incomplete moment of TLCAR distribution can be obtained as:

By considering the expression obtained with the moment in (22), we have:

where Ti,j is defined in (12)

3.6  Moment‑Weighted Probabilities (MWP)

The MWP is defined by:

where

and

Proof Let put �(x) = f (x) × Fs(x),

Ms(y) = �(XsYy),

= ∫
y

−∞

xs × f (x;�)dx,

Ms(y) =

�∑
i=0

2i∑
j=0

Ti,j × Ss,y(x;�),

Ss,y(x;�) = ∫
y

−∞

xs × k(x, �) × Kj−1(x;�)dx.

Mr,s =

�(s+1)−1∑
i=0

2i+1∑
j=0

Ji,j,sIj(x;�),

(27)
Ji,j,s = (−1)i+j

(
�(s + 1) − 1

i

)(
2i + 1

j

)
(−1)i+j

×

(
1

2

)2i+1−j( 1

�

)j(2�
�

)
,

(28)Ij(x, �) = ∫
+∞

0

xrk(x;�)K(x;�)jdx,
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so

By using the binomial formula, we have:

The moment generating function is determined by:

Therefore:

where Ji,j,s and Ij(x;�) are defined respectively in (27) and (28).   ◻

3.7  Quantile Function

In this section, we will give with justification the quantile function.

Proposition The quantile function associated with the distribution is defined by:

(29)

f (x) =
(
2�

�

)
× k(x;�) ×

(
1

2
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1

�
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2
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Proof Let us put

Then by the definition of the quantile function, xy satisfies the nonlinear equation:

So

By raising each member of Eq> (31) to the power 1
�
 we have:

Let put

We get:

Considering the expression (32), we can write:

In our case, P(x;�) = 1 − e

(
−x2

2�2

)
,

So we have:

Therefore, the quantile function is given by:
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  ◻

3.8  Survival Function

The survival function of TLCAR distribution is given by:

3.9  Hazard Function

The hazard function of TLCAR distribution is defined as:

3.10  Cumulative Hazard Function (Cf)

The cumulative hazard function is defined by the following expression:

So, the TLCAR distribution’s cumulative hazard function is given by:
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3.11  Reserve Hazard Function

We use the following expression to determine the reserve hazard function:

Therefore, the reserve hazard function of TLCAR distribution is given by:

3.12  Mean Waiting Time

The mean waiting time refers to the average time one has to wait for an event or an 
outcome to occur. It is a measure of central tendency that quantifies the typical or 
average duration of waiting. It is defined as:

By using the expression (11) of f(x), we have:

So, the mean waiting time of TLCAR distribution is given by:

where

Rf (x) =
f (x)

F(x)
,

Rf (x) =
f (x)

⎡
⎢⎢⎣
1 −

�
1

2
−

1

�
arctan

1−e
−x2

2�2 −b

a

�2⎤
⎥⎥⎦

�

mt(x) = x −

[
1

F(x) ∫
x

0

x × f (x)dx

]
,

mt(x) = x −
1

F(x) ∫
x

0

�∑
i=0

2i∑
j=0

Ti,jk(x;�)Kj−1(x;�)xdx

= x −
1

F(x)

�∑
i=0

2i∑
j=0

Ti,j ∫
x

0

k(x;�)Kj−1(x;�)xdx,

mt(x) = x −
1

F(x)

�∑
i=0

2i∑
j=0

Ti,j,�Mx(x;�),

(33)Mx(x, �) = ∫
x

0

k(x;�) × Kj−1(x;�) × xdx.
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3.13  Mean Residual Life

The mean residual life is a concept that pertains to survival analysis and the study of 
lifetime or duration data. It is a measure that provides information about the average 
remaining lifetime of an individual or system given that it has already survived up to 
a certain point. The mean residual life function (mr) is defined as:

By using the serial development (11) of f(x), we have:

So, the mean residual life of TLCAR distribution is given by:

where

3.14  Mean Deviation About Mean

The mean deviation about the mean (also known as the mean absolute deviation or 
simply the average deviation) is a measure of the average distance between each data 
point in a dataset and the mean of that dataset. It provides a measure of the disper-
sion or spread of the data. Suppose X has TLCAR distribution with a mean of � . The 
mean absolute deviation is expressed as follows:

By using (34), we have:

mr(x) =
1

1 − F(x) ∫
∞

0

xf (x)dx − x,

mr(x) =
1

1 − F(x) ∫
∞

0

�∑
i=0

2i∑
j=0

Ti,jk(x;�)Kj−1(x;�)xdx − x,

mr(x) =
1

1 − F(x)

�∑
i=0

2i∑
j=0

Ti,jaM∞(x;�) − x,

M∞(x;�) = ∫
∞

0

k(x;�) × Kj−1(x;�) × xdx

(34)MAD(�) = �(|X − �|)
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 So, the mean absolute deviation is given by:

where

3.15  Mean Deviation About Median

The mean deviation about the median is a measure of the average distance between 
each data point in a dataset and the median of that dataset. It is similar to the mean 
deviation about the mean, but instead of using the mean as the central measure, the 
median is used. Let consider the TLCAR distribution’s random variable X has a 
median value of Me. The mean deviation about median can be expressed as:

By using (35), we have:

MAD(�) = ∫
∞

0

|x − �| × f (x)dx

= ∫
�

0

|x − �| × f (x)dx + ∫
∞

�

|x − �| × f (x)dx

= 2�F(�) − 2∫
�

0

x × f (x)dx

= 2�F(�) − 2∫
�

0

�∑
i=0

2i∑
j=0

Ti,jk(x;�)Kj−1(x;�)xdx

= 2�F(u) − 2

�∑
i=0

2i∑
j=0

Ti,j ∫
�

0

k(x;�)Kj−1(x;�)xdx,

MAD(�) = 2�F(�) − 2

�∑
i=0

2i∑
j=0

Ti,jM�(x;�),

M�(x;�) = ∫
�

0

k(x;�)Kj−1(x;�)xdx

(35)MDM(�) = �(|X −Me|),
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So, the mean absolute deviation is given by:

where

4  Estimation

Let x1, x2,… , xn be a random sample of size n of a variable X. Then, using the pdf in 
(9), the likelihood function is given by:

So we have:

md(Me) = ∫
∞

0

|x −Me|f (x)dx
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Me

0
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The log-likelihood function is defined as:

We obtain:

Defining the maximum likelihood estimators �̂� , â , b̂ and �̂� , we satisfy:
l(�̂�, â, b̂, �̂�) = max(𝛼,a,b,𝜃)∈[0,+∞]4 l(𝛼, a, b, 𝜃)

Let’s put:

We have:

The log-likelihood function can therefore be rewritten as follows:

l(�, a, b, �) = ln [L(�, a, b, �))],
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The first partial derivatives of l(�̂�, â, b̂, �̂�) to be set to zero are provided as follows:

(36)
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5  Simulation Study

To assess the consistency of maximum likelihood estimators (MLEs) within the 
context of our hybrid TLCAR distribution, a comprehensive simulation study is con-
ducted in this section using the R package ’stats4.’ We generate one thousand inde-
pendent samples, each with varying sizes of n = 80, 100, 200, 300 , and 400, drawn 
from the TLCAR distribution. For each of the 1000 replications, we computed the 
MLEs for the parameters of interest. Subsequently, we assessed two fundamental 
statistical metrics: the average bias (Bias) and the root mean square error (RMSE). 
These metrics were used to evaluate the precision and consistency of the estimated 
parameters. The results of these calculations are documented in Table 1. This simu-
lation-based approach provides a robust framework for scrutinizing the performance 
of MLEs and offers valuable insights into their consistency under various sample 
size scenarios within the unique context of the TLCAR distribution.

Table 1  Results from Monte Carlo simulations for the TLCAR distribution: Calculations of Mean, 
RMSE, and Mean Bias

Sample size � = 1 a = 0.5 b = 0 � = 4 � = 1 a = 1 b = 0.5 � = 3

Mean RMSE Bias Mean RMSE Bias

80 1.0977 0.2525 0.0977 1.2444 0.3889 0.2444
100 1.0656 0.2077 0.0656 1.2202 0.3696 0.2202

� 200 1.0039 0.0506 0.0039 1.0401 0.1575 0.0401
300 1.0006 0.0208 0.0006 1.0309 0.1385 0.0309
400 1.0006 0.0206 0.0006 1.0030 0.0436 0.0030
80 1.4985 0.9996 0.9985 1.4925 0.5037 0.4925

100 1.4985 0.9996 0.9985 1.4250 0.5316 0.4250
a 200 1.4910 0.9977 0.9910 1.4020 0.5465 0.4020

300 1.3500 0.9617 0.8500 0.9675 0.7185 –0.0325
400 1.2750 0.9420 0.7750 0.9075 0.7390 –0.0925
80 0.9990 0.9994 0.9990 0.9950 0.5923 0.4950

100 0.9990 0.9994 0.9990 0.9500 0.5359 0.4500
b 200 0.9940 0.9969 0.9940 0.9350 0.5000 0.4350

300 0.9000 0.9486 0.9000 0.6450 0.2329 0.1450
400 0.8500 0.9219 0.8500 0.6050 0.2100 0.1050
80 3.8432 0.4048 –0.1567 3.9942 0.9975 0.9942

100 3.8953 0.3311 –0.1046 3.9432 0.9751 0.9432
200 3.9937 0.0805 –0.0062 3.9260 0.9675 0.9260

� 300 3.9989 0.0320 –0.0010 3.5986 0.8069 0.5986
400 3.9989 0.0326 –0.0010 3.55 0.7824 0.5520
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6  Data Analysis

To test the performance of our distribution in real life situations, we will apply it 
with two appropriate data sets and compare its performance to the existing compet-
ing models below: 

1. Topp-Leone Compound Rayleigh (TLCR) [29].
2. On Type II Topp Leone Inverse Rayleigh Distribution (TIITIR) [30].
3. Rayleigh distribution [31].

We used Mathematica to determine the estimated values of the density function 
parameters and Matlab to plot them. The analysis of the results will allow us to 
determine whether the distribution lives up to its promise in real-life situations.

Dataset I:
The provided dataset exhibits failure times (measured in hours) obtained from an 

accelerated life test involving 59 conductors. The data are presented below [32, 33]: 
6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 
11.038, 5.381, 6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 
5.807, 6.725, 8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 
6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 

Table 3  The information criteria results for the hailing time data (dataset I)

Model −l̂ AIC CAIC BIC HQIC

TLCAR 113.487331 234.974662 235.715403 243.284812 238.218608
TLCR 225.407842 456.815684 457.252047 463.048296 459.248643
TIITIR 142.4804414 288.960828 289.175114 293.115903 290.582801
Rayleigh 137.558113 277.116225 277.186401 279.193763 277.927212

Fig. 3  Visualization of Empirical PDFs and CDFs for dataset I
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7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071, 10.941, 5.923. Table 2 
displays the estimated values for the dataset I. The information criteria obtained 
from different models on the dataset I are presented in Table 3. Moreover, empirical 
PDFs and CDFs for dataset I can be visualized in Fig. 3.

Dataset II:
The dataset consists of observations on the fracture toughness of silicon 

nitride, measured in units of MPa m
1

2 [16]. The set is consisted of 119 observa-
tions which are: 5.5, 5, 4.9, 6.4, 5.1, 5.2, 5.2, 5, 4.7, 4, 4.5, 4.2, 4.1, 4.56, 5.01, 
4.7, 3.13, 3.12, 2.68, 2.77, 2.7, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 
2.04, 2.08, 2.13, 3.8, 3.73, 3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9, 4.05, 4, 3.95, 4, 4.5, 
4.5, 4.2, 4.55, 4.65, 4.1, 4.25, 4.3, 4.5, 4.7, 5.15, 4.3, 4.5, 4.9, 5, 5.35, 5.15, 5.25, 
5.8, 5.85, 5.9, 5.75, 6.25, 6.05, 5.9, 3.6, 4.1, 4.5, 5.3, 4.85, 5.3, 5.45, 5.1, 5.3, 5.2, 
5.3, 5.25, 4.75, 4.5, 4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 3.51, 4.13, 5.4, 5, 2.1, 4.6, 
3.2, 2.5, 4.1, 3.5, 3.2, 3.3, 4.6, 4.3, 4.3, 4.5, 5.5, 4.6, 4.9, 4.3, 3, 3.4, 3.7, 4.4, 4.9, 
4.9, 5. Table 4 displays the estimated values for the dataset II. The information 
criteria obtained from different models on the dataset II are presented in Table 5. 
From Fig. 4, we can see the empirical PDFs and CDFs for dataset II.

After analyzing the Tables 2, 3, 4, 5, and Figs. 3, 4, it can be deduced that the 
TLCAR model demonstrates a more robust compatibility with the datasets I and 
II examined in comparison to the rival models. The TLCAR model possesses the 

Table 5  Results of information criteria for hailing time Data (dataset II)

Model −l̂ AIC CAIC BIC HQIC

TLCAR 176.244175 360.488351 360.839228 371.604845 365.002408
TLCR 312.03245 627.035402 627.244098 635.372773 630.420945
TIITIR 244.699881 493.399761 493.503209 498.958008 495.656790
Rayleigh 221.034480 444.068961 444.103149 446.848084 445.197475

Fig. 4  Visualization of empirical PDFs and CDFs for dataset II
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advantage of flexibility, enabling its application to both industrial and artificial 
intelligence data. Hence, it can be concluded that the TLCAR model is the prefer-
able option for modeling these datasets, owing to its superior performance and 
versatility in accommodating diverse data types.

7  Conclusion

Our study focused on the creation and use of a distribution to simulate data. We 
implemented a rigorous methodology and were able to create a reliable distribu-
tion based on empirical data and precise statistical calculations. The simulations 
performed with this distribution showed results very close to the real data, thus 
demonstrating the relevance and efficiency of our approach.

Furthermore, we emphasized the relevance of assessing the suitability of sta-
tistical models to the data by comparing simulation outcomes to real-world data 
and employing visualization tools like histograms and density functions.

Finally, our study has shown that the creation of custom distributions can be an 
efficient approach to simulate data in different fields such as finance, biology, indus-
try or physics.

We hope that our work will serve as a foundation for future research and contrib-
ute to the advancement of knowledge in these areas.

8  Future Work and Coming

This research intends to focus on various areas of exploration in the future. One of 
these topics will include investigating transformations as TX among others in order 
to create a new distribution for predicting unknown lifetime occurrences. This new 
distribution will provide a more sophisticated statistical model for studying and pre-
dicting lifetimes, as well as it has the potential to be employed in a wide range of 
applications. Another area of research will be the creation of a bivariate distribution, 
which will allow us to evaluate and forecast the interaction of two variables. We will 
also investigate copulas and other aspects of this novel distribution to better under-
stand its behavior and applicability.

Last but not least, we also intend to use the new distribution with engineering and 
accelerated data to investigate the reliability function’s behavior utilizing calibrated 
data. This will help to establish the new distribution’s potential utility in industry 
and other sectors by providing insights into how it might be utilized in real-world 
circumstances. Overall, our future research will concentrate on the development of 
advanced statistical models and the analysis of their behavior in a variety of applica-
tions. We are excited about the possible insights and breakthroughs that these inves-
tigations may yield.
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