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Abstract
In this study, we will look at estimating the parameters of the Gompertz distribution. 
We know that the maximum likelihood technique is the most often used method in 
the literature for parameter estimation. However, it is well known that the maximum 
likelihood estimators (MLEs) are biased for small sample sizes. As a result, we are 
motivated to produce nearly unbiased estimators for the parameters of this distri-
bution. To be more specific, we concentrate on two bias-correction strategies (ana-
lytical and bootstrap approaches) to minimize MLE biases to the second order of 
magnitude. Monte Carlo simulations are used to compare the performances of these 
estimators. Finally, two real-data examples are offered to demonstrate the utility of 
our proposed estimators in small sample sizes.
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1  Introduction

Gompertz [17] introduced the Gompertz distribution to fit mortality tables. This 
distribution is unimodal and positively skew, whereas the Gompertz hazard rate 
function increases monotonically. As a result, the Gompertz distribution is used 
to model phenomena that has an increasing failure rate. It is worth mentioning 
that it has some interesting relationships with well-known distributions like expo-
nential, Weibull, Gumbel, generalized logistic and double exponential distribu-
tions (see, [39]). Garg et al. [13] studied the Maximum likelihood estimation of 
the parameters of the Gompertz survival function.

Ahuja and Nash [1] contains a survey and applications of the Gompertz distri-
bution. Many researchers have contributed to the studies of characterization and 
statistical methodology of this distribution for analyzing a variety of real-world 
applications, including the analysis of medical, survival, behavioral, biological, 
environmental, and actuarial studies. For instance, [2–4, 8, 10, 12, 21, 22, 26, 27, 
31–33, 35, 40, 42].

The maximum likelihood technique is well-known as the most popular estimat-
ing method. This is due to its appealing mathematical properties for large sam-
ple sizes, such as unbiasedness, consistency, efficiency and asymptotic normality. 
These properties, however, may not hold for small or even moderate sample sizes; 
see, for example, [14–16, 25, 34, 38] along with others.

In this study, we will look at two strategies. The first is a correction strategy 
known as the "analytical approach" which was presented by [7]. This method cor-
rects the bias of MLEs to the second order of magnitude by subtracting it from 
the MLEs. Some researchers, including [20, 28, 36], developed software applica-
tions (even though they are limited) that allow users to compute the analytic Cox-
Snell formula for bias corrections for various pre-specified distributions. Moreo-
ver, the second strategy is based on the bootstrap re-sampling procedure which 
may minimize bias to the second order, as described in the "bootstrap approach" 
developed by [9]. In both strategies, we shall refer to these corrected estimators 
as bias-corrected estimators. To demonstrate the performance of these estimators, 
Monte Carlo simulations and real-world applications are used.

If X follows the Gompertz distribution (denoted by Gomp(�, �)), then the dis-
tribution function (cdf) and the probability density function (pdf) of X are given 
respectively by (see for example [5, 19, 23])

where 𝛼 > 0 is the shape parameter and 𝛽 > 0 is the scale parameter as shown in 
Fig. 1. In addition, the role of the shape parameter � can also be seen in the hazard 
function (h(x)) of this distribution

(1.1)F(x; �, �) = 1 − e
−

[

�

�
(e�x−1)

]

,

(1.2)f (x; �, �) = � e(�x) e
−

[

�

�
(e�x−1)

]

,
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It is clear that as � → 0 , the Gompertz distribution approaches the exponential 
distribution.

The rest of the paper is organized as follows. The Maximum Likelihood 
Estimation(MLE) is introduced in Sect.  2. In Sect.  3, we give bias-corrected MLEs 
for both analytical and bootstrap approaches. In Sect. 4, we obtain simulation results 
to evaluate the performance of the maximum likelihood estimation method. Moreo-
ver, two examples based on real data are used to demonstrate the performance of these 
approaches in Sect. 5. lastly, some concluding remarks are given in Sect. 6.

2 � Maximum Likelihood Estimation

Let X1,⋯ ,Xn be a random sample of size n from Gomp(�, � ). The log likelihood 
function (l) is

We maximize Eq. (2.1) with respect to � and � in order to obtain the MLE’s 
( ̂� and �̂  ) of � and � respectively. Thus, we have the following equations:

(1.3)h(x) = � e(�x).

(2.1)l =
n �

�
+ n log(�) + �

n
∑

i=1

xi −
�

�

n
∑

i=1

e�xi

(2.2)
�l

��
=

n

�
−

1

�

n
∑

i=1

(

e�xi − 1
)

Fig. 1   Plots of the pdf of the Gompertz distribution with a � = 1 and different values of � and b � = 1 
and different values of �
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The non-linear Eqs. (2.2) and (2.3) cannot be solved analytically. However, several 
programs such as R, Mathematica or Maple can be used to solve these equations 
numerically to estimate the MLEs denoted by �̂MLE where � = (�, �)

�

 . For small sam-
ple sizes, these MLEs will be biased as mentioned previously. Therefore, the bias 
may provide misleading results, influencing the interpretation of occurrences in real-
world applications. As a result, this motivates us to examine roughly unbiased esti-
mators to decrease the bias of these Gompertz distribution MLEs.

3 � Bias‑Corrected MLEs

This section examines two bias-correction techniques. The first is [7]’s "analytical 
approach", which is described in Sect. 3.1, and the second is [9]’s "bootstrap approach", 
which is presented in Sect. 3.2.

3.1 � Analytical Approach

Assume l(�) is the log likelihood function based on n observations with a p-dimen-
sional parameter vector represented as � =

(

�1,… , �p
)�

 and l(�) is regular with respect 
to all derivatives up to the third order.

The joint cumulants of l = l(�) derivatives are therefore defined as

These joint cumulants’ derivatives are denoted by

In addition, the expressions in Eqs. (3.1) through (3.4) are assumed to be of order 
O(n).

(2.3)
�l

��
=

n
∑

i=1

xi −
�

�

n
∑

i=1

xi e
�xi +

�

�2

n
∑

i=1

(

e�xi − 1
)

(3.1)�ij = E

[

�2l

��i��j

]

, i, j = 1,… , p ,

(3.2)�ijk = E

[

�3l

��i��j��k

]

, i, j, k = 1,… , p ,

(3.3)�ij,k = E

[(

�2l

��i��j

)(

�l

��k

)]

, i, j, k = 1,⋯ , p .

(3.4)�
(k)

ij
=

��ij

��k
, i, j, k = 1,… , p .
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Assume � =
[

−�ij
]

 denotes the Fisher information matrix of � , with i, j = 1,⋯ p . 
For non-identical independent samples, [7] demonstrated that the bias of the sth element 
of the MLE of � is

where �ij denotes the (i, j)th member of the information matrix’s inverse. Thereaf-
ter, [6] demonstrated that Eq. (3.5) remains valid even if the sample data are not 
identical and non-independent observations, given that all expressions in Eq. (3.1) 
through Eq. (3.4) are of order O(n). Equation (3.5) was expressed as

Because the term of the form in Eq. (3.3) was eliminated from Eq. (3.6), this bias 
expression in Eq. (3.6) is often easier to compute than that of Eq. (3.5).

Let �(k)

ij
= �

(k)

ij
−

1

2
�ijk i, j, k = 1,… , p . As a result, we have these two matrices ( � 

and �(k) ) as

Hence, �̂  ’s bias expression may be written in matrix form as

where vec is an operation that stacks a matrix’s column vectors one on top of the 
other. Therefore, the � bias-corrected MLE, represented as �̂BCMLE , is given by

where �̂  is the MLE of � , �̂ = �|

�=�̂
 and �̂ = � |

�=�̂
 . It should be noted that the bias 

of �̂BCMLE is O
(

n−2
)

.
We have � = (�, �)

�

and p = 2 because we are studying the Gompertz distribution. 
To get the bias-corrected MLEs, we must first compute the higher-order derivatives 
of the log-likelihood function for the Gompertz distribution with respect to � and � 
as shown below

(3.5)Bias
(

�̂s

)

=

p
∑

i=1

p
∑

j=1

p
∑

k=1

�si�jk
[

1

2
�ijk + �ij,k

]

+ O
(

n−2
)

, s = 1,… , p ,

(3.6)Bias
(

�̂s

)

=

p
∑

i=1

�si
p
∑

j=1

p
∑

k=1

�jk
[

�
(k)

ij
−

1

2
�ijk

]

+ O
(

n−2
)

, s = 1,… , p .

(3.7)� =
[

�(1)
| �(2)

| ⋯ |�(p)
]

where �(k) =

[

�
(k)

ij

]

, i, j, k = 1,… , p.

(3.8)Bias
(

�̂

)

= �−1� ⋅ vec
(

�−1
)

+ O
(

n−2
)

,

(3.9)�̂BCMLE = �̂ − �̂−1�̂ ⋅ vec
(

�̂−1
)

,

(3.10)�2l

��2
= −

n

�2

(3.11)
�2l

��2
= −

�

�

n
∑

i=1

xi
2 e�xi +

2�

�2

n
∑

i=1

xi e
�xi −

2�

�3

n
∑

i=1

(

e�xi − 1
)
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Notice that if X follows Gomp(�, � ) then Y =
𝛼

𝛽

(

e𝛽X − 1
)

∼ f (y) = e−Y for y > 0 . 
Therefore, Y follows exponential distribution. The following formulas will be 
needed:

The upper incomplete gamma function is defined as

These derivatives of the upper incomplete gamma function are straightforward to be 
obtained as

(3.12)
�2l

����
= −

1

�

n
∑

i=1

xi e
�xi +

1

�2

n
∑

i=1

(

e�xi − 1
)

(3.13)�3l

��3
=

2n

�3

(3.14)

�3l

��3
= −

�

�

n
∑

i=1

xi
3 e�xi +

3�

�2

n
∑

i=1

xi
2 e�xi −

6�

�3

n
∑

i=1

xi e
�xi +

6�

�4

n
∑

i=1

(

e�xi − 1
)

(3.15)
�3l

��2��
= 0

(3.16)
�3l

��2��
= −

1

�

n
∑

i=1

xi
2 e�xi +

2

�2

n
∑

i=1

xi e
�xi −

2

�3

n
∑

i=1

(

e�xi − 1
)

(3.17)𝛤 (s, t) = ∫
∞

t

ws−1 e−wdw for s, t > 0.

(3.18)

Q(r, s, t) =
𝜕r

𝜕sr
𝛤 (s, t) = ∫

∞

t

[

log (w)
]r
ws−1 e−wdw for r = 0, 1,⋯ and s, t > 0,

(3.19)D� a

(

s,
a

b

)

=
�

�a
�

(

s,
a

b

)

= −
1

b

{

(

a

b

)s−1

e
−

(

a

b

)
}

,

(3.20)D� b

(

s,
a

b

)

=
�

�b
�

(

s,
a

b

)

=
a

b2

{

(

a

b

)s−1

e
−

(

a

b

)
}

,

(3.21)DQa

(

r, s,
a

b

)

=
�

�a
Q
(

r, s,
a

b

)

= −
1

b

{

[

log
(

a

b

) ]r(a

b

)s−1

e
−

(

a

b

)
}

,
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The Eqs. (3.17) and (3.22) can be implemented easily in any mathematical or statis-
tical programs. Moreover,

see equation (4.358.1) in [18]. Hence, using the preceding Eqs. (3.17)–(3.23), we 
obtain

Similarly,

As a result,

(3.22)DQb

(

r, s,
a

b

)

=
�

�b
Q
(

r, s,
a

b

)

=
a

b2

{

[

log
(

a

b

) ]r(a

b

)s−1

e
−

(

a

b

)
}

,

(3.23)
∫

∞

1

[

log (y)
]r
ys−1 e−ty dy =

𝜕r

𝜕sr
{t−s 𝛤 (s, t) } for r = 0, 1,… and s, t > 0,

(3.24)∫
∞

1

y e−ty dy = t−2 � (2, t) =
(1 + t) e−t

t2
,

(3.25)

∫

∞

1
log (y) y e−ty dy = �

�s
{t−s � (s, t) }

|

|

|

|s=2
= {t−s Q(1, s, t) − t−s � (s, t) log(t)}|s=2

= t−2 {Q(1, 2, t) − log(t) � (2, t)}.

(3.26)

∫
∞

1

[

log (y)
]2

y e−ty dy =
�2

�s2
{t−s � (s, t) }

|

|

|

|s=2

=
�

�s
{t−s Q(1, s, t) − t−s � (s, t) log(t)}

|

|

|

|s=2

=

{

t−s Q(2, s, t) − 2t−s log (t) Q(1, s, t) + t−s � (s, t)
[

log(t)
]2
}

|

|

|

|s=2

= t−2
{

Q(2, 2, t) − 2log (t) Q(1, 2, t) +
[

log (t)
]2

� (2, t)
}

(3.27)

∫

∞

1

[

log (y)
]3 y e−ty dy = �3

�s3
{t−s � (s, t) }

|

|

|

|s=2

= �
�s

{

t−s Q(2, s, t) − 2t−s log (t) Q(1, s, t) + t−s � (s, t)
[

log(t)
]2
}

|

|

|

|s=2

= t−2
{

Q(3, 2, t) − 3log (t) Q(2, 2, t) + 3
[

log (t)
]2 Q(1, 2, t) −

[

log (t)
]3 � (2, t)

}

.

(3.28)�
{

e�X − 1
}

= �

{

�

�
Y

}

=
�

� ∫
∞

0

y f (y)dy =
�

� ∫
∞

0

y e−y dy =
�

�
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Similarly,

Refer to A for the joint cumulants of the derivatives of the log-likelihood function. 
As previously stated, any computer program may be used to compute the bias-cor-
rected MLE of � ( ̂�BCMLE ) provided by

where � is the Fisher information matrix of � and 
� =

[

�(1)
| �(2)

]

such that �(k) =

[

�
(k)

ij

]

i, j, k = 1, 2.

3.2 � Bootstrap Approach

To create pseudo-samples from the original sample, [9] invented the bootstrap resa-
mpling technique. We deduct the estimated bias from these samples from the original 
MLEs in the following manner to produce the bias-corrected MLEs:

(3.29)

�
{

X e�X
}

= �
{(

� + � Y
� �

)

log
(

� + � Y
�

)}

=
(

1
� �

)

∫

∞

0
(� + � y) log

(

� + � Y
�

)

e−y dy

=
⎛

⎜

⎜

⎝

� e
(

�
�

)

�2

⎞

⎟

⎟

⎠

∫

∞

1
w log (w) e−

�
� w dw where w =

� + � Y
�

⇒ �
{

X e�X
}

=
⎛

⎜

⎜

⎝

� e
(

�
�

)

�2

⎞

⎟

⎟

⎠

∫

∞

1
w log (w) e−

�
� w dw

=
⎛

⎜

⎜

⎝

e
(

�
�

)

�

⎞

⎟

⎟

⎠

{

Q
(

1, 2, �
�

)

− log
(

�
�

)

�
(

2, �
�

)}

(3.30)

�
�

X2 e�X
�

= �

�

�

� + � Y

� �2

� �

log

�

� + � Y

�

��2
�

=

⎛

⎜

⎜

⎝

e

�

�

�

�

� �

⎞

⎟

⎟

⎠

�

Q

�

2, 2,
�

�

�

− 2log

�

�

�

�

Q

�

1, 2,
�

�

�

+

�

log

�

�

�

� �2

�

�

2,
�

�

�

�

(3.31)

�
�

X3 e�X
�

= �

�

�

� + � Y

� �3

� �

log

�

� + � Y

�

��3
�

=

⎛

⎜

⎜

⎝

e

�

�

�

�

� �2

⎞

⎟

⎟

⎠

�

Q

�

3, 2,
�

�

�

− 3log

�

�

�

�

Q

�

2, 2,
�

�

�

+

3

�

log

�

�

�

� �2

Q

�

1, 2,
�

�

�

−

�

log

�

�

�

� �3

�

�

2,
�

�

�

�

�̂BCMLE = �̂ − �̂−1�̂ ⋅ vec
(

�̂−1
)
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A random sample of size n from F, the distribution function (cdf), is represented by 
the formula x =

(

x1,⋯ , xn
)�

 . Let � = t(F) be a function of F, and let �̂  be the estima-
tor of � . By creating observations using replacement, we resample the original sam-
ple, x, into pseudo-samples of size n, x ∗ =

(

x∗
1
,… , x∗

n

)�

 . From these pseudo-samples, 
indicated by �̂∗ = g(x∗) , we get the bootstrap replicates of �̂  . The cdf of �̂  , F�̂ may be 
estimated using the empirical cdf (ecdf) of �̂∗ . This following equation may be used to 
estimate the bootstrap bias of the estimator �̂ = g(x) as

Since it is a consistent estimator, we may substitute F with F�̂  in Equation (3.32) to 
get the estimated bootstrap bias as

If there are N bootstrap estimates, for example, 
(

�̂∗(1),… , �̂∗(N)
)

 , and N is sufficiently 
large then the estimator �F�̂

[

�̂∗
]

 in Equation (3.33) may be roughly expressed as

Consequently, the estimated bootstrap bias is

Therefore, using Efron’s bootstrap resampling approach, the bias-corrected estima-
tor ( �B ) equals

As a result, we in this instance let �̂BCBOOT = �B.

4 � A Simulation Study

In this part, using the cdf and pdf supplied in Eqs. (1.1) and (1.2), respectively, we run Monte 
Carlo simulations to evaluate the efficacy of the various Gompertz distribution estimators that 
have been taken into consideration. We select random samples of size n = 5, 10, 20, 35, 50, 
75, 100, 200 with � = 0.1, 0.5, 1, 1.5, 3 and � = 0.1, 0.5, 1, 1.5, 3. For each combination of 
(n, � , � ), we simulated using M = 5000 Monte Carlo replications and B = 1000 bootstrap 
replications.

We compute the average bias and RMSEs for an estimator 𝜉 of the parameter � = (�, �)� , 

which are indicated by Bias(̂� )=1

M

∑M

i=1

�

�̂i − �

�

 and RMSE(̂� )=
�

1

M

∑M

i=1

�

�̂i − �

�2

 , 
respectively.

Figures 2 and 3 show the average biases and RMSEs of the estimations of � and � across 
sample sizes. Some inferences that can be drawn are the ones below. 

(3.32)BF

(

�̂, �
)

= �F

[

�̂
]

− �(F).

(3.33)B̂F�𝜈

(

�𝜈, 𝜈
)

= �F�𝜈

[

�𝜈∗
]

− �𝜈.

�̂∗(⋅) =
1

N

N
∑

i=1

�̂∗(i).

(3.34)B̂F�𝜈

(

�𝜈, 𝜈
)

= �𝜈∗(⋅) − �𝜈.

(3.35)𝜈B = �𝜈 − B̂F�𝜈

(

�𝜈, 𝜈
)

= 2 �𝜈 − �𝜈∗(⋅).
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Fig. 2   Plots of the average biases comparisons of the three different estimation methods for � (left panel) 
and � (right panel)
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Fig. 3   Plots of the RMSEs Comparisons of the three different estimation methods for � (left panel) and � 
(right panel)
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1.	 The MLE estimators of � appear to have a positive bias for each simulation being 
taken into account. This demonstrates how, generally speaking, they overestimate 
the value of the parameter � , especially when the sample size is small. Addition-
ally, the MLE estimators commonly show a negative bias, i.e., they consistently 
underestimate the true value of the parameter � for different sample sizes, when 
the real value of the parameter � is equal to or greater than one. On the other hand, 
the MLE estimators frequently seem to have a positive bias when the true value 
of the parameter � is less than one. This means that for various sample sizes, they 
on average underestimate the true value of the parameter �.

2.	 In most simulations for various sample sizes, the MLE estimators underperformed 
the BCMLEs of � and � in terms of bias and RMSE, i.e., the BCBOOTs of � and � 
beat the MLE estimators. Therefore, the BCMLEs would be ideal or better options 
for estimating � and � if bias is a concern.

3.	 The biases and RMSEs of all examined estimators will decrease as sample size 
n increases, as expected. This is mostly because, according to statistical theory, 
most estimators function more effectively as sample size n increases. For the bias-
corrected estimators for small sample sizes, the reductions in bias and RMSE are 
quite considerable, as shown above. For example, where n = 10, � = 0.1, and � 
=1, we have Bias(𝛼̂ MLE)=0.3229, Bias(𝛼̂ BCMLE)=0.0676, Bias(𝛼̂ BCBOOT)= 
0.0576, Bias(𝛽  MLE) = −0.0435, Bias(𝛽  BCMLE) = 0.0066, Bias(𝛽  BCBOOT) 
= −0.0122, RMSE(𝛼̂ MLE) = 0.8725, RMSE(𝛼̂ BCMLE) = 0.4399, RMSE(𝛼̂ 
BCBOOT)= 0.5036, RMSE(𝛽  MLE) = 0.4422, RMSE(𝛽  BCMLE) = 0.3101, 
RMSE(𝛽  BCBOOT) = 0.3437.

5 � Illustrative Applications

The maximum likelihood estimator, denoted by �̂MLE , the bias-corrected maximum 
likelihood estimator using an analytical approach, denoted by �̂BCMLE , and the bias-
corrected estimator using a bootstrap approach, denoted by �̂BCBOOT , are taken into 
consideration. In order to compare the performance of these estimators, we take into 
account two real data sets.

The data set represents the lifetimes of 20 electronic components, see [30], page 
100. Also, it was studied by [37]. It is provided, for convenience, as follows: 0.03, 
0.12, 0.22, 0.35, 0.73, 0.79, 1.25, 1.41, 1.52, 1.79, 1.8, 1.94, 2.38, 2.4, 2.87, 2.99, 
3.14, 3.17, 4.72 and 5.09.

Table  1 contains the estimated values for the parameters of the Gompertz 
distribution. Table  1 demonstrates that the bias-corrected MLE and bootstrap 
estimates of � are less than the MLE estimate, indicating that the MLE approach 
overestimates this parameter. The Gompertz distribution’s pdf and cdf are shown 

Table 1   Point estimates of 
the parameters ( � and � ) of 
Gompertz distribution for the 
first data

Estimate � �

MLE 0.2994 0.3112
BCMLE 0.2182 0.3255
BCBOOTP 0.2292 0.3137
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in Fig. 4 after being assessed using the � and � estimations in Table 1. We suggest 
using bias-corrected MLEs for this data set since the density shape based on the 
MLE approach may be deceptive, as illustrated in this Figure.

The second data set represents the failure times (in minutes) for a sample of 
15 electronic components in an accelerated life test. This data was taken from 
[24], page 204. Additionally, researchers like [29, 11], and [41] analyzed this data as 
well. We provide it here for convenience: 1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 
23, 30.6, 37.3, 46.3, 53.9, 59.8 and 66.2.

Similarly, Table 2 lists the estimated values of the parameters of the Gompertz 
distribution. Table  2 demonstrates that the bias-corrected MLE and bootstrap 
estimates of � are less than the MLE estimate, indicating that the MLE approach 
overestimates this parameter. The Gompertz distribution’s pdf and cdf are shown 
in Fig. 5 after being assessed using the � and � estimations in Table 2. Given that 
the density shape based on the MLE technique may be deceiving, as shown in this 
Figure, we advise utilizing bias-corrected MLEs for this data set.

6 � Concluding Remarks

Based on the "analytical technique" created by [7], we were able to obtain the 
second-order bias-corrected MLEs of the Gompertz distribution. In addition to 
having straightforward formulas, bias-corrected MLEs simultaneously reduce 
the bias and root mean square errors (RMSEs) of the parameters of the Gompertz 
distribution. We also assessed the resampling technique known as the "bootstrap 
approach" described by [9] for parameters estimation. Bias-corrected MLEs should 
be advised for use in practical applications, particularly when the sample size is 
small or moderate, according to the numerical findings of both simulation studies 
and real-data applications.

Fig. 4   The cdf and pdf of the Gompertz distribution fitted to the survival rate data using the various  
estimates of � and �
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A The Joint Cumulants of the Log‑Likelihood Function Derivatives
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Table 2   Point estimates of 
the parameters ( � and � ) of 
Gompertz distribution for the 
second data

Estimate � �

MLE 0.0217 0.0215
BCMLE 0.0142 0.0227
BCBOOTP 0.0173 0.0214
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